R. Kvetnansky, C. Sun, C. Lake, N. Thoa, T. Torda et al., Effect of Handling and Forced Immobilization on Rat Plasma Levels of Epinephrine, Norepinephrine, and Dopamine-??-Hydroxylase, Endocrinology, vol.103, issue.5, pp.1868-74, 1978.
DOI : 10.1210/endo-103-5-1868

A. Wakade, Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland., The Journal of Physiology, vol.313, issue.1, 1981.
DOI : 10.1113/jphysiol.1981.sp013676

A. Martin, M. Mathieu, C. Chevillard, and N. Guerineau, Gap junctions mediate electrical signaling and ensuing cytosolic Ca2+ increases between chromaffin cells in adrenal slices: a role in catecholamine release, J Neurosci, vol.21, issue.15, pp.5397-405, 2001.

C. Colomer, M. Desarmenien, and N. Guerineau, Revisiting the Stimulus-Secretion Coupling in the Adrenal Medulla: Role of Gap Junction-Mediated Intercellular Communication, Molecular Neurobiology, vol.44, issue.Suppl, pp.87-100, 2009.
DOI : 10.1113/jphysiol.1967.sp008239

URL : https://hal.archives-ouvertes.fr/inserm-00398108

C. Colomer, A. Martin, M. Desarmenien, and N. Guerineau, Gap junctionmediated intercellular communication in the adrenal medulla: an additional ingredient of stimulus-secretion coupling regulation, Biochim Biophys Acta, issue.8, pp.18181937-51, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00617505

M. Desarmenien, C. Jourdan, B. Toutain, E. Vessieres, S. Hormuzdi et al., Gap junction signalling is a stress-regulated component of adrenal neuroendocrine stimulus-secretion coupling in vivo, Nature Communications, vol.67, 2013.
DOI : 10.1095/biolreprod67.3.945

URL : https://hal.archives-ouvertes.fr/inserm-00924268

D. Hodson, C. Legros, M. Desarmenien, and N. Guerineau, Roles of connexins and pannexins in (neuro)endocrine physiology, Cellular and Molecular Life Sciences, vol.506, issue.Pt 1, pp.2911-2939, 2015.
DOI : 10.1111/j.1469-7793.1998.195bx.x

URL : https://hal.archives-ouvertes.fr/inserm-01178672

C. Alvarado, B. Faraj, T. Kim, V. Camp, R. Bain et al., Plasma dopa and catecholamines in the diagnosis and follow-up of children with neuroblastoma, Journal of Pediatric Hematology/Oncology, vol.7, issue.3, pp.221-228, 1985.
DOI : 10.1097/00043426-198507030-00002

E. Corssmit and J. Romijn, MANAGEMENT OF ENDOCRINE DISEASE: Clinical management of paragangliomas, European Journal of Endocrinology, vol.171, issue.6, pp.231-4314, 2014.
DOI : 10.1530/EJE-14-0396

T. Rosano, T. Swift, and L. Hayes, Advances in catecholamine and metabolite measurements for diagnosis of pheochromocytoma, Clin Chem, vol.3710, issue.2, pp.1854-67, 1991.

E. Grouzmann and F. Lamine, Determination of catecholamines in plasma and urine, Best Practice & Research Clinical Endocrinology & Metabolism, vol.27, issue.5, pp.713-736, 2013.
DOI : 10.1016/j.beem.2013.06.004

J. Pappachan, D. Raskauskiene, R. Sriraman, M. Edavalath, and F. Hanna, Diagnosis and Management of Pheochromocytoma: A Practical Guide to Clinicians, Current Hypertension Reports, vol.258, issue.Suppl 1, pp.442-452, 2014.
DOI : 10.1111/j.1365-2796.2005.01504.x

M. Esler, G. Jennings, and G. Lambert, Noradrenaline Release and the Pathophysiology of Primary Human Hypertension, American Journal of Hypertension, vol.2, issue.3_Pt_2, pp.140-146, 1989.
DOI : 10.1093/ajh/2.3.140S

M. Yoshimura, T. Komori, M. Nishimura, Y. Habuchi, N. Fujita et al., Diagnostic Significance of Dopamine Estimation Using Plasma and Urine in Patients with Adrenal and Renal Insufficiency, Renal Transplantation and Hypertension, Hypertension Research, vol.18, issue.SupplementI, pp.87-92, 1995.
DOI : 10.1291/hypres.18.SupplementI_S87

S. Parker, M. Breslow, S. Frank, B. Rosenfeld, E. Norris et al., Catecholamine and cortisol responses to lower extremity revascularization, Critical Care Medicine, vol.23, issue.12, pp.1954-61, 1995.
DOI : 10.1097/00003246-199512000-00003

M. Kushnir, F. Urry, E. Frank, W. Roberts, and B. Shushan, Analysis of catecholamines in urine by positive-ion electrospray tandem mass spectrometry, Clin Chem, vol.48, issue.2, pp.323-354, 2002.

D. Goldstein, G. Eisenhofer, and I. Kopin, Sources and Significance of Plasma Levels of Catechols and Their Metabolites in Humans, Journal of Pharmacology and Experimental Therapeutics, vol.305, issue.3, pp.800-811, 2003.
DOI : 10.1124/jpet.103.049270

R. Peaston and C. Weinkove, Measurement of catecholamines and their metabolites, Annals of Clinical Biochemistry, vol.41, issue.1, pp.17-38, 2004.
DOI : 10.1258/000456304322664663

M. Tsunoda, Recent advances in methods for the analysis of catecholamines and their metabolites, Analytical and Bioanalytical Chemistry, vol.17, issue.3, pp.506-520, 2006.
DOI : 10.3346/jkms.2002.17.3.395

J. Bicker, F. A. Alves, G. Falcao, and A. , Liquid chromatographic methods for the quantification of catecholamines and their metabolites in several biological samples???A review, Analytica Chimica Acta, vol.768, pp.12-34, 2013.
DOI : 10.1016/j.aca.2012.12.030

E. Bucher and R. Wightman, Electrochemical Analysis of Neurotransmitters, Annual Review of Analytical Chemistry, vol.8, issue.1, pp.239-6110, 2015.
DOI : 10.1146/annurev-anchem-071114-040426

J. Ribeiro, P. Fernandes, C. Pereira, and F. Silva, Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review, Talanta, vol.160, pp.653-79, 2016.
DOI : 10.1016/j.talanta.2016.06.066

B. Wolthers, I. Kema, M. Volmer, R. Wesemann, J. Westermann et al., Evaluation of urinary metanephrine and normetanephrine enzyme immunoassay (ELISA) kits by comparison with isotope dilution mass spectrometry, Clin Chem, vol.43, issue.1, pp.114-134, 1997.

J. Westermann, W. Hubl, N. Kaiser, and L. Salewski, Simple, rapid and sensitive determination of epinephrine and norepinephrine in urine and plasma by non-competitive enzyme immunoassay, compared with HPLC method, Clin Lab, vol.48, issue.12, pp.61-71, 2002.

Z. Peterson, D. Collins, C. Bowerbank, M. Lee, and S. Graves, Determination of catecholamines and metanephrines in urine by capillary electrophoresis???electrospray ionization???time-of-flight mass spectrometry, Journal of Chromatography B, vol.776, issue.2, pp.221-230, 2002.
DOI : 10.1016/S1570-0232(02)00368-9

N. Ben-jonathan and J. Porter, A Sensitive Radioenzymatic Assay for Dopamine,Norepinephrine, and Epinephrine inPlasma and Tissue, Endocrinology, vol.98, issue.6, pp.1497-507, 1976.
DOI : 10.1210/endo-98-6-1497

B. Kennedy and M. Ziegler, A more sensitive and specific radioenzymatic assay for catecholamines, Life Sciences, vol.47, issue.23, pp.2143-5310, 1990.
DOI : 10.1016/0024-3205(90)90314-H

J. Knopp, D. Jezova, M. Rusnak, I. Jaroscakova, R. Farkas et al., Changes in plasma catecholamine and corticosterone levels and gene expression of key enzymes of catecholamine biosynthesis in partially hepatectomized rats, Endocr Regul, vol.33, issue.4, pp.145-53, 1999.

R. Clark and A. Ewing, Quantitative measurements of released amines from individual exocytosis events, Molecular Neurobiology, vol.70, issue.1, pp.1-16, 1997.
DOI : 10.1021/ac961943a

R. Borges, M. Camacho, and K. Gillis, Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods, Acta Physiologica, vol.84, issue.2, pp.173-84, 2008.
DOI : 10.1046/j.1471-4159.1998.71031127.x

P. Hjemdahl, Catecholamine measurements by high-performance liquid chromatography, Am J Physiol, vol.2471, issue.1, pp.13-20, 1984.

T. Nagatsu, Application of high-performance liquid chromatography to the study of biogenic amine-related enzymes, Journal of Chromatography B: Biomedical Sciences and Applications, vol.566, issue.2, pp.287-30710, 1991.
DOI : 10.1016/0378-4347(91)80246-9

M. Yamaguchi, J. Ishida, and M. Yoshimura, Simultaneous determination of urinary catecholamines and 5-hydroxyindoleamines by high-performance liquid chromatography with fluorescence detection, The Analyst, vol.123, issue.2, pp.307-318, 1998.
DOI : 10.1039/a706362h

R. Nikolajsen and A. Hansen, Analytical methods for determining urinary catecholamines in healthy subjects, Analytica Chimica Acta, vol.449, issue.1-2, pp.1-1510, 2001.
DOI : 10.1016/S0003-2670(01)01358-7

M. Tsunoda and K. Imai, Analytical applications of peroxyoxalate chemiluminescence, Analytica Chimica Acta, vol.541, issue.1-2, pp.13-23, 2005.
DOI : 10.1016/j.aca.2004.11.070

T. Araki, K. Ito, M. Kurosawa, and A. Sato, Responses of adrenal sympathetic nerve activity and catecholamine secretion to cutaneous stimulation in anesthetized rats, Neuroscience, vol.12, issue.1, pp.289-99, 1984.
DOI : 10.1016/0306-4522(84)90154-4

A. Kuzmin, D. Zaretsky, E. Kalenikova, M. Zaretskaja, O. Medvedev et al., The effect of histamine receptor antagonists on stress-induced catecholamine secretion: an adrenomedullary microdialysis study in the rat, European Journal of Pharmacology, vol.378, issue.3
DOI : 10.1016/S0014-2999(99)00467-7

T. Akiyama, T. Yamazaki, H. Mori, and K. Sunagawa, Simultaneous monitoring of acetylcholine and catecholamine release in the in vivo rat adrenal medulla, Neurochemistry International, vol.44, issue.7, pp.497-503, 2004.
DOI : 10.1016/j.neuint.2003.09.001

M. Weinstock, M. Razin, D. Schorer-apelbaum, D. Men, and R. Mccarty, Gender differences in sympathoadrenal activity in rats at rest and in response to footshock stress, International Journal of Developmental Neuroscience, vol.16, issue.3-4, pp.289-95, 1998.
DOI : 10.1016/S0736-5748(98)00021-5

M. Tsunoda, K. Takezawa, T. Yanagisawa, M. Kato, and K. Imai, Determination of catecholamines and their 3-O-methyl metabolites in mouse plasma, Biomedical Chromatography, vol.83, issue.1, pp.41-45, 2001.
DOI : 10.1248/bpb.17.907

R. Vollmer, J. Balcita, A. Sved, and D. Edwards, Adrenal epinephrine and norepinephrine release to hypoglycemia measured by microdialysis in conscious rats, Am J Physiol, vol.273, pp.1758-63, 1997.

D. Lim, S. Jang, and D. Park, Comparison of catecholamine release in the isolated adrenal glands of SHR and WKY rats, Autonomic and Autacoid Pharmacology, vol.20, issue.4, pp.225-257, 2002.
DOI : 10.1007/978-3-642-65441-1_12

C. Gisolfi, R. Matthes, K. Kregel, and R. Oppliger, Splanchnic sympathetic nerve activity and circulating catecholamines in the hyperthermic rat, J Appl Physiol, vol.70, issue.4, pp.1821-1827, 1985.

C. Colomer, O. Ore, L. Coutry, N. Mathieu, M. Arthaud et al., Functional Remodeling of Gap Junction-Mediated Electrical Communication between Adrenal Chromaffin Cells in Stressed Rats, Journal of Neuroscience, vol.28, issue.26, pp.6616-6642, 2008.
DOI : 10.1523/JNEUROSCI.5597-07.2008

URL : https://hal.archives-ouvertes.fr/inserm-00281272

M. Herrera, L. Kao, D. Curran, and E. Westhead, Flow-injection analysis of catecholamine secretion from bovine adrenal medulla cells on microbeads, Analytical Biochemistry, vol.144, issue.1, pp.218-245, 1985.
DOI : 10.1016/0003-2697(85)90109-5

R. Wightman, J. Jankowski, R. Kennedy, K. Kawagoe, T. Schroeder et al., Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells., Proceedings of the National Academy of Sciences, vol.88, issue.23, pp.10754-10762, 1991.
DOI : 10.1073/pnas.88.23.10754

URL : http://www.pnas.org/content/88/23/10754.full.pdf

J. Jankowski, T. Schroeder, R. Holz, and R. Wightman, Quantal secretion of catecholamines measured from individual bovine adrenal medullary cells permeabilized with digitonin, J Biol Chem, vol.267, issue.26, pp.18329-18364, 1992.
DOI : 10.21236/ADA251716

J. Jankowski, T. Schroeder, E. Ciolkowski, and R. Wightman, Temporal characteristics of quantal secretion of catecholamines from adrenal medullary cells, J Biol Chem, vol.268, issue.20, pp.14694-700, 1993.

J. Barbara, J. Poncer, R. Mckinney, and K. Takeda, An adrenal slice preparation for the study of chromaffin cells and their cholinergic innervation, Journal of Neuroscience Methods, vol.80, issue.2, pp.181-190, 1998.
DOI : 10.1016/S0165-0270(97)00200-8

G. Arroyo, J. Fuentealba, N. Sevane-fernandez, M. Aldea, A. Garcia et al., Amperometric Study of the Kinetics of Exocytosis in Mouse Adrenal Slice Chromaffin Cells: Physiological and Methodological Insights, Journal of Neurophysiology, vol.96, issue.3, pp.1196-202, 2006.
DOI : 10.1152/jn.00088.2006

R. Borges, F. Sala, and A. Garcia, Continuous monitoring of catecholamine release from perfused cat adrenals, Journal of Neuroscience Methods, vol.16, issue.4, pp.289-30010, 1986.
DOI : 10.1016/0165-0270(86)90054-3

D. Leszczyszyn, J. Jankowski, O. Viveros, E. Diliberto, . Jr et al., Secretion of Catecholamines from Individual Adrenal Medullary Chromaffin Cells, Journal of Neurochemistry, vol.2, issue.6, pp.1855-63, 1991.
DOI : 10.1038/305634a0

P. Walsh, J. Petrovic, and R. Wightman, Distinguishing splanchnic nerve and chromaffin cell stimulation in mouse adrenal slices with fast-scan cyclic voltammetry, AJP: Cell Physiology, vol.300, issue.1, pp.49-57, 2010.
DOI : 10.1152/ajpcell.00332.2010

L. Schramm, J. Adair, J. Stribling, and L. Gray, Preganglionic innervation of the adrenal gland of the rat: A study using horseradish peroxidase, Experimental Neurology, vol.49, issue.2, pp.540-53, 1975.
DOI : 10.1016/0014-4886(75)90107-7

I. Toth, O. Wiesel, D. Toth, Z. Boldogkoi, B. Halasz et al., Transneuronal retrograde viral labeling in the brain stem and hypothalamus is more intense from the left than from the right adrenal gland, Microscopy Research and Technique, vol.290, issue.7, pp.503-512, 2008.
DOI : 10.1152/japplphysiol.00558.2003

J. Bassett and S. West, Vascularization of the adrenal cortex: its possible involvement in the regulation of steroid hormone release, 6<546:AID-JEMT11>3.0.CO, pp.546-571097, 1997.
DOI : 10.1159/000122526

M. Haase, H. Willenberg, and S. Bornstein, Update on the corticomedullary interaction in the adrenal gland, Endocr Dev, vol.20, pp.28-37, 2011.

Y. Gimenez-molina, J. Villanueva, C. Nanclares, I. Lopez-font, S. Viniegra et al., The Differential Organization of F-Actin Alters the Distribution of Organelles in Cultured When Compared to Native Chromaffin Cells, Frontiers in Cellular Neuroscience, vol.127, 2017.
DOI : 10.1242/jcs.160242

H. Nohta, T. Yukizawa, Y. Ohkura, M. Yoshimura, J. Ishida et al., Aromatic glycinonitriles and methylamines as pre-column fluorescence derivatization reagents for catecholamines, Analytica Chimica Acta, vol.344, issue.3, pp.233-273, 1997.
DOI : 10.1016/S0003-2670(96)00614-9

A. Martin, G. Alonso, and N. Guerineau, Agrin mediates a rapid switch from electrical coupling to chemical neurotransmission during synaptogenesis, The Journal of Cell Biology, vol.9, issue.3, pp.503-517, 2005.
DOI : 10.1074/jbc.M309652200

URL : https://hal.archives-ouvertes.fr/hal-00017507

A. Verhofstad, R. Coupland, T. Parker, and M. Goldstein, Immunohistochemical and biochemical study on the development of the noradrenaline- and adrenaline-storing cells of the adrenal medulla of the rat, Cell and Tissue Research, vol.242, issue.2, pp.233-276, 1985.
DOI : 10.1007/BF00214536

A. Tomlinson, J. Durbin, and R. Coupland, A quantitative analysis of rat adrenal chromaffin tissue: Morphometric analysis at tissue and cellular level correlated with catecholamine content, Neuroscience, vol.20, issue.3, pp.895-904, 1987.
DOI : 10.1016/0306-4522(87)90250-8

S. Morrison and W. Cao, Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion, Am J Physiol Regul Integr Comp Physiol, vol.279, issue.5, pp.1763-75, 2000.

N. Bikas, J. Gribisi, J. Messari, and A. Sfikakis, Compensatory adrenal growth in relation to stress of surgery and estradiol in adult male rats, HORMONES, vol.1, issue.3, pp.165-73, 2002.
DOI : 10.14310/horm.2002.1164

S. Bornstein, T. Tajima, G. Eisenhofer, A. Haidan, and G. Aguilera, Adrenomedullary function is severely impaired in 21-hydroxylase-deficient mice, FASEB J, vol.13, issue.10, pp.1185-94, 1999.

D. Angelantonio, S. Matteoni, C. Fabbretti, E. Nistri, and A. , Molecular biology and electrophysiology of neuronal nicotinic receptors of rat chromaffin cells, European Journal of Neuroscience, vol.22, issue.11
DOI : 10.1002/1097-4695(20010215)46:3<178::AID-NEU1001>3.0.CO;2-C

J. Nooney and A. Feltz, Inhibition by cyclothiazide of neuronal nicotinic responses in bovine chromaffin cells, British Journal of Pharmacology, vol.10, issue.3, pp.648-55, 1995.
DOI : 10.1016/0896-6273(93)90242-J

Y. Xiao, E. Meyer, J. Thompson, A. Surin, J. Wroblewski et al., Rat alpha3/ beta4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: pharmacology of ligand binding and function, Mol Pharmacol, vol.54, issue.2, pp.322-355, 1998.

Y. Shen, L. Cheng, Q. Guan, H. Li, J. Lu et al., Development and validation of a liquid chromatography tandem mass spectrometry method for the measurement of urinary catecholamines in diagnosis of pheochromocytoma, Biomedical Chromatography, vol.744, issue.884, 2017.
DOI : 10.1016/S0378-4347(00)00249-8

E. Chan and P. Ho, High-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometric method for the analysis of catecholamines and metanephrines in human urine, 21<1959:AID-RCM117>3.0.CO, pp.1959-64, 2000.
DOI : 10.1016/S0731-7085(99)00308-8

T. Yoshitake, K. Fujino, J. Kehr, J. Ishida, H. Nohta et al., Simultaneous determination of norepinephrine, serotonin, and 5-hydroxyindole-3-acetic Frontiers in Endocrinology | www.frontiersin, p.248, 2017.

T. Yoshitake, S. Yoshitake, K. Fujino, H. Nohta, M. Yamaguchi et al., High-sensitive liquid chromatographic method for determination of neuronal release of serotonin, noradrenaline and dopamine monitored by microdialysis in the rat prefrontal cortex, Journal of Neuroscience Methods, vol.140, issue.1-2, pp.163-171, 2004.
DOI : 10.1016/j.jneumeth.2004.04.041

T. Yoshitake, J. Kehr, K. Todoroki, H. Nohta, and M. Yamaguchi, Derivatization chemistries for determination of serotonin, norepinephrine and dopamine in brain microdialysis samples by liquid chromatography with fluorescence detection, Biomedical Chromatography, vol.4, issue.3, pp.267-81, 2006.
DOI : 10.1515/REVNEURO.1993.4.4.373

M. Dunand, D. Gubian, M. Stauffer, K. Abid, and E. Grouzmann, High-Throughput and Sensitive Quantitation of Plasma Catecholamines by Ultraperformance Liquid Chromatography???Tandem Mass Spectrometry Using a Solid Phase Microwell Extraction Plate, Analytical Chemistry, vol.85, issue.7, pp.3539-4410, 1021.
DOI : 10.1021/ac4004584

H. He, E. Carballo-jane, X. Tong, and L. Cohen, Measurement of catecholamines in rat and mini-pig plasma and urine by liquid chromatography???tandem mass spectrometry coupled with solid phase extraction, Journal of Chromatography B, vol.997, pp.154-61, 2015.
DOI : 10.1016/j.jchromb.2015.05.014

P. Moleman and J. Van-dijk, Determination of urinary norepinephrine and epinephrine by liquid chromatography with fluorescence detection and pre-column derivatization, Clin Chem, vol.36, issue.5, pp.732-738, 1990.

S. Bourcier, J. Benoist, F. Clerc, O. Rigal, M. Taghi et al., Detection of 28 neurotransmitters and related compounds in biological fluids by liquid chromatography/tandem mass spectrometry, Rapid Communications in Mass Spectrometry, vol.25, issue.9, pp.1405-1426, 2006.
DOI : 10.1002/rcm.2459

URL : https://hal.archives-ouvertes.fr/hal-00904611

S. Iino, S. Kobayashi, and H. Hidaka, Heterogeneous distribution of neurocalcin-immunoreactive nerve terminals in the mouse adrenal medulla, Cell and Tissue Research, vol.289, issue.3, pp.439-483, 1997.
DOI : 10.1007/s004410050889

R. Coupland, A. Tomlinson, J. Crowe, and D. Brindley, Effects of hypophysectomy and metyrapone on the catecholamine content and volumes of adrenaline- and noradrenaline-storing cells in the rat adrenal medulla, Journal of Endocrinology, vol.101, issue.3, pp.345-52, 1984.
DOI : 10.1677/joe.0.1010345

L. Elfvin, The fine structure of the cell surface of chromaffin cells in the rat adrenal medulla, Journal of Ultrastructure Research, vol.12, issue.3, pp.263-8610, 1965.
DOI : 10.1016/S0022-5320(65)80099-5

K. Ito, A. Sato, Y. Sato, and H. Suzuki, Increases in adrenal catecholamine secretion and adrenal sympathetic nerve unitary activities with aging in rats, Neuroscience Letters, vol.69, issue.3, pp.263-271, 1986.
DOI : 10.1016/0304-3940(86)90491-X

H. Tsuchimochi, T. Nakamoto, and K. Matsukawa, Centrally evoked increase in adrenal sympathetic outflow elicits immediate secretion of adrenaline in anaesthetized rats, Experimental Physiology, vol.253, issue.1, pp.93-106, 2009.
DOI : 10.1016/0165-1838(86)90066-4

A. Wakade and T. Wakade, Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine, Neuroscience, vol.10, issue.3, pp.973-981, 1983.
DOI : 10.1016/0306-4522(83)90235-X

O. Grynszpan-winograd, Adrenaline and noradrenaline cells in the adrenal medulla of the hamster: a morphological study of their innervation, Journal of Neurocytology, vol.73, issue.supplementum 17, pp.341-61, 1974.
DOI : 10.1177/12.3.197

K. Wolf, G. Zarkua, S. Chan, A. Sridhar, and C. Smith, Spatial and activity???dependent catecholamine release in rat adrenal medulla under native neuronal stimulation, Physiological Reports, vol.4, issue.17, pp.12898-12908, 2016.
DOI : 10.14814/phy2.12898

C. Colomer, L. Olivos-ore, A. Vincent, J. Mcintosh, A. Artalejo et al., Functional Characterization of ??9-Containing Cholinergic Nicotinic Receptors in the Rat Adrenal Medulla: Implication in Stress-Induced Functional Plasticity, Journal of Neuroscience, vol.30, issue.19, pp.6732-6774, 2010.
DOI : 10.1523/JNEUROSCI.4997-09.2010

URL : https://hal.archives-ouvertes.fr/inserm-00483826

N. Castro and E. Albuquerque, alpha-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability, Biophysical Journal, vol.68, issue.2, pp.516-2410, 1995.
DOI : 10.1016/S0006-3495(95)80213-4

E. Katz, M. Verbitsky, C. Rothlin, D. Vetter, S. Heinemann et al., High calcium permeability and calcium block of the ??9 nicotinic acetylcholine receptor, Hearing Research, vol.141, issue.1-2, pp.117-145, 2000.
DOI : 10.1016/S0378-5955(99)00214-2

S. Fucile, Ca2+ permeability of nicotinic acetylcholine receptors, Cell Calcium, vol.35, issue.1, 2004.
DOI : 10.1016/j.ceca.2003.08.006

T. Cheek, Calcium signalling and the triggering of secretion in adrenal chromaffin cells, Pharmacology & Therapeutics, vol.52, issue.2, pp.173-89, 1991.
DOI : 10.1016/0163-7258(91)90007-9

P. Lewis and C. Shute, An electron-microscopic study of cholinesterase distribution in the rat adrenal medulla, Journal of Microscopy, vol.69, issue.Suppl. 3, pp.181-93, 1969.
DOI : 10.1007/BF00406286

A. Akaike, Y. Mine, M. Sasa, and S. Takaori, Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells, J Pharmacol Exp Ther, vol.255, issue.1, pp.333-342, 1990.

K. Harada, H. Matsuoka, H. Miyata, M. Matsui, and M. Inoue, Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion, British Journal of Pharmacology, vol.288, issue.5, pp.1348-59, 2015.
DOI : 10.1074/jbc.M112.444372

L. He, Q. Zhang, L. Wang, J. Dai, C. Wang et al., Muscarinic inhibition of nicotinic transmission in rat sympathetic neurons and adrenal chromaffin cells, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.370, issue.1672, 1672.
DOI : 10.1016/0165-6147(89)90208-3

E. Crivellato, N. B. Ribatti, and D. , The Chromaffin Vesicle: Advances in Understanding the Composition of a Versatile, Multifunctional Secretory Organelle, The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, vol.131, issue.12, pp.1587-602, 2008.
DOI : 10.1113/expphysiol.1988.sp003108

V. Cortez, M. Santana, A. Marques, A. Mota, J. Rosmaninho-salgado et al., Regulation of catecholamine release in human adrenal chromaffin cells by ??-adrenoceptors, Neurochemistry International, vol.60, issue.4, pp.387-93, 2012.
DOI : 10.1016/j.neuint.2011.12.018

M. Yamaguchi, T. Yoshitake, J. Ishida, and M. Nakamura, Determination of 21-hydroxycorticosteroids in human urine by high-performance liquid chromatography with fluorescence detection., CHEMICAL & PHARMACEUTICAL BULLETIN, vol.37, issue.11, pp.3022-3027, 1989.
DOI : 10.1248/cpb.37.3022

S. Mason, L. Ward, and P. Reilly, Fluorimetric detection of serum corticosterone using high-performance liquid chromatography, Journal of Chromatography B: Biomedical Sciences and Applications, vol.581, issue.2, pp.267-7110, 1992.
DOI : 10.1016/0378-4347(92)80280-4

N. Shibata, T. Hayakawa, K. Takada, N. Hoshino, T. Minouchi et al., Simultaneous determination of glucocorticoids in plasma or urine by high-performance liquid chromatography with precolumn fluorimetric derivatization by 9-anthroyl nitrile, Journal of Chromatography B: Biomedical Sciences and Applications, vol.706, issue.2, pp.191-200, 1998.
DOI : 10.1016/S0378-4347(97)00557-4

R. Simon, M. Aminoff, and N. Benowitz, Changes in plasma catecholamines after tonic-clonic seizures, Neurology, vol.34, issue.2, pp.255-262, 1984.
DOI : 10.1212/WNL.34.2.255

K. Tsunashima, M. Wolkersdorfer, C. Schwarzer, G. Sperk, and R. Fischer-colbrie, Limbic seizures induce neuropeptide and chromogranin mRNA expression in rat adrenal medulla, Molecular Brain Research, vol.51, issue.1-2, pp.42-50, 1997.
DOI : 10.1016/S0169-328X(97)00214-3

D. Goldstein and . Stress, Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases, Endocrine Regulations, vol.45, issue.2, pp.91-99, 2011.
DOI : 10.4149/endo_2011_02_91

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900164