A. J. Lees, J. Hardy, and T. Revesz, Parkinson's disease, The Lancet, vol.373, issue.9680, pp.2055-206660492, 2009.
DOI : 10.1016/S0140-6736(09)60492-X

D. G. Hernandez, X. Reed, and A. Singleton, Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance, Journal of Neurochemistry, vol.89, issue.3 Pt 1, pp.59-7410, 2016.
DOI : 10.1016/j.ajhg.2011.06.008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155439

M. R. Cookson, LRRK2 Pathways Leading to Neurodegeneration Current Neurology and neuroscience reports 15, 2015.
DOI : 10.1007/s11910-015-0564-y

J. M. Taymans and M. R. Cookson, Mechanisms in dominant parkinsonism: The toxic triangle of LRRK2, ??-synuclein, and tau, BioEssays, vol.192, issue.128, pp.227-23510, 2010.
DOI : 10.1080/07391102.2003.10506918

L. M. Bekris, I. F. Mata, and C. P. Zabetian, The Genetics of Parkinson Disease, Journal of Geriatric Psychiatry and Neurology, vol.23, issue.4, pp.228-24210, 2010.
DOI : 10.1002/mds.21751

A. Zimprich, Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology, Neuron, vol.44, issue.4, pp.601-607, 2004.
DOI : 10.1016/j.neuron.2004.11.005

URL : http://doi.org/10.1016/j.neuron.2004.11.005

S. L. Chan, D. C. Angeles, and E. K. Tan, Targeting leucine-rich repeat kinase 2 in Parkinson's disease, Expert Opinion on Therapeutic Targets, vol.65, issue.1, pp.1471-1482, 2013.
DOI : 10.1212/01.WNL.0000172630.22804.73

X. Deng, Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2, Nature Chemical Biology, vol.269, issue.4, pp.203-20510, 2011.
DOI : 10.1016/0014-5793(95)00357-F

B. D. Lee, V. L. Dawson, and T. M. Dawson, Leucine-rich repeat kinase 2 (LRRK2) as a potential therapeutic target in Parkinson's disease, Trends in Pharmacological Sciences, vol.33, issue.7, pp.365-373, 2012.
DOI : 10.1016/j.tips.2012.04.001

J. M. Taymans and E. Greggio, LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson's Disease, Where Do We Stand?, Current Neuropharmacology, vol.14, issue.3, pp.214-225, 2016.
DOI : 10.2174/1570159X13666151030102847

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857626

L. Bosgraaf, P. J. Van-haastert, and . Roc, Roc, a Ras/GTPase domain in complex proteins, GTPase domain in complex proteins, pp.5-10, 2003.
DOI : 10.1016/j.bbamcr.2003.08.008

URL : http://doi.org/10.1016/j.bbamcr.2003.08.008

R. D. Mills, T. D. Mulhern, F. Liu, J. G. Culvenor, and H. C. Cheng, Prediction of the repeat domain structures and impact of parkinsonism-associated variations on structure and function of all functional domains of leucine

S. J. Cherra, E. Steer, A. M. Gusdon, K. Kiselyov, and C. Chu, Mutant LRRK2 Elicits Calcium Imbalance and Depletion of Dendritic Mitochondria in Neurons, The American Journal of Pathology, vol.182, issue.2, pp.474-484027, 2013.
DOI : 10.1016/j.ajpath.2012.10.027

P. Gomez-suaga, Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP, Human Molecular Genetics, vol.21, issue.3, pp.511-525, 2012.
DOI : 10.1093/hmg/ddr481

D. Macleod, The Familial Parkinsonism Gene LRRK2 Regulates Neurite Process Morphology, Neuron, vol.52, issue.4, pp.587-593008, 2006.
DOI : 10.1016/j.neuron.2006.10.008

V. Daniels, Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant, Journal of Neurochemistry, vol.6, issue.2, pp.304-315, 2011.
DOI : 10.1016/j.bbadis.2009.09.010

E. Greggio, The Parkinson Disease-associated Leucine-rich Repeat Kinase 2 (LRRK2) Is a Dimer That Undergoes Intramolecular Autophosphorylation, Journal of Biological Chemistry, vol.61, issue.Suppl. 7, pp.16906-16914, 2008.
DOI : 10.1074/jbc.M004092200

S. Sen, P. J. Webber, and A. B. West, Dependence of Leucine-rich Repeat Kinase 2 (LRRK2) Kinase Activity on Dimerization, Journal of Biological Chemistry, vol.1, issue.52, pp.36346-36356, 2009.
DOI : 10.1186/1471-2202-8-102

J. M. Taymans, The GTPase function of LRRK2, Biochemical Society Transactions, vol.10, issue.5, pp.1063-106910, 2012.
DOI : 10.1186/1741-7015-10-20

L. Civiero, Biochemical Characterization of Highly Purified Leucine-Rich Repeat Kinases 1 and 2 Demonstrates Formation of Homodimers, PLoS ONE, vol.7, issue.8, p.43472, 2012.
DOI : 10.1371/journal.pone.0043472.s011

L. Civiero and L. Bubacco, Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?, Biochemical Society Transactions, vol.7, issue.5, pp.1095-1101, 2012.
DOI : 10.1038/nrn2038

URL : http://www.biochemsoctrans.org/content/ppbiost/40/5/1095.full.pdf

L. Reyniers, Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways, Journal of Neurochemistry, vol.44, issue.Suppl 2, pp.239-25010, 2014.
DOI : 10.1016/j.neuron.2004.11.005

J. P. Taylor, Leucine-rich repeat kinase 1: a paralog of LRRK2 and a candidate gene for Parkinson???s disease, Neurogenetics, vol.9, issue.2, pp.95-10210, 2007.
DOI : 10.1007/s10048-006-0075-8

J. Deng, Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase, Proceedings of the National Academy of Sciences, vol.26, issue.Pt 3, pp.1499-150410, 2008.
DOI : 10.1107/S0021889892009944

B. K. Gilsbach, Roco kinase structures give insights into the mechanism of Parkinson disease-related leucine-rich-repeat kinase 2 mutations, Proceedings of the National Academy of Sciences, vol.53, issue.Pt 3, pp.10322-1032710, 2012.
DOI : 10.1107/S0907444996012255

K. Gotthardt, M. Weyand, A. Kortholt, P. J. Van-haastert, and A. Wittinghofer, Structure of the Roc???COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase, The EMBO Journal, vol.44, issue.16, pp.2239-2249150, 2008.
DOI : 10.1038/emboj.2008.150

R. Vancraenenbroeck, Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1824, issue.3, pp.450-460, 2012.
DOI : 10.1016/j.bbapap.2011.12.009

G. Guaitoli, Structural model of the dimeric Parkinson???s protein LRRK2 reveals a compact architecture involving distant interdomain contacts, Proceedings of the National Academy of Sciences, vol.113, issue.30, pp.4357-436610, 2016.
DOI : 10.1002/prot.23188

A. Chari, ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space, Nature Methods, vol.12, issue.9, pp.859-86510, 2015.
DOI : 10.1021/bi301591e

L. Reinhard, H. Mayerhofer, A. Geerlof, J. Mueller-dieckmann, and M. S. Weiss, Optimization of protein buffer cocktails using Thermofluor, Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol.103, issue.2, pp.209-21410, 2013.
DOI : 10.1073/pnas.0605224103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564630

R. M. Glaeser, How good can cryo-EM become?, Nature Methods, vol.20, issue.1, pp.28-323695, 2016.
DOI : 10.1016/j.str.2012.02.017

URL : http://www.nature.com/nmeth/journal/v13/n1/pdf/nmeth.3695.pdf

J. Dubochet, Cryo-electron microscopy of vitrified specimens, Quarterly Reviews of Biophysics, vol.1, issue.3, pp.129-228, 1988.
DOI : 10.1038/164666a0

S. H. Scheres, RELION: Implementation of a Bayesian approach to cryo-EM structure determination, Journal of Structural Biology, vol.180, issue.3, pp.519-530006, 2012.
DOI : 10.1016/j.jsb.2012.09.006

A. Bremer, C. Henn, A. Engel, W. Baumeister, and U. Aebi, Has negative staining still a place in biomacromolecular electron microscopy?, Ultramicroscopy, vol.46, issue.1-4, pp.85-111, 1992.
DOI : 10.1016/0304-3991(92)90008-8

G. Piccoli, Leucine-Rich Repeat Kinase 2 Binds to Neuronal Vesicles through Protein Interactions Mediated by Its C-Terminal WD40 Domain, Molecular and Cellular Biology, vol.34, issue.12, pp.2147-216100914, 2014.
DOI : 10.1128/MCB.00914-13

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054300

L. Civiero, Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain, Journal of Neurochemistry, vol.44, issue.1, pp.1242-125610, 2015.
DOI : 10.1016/j.neuron.2004.11.005

L. Wang, The Chaperone Activity of Heat Shock Protein 90 Is Critical for Maintaining the Stability of Leucine-Rich Repeat Kinase 2, Journal of Neuroscience, vol.28, issue.13, pp.3384-3391, 2008.
DOI : 10.1523/JNEUROSCI.0185-08.2008

B. M. Law, A Direct Interaction between Leucine-rich Repeat Kinase 2 and Specific ??-Tubulin Isoforms Regulates Tubulin Acetylation, Journal of Biological Chemistry, vol.289, issue.2, pp.895-90810, 2014.
DOI : 10.1002/ana.23829

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887213

K. Rudi, Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations, Bioscience Reports, vol.35, issue.5, pp.10-1042, 2015.
DOI : 10.1042/BSR20150128

C. L. Klein, Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment, Journal of Neurochemistry, vol.44, issue.3, pp.703-715, 2009.
DOI : 10.1212/01.WNL.0000125015.06989.DB

J. M. Taymans, LRRK2 Kinase Activity Is Dependent on LRRK2 GTP Binding Capacity but Independent of LRRK2 GTP Binding, PLoS ONE, vol.267, issue.8, 2011.
DOI : 10.1371/journal.pone.0023207.s003

K. B. Fraser, M. S. Moehle, R. N. Alcalay, A. B. West, and L. C. Consortium, carriers, Neurology, vol.86, issue.11, pp.994-99910, 2016.
DOI : 10.1212/WNL.0000000000002436

G. Tang, EMAN2: An extensible image processing suite for electron microscopy, Journal of Structural Biology, vol.157, issue.1, pp.38-46, 2007.
DOI : 10.1016/j.jsb.2006.05.009

E. F. Pettersen, UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-161210, 2004.
DOI : 10.1002/jcc.20084

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.456.9442

J. M. Bell, M. Chen, P. R. Baldwin, and S. J. Ludtke, High resolution single particle refinement in EMAN2, pp.25-34, 2016.
DOI : 10.1016/j.ymeth.2016.02.018