Y. Ishida, Y. Agata, K. Shibahara, and T. Honjo, Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death, EMBO J, vol.11, pp.3887-951396582, 1992.

H. Nishimura, M. Nose, H. Hiai, N. Minato, and T. Honjo, Development of Lupus-like Autoimmune Diseases by Disruption of the PD-1 Gene Encoding an ITIM Motif-Carrying Immunoreceptor, Immunity, vol.11, issue.2, pp.141-5110, 1999.
DOI : 10.1016/S1074-7613(00)80089-8

C. Petrovas, J. Casazza, J. Brenchley, D. Price, E. Gostick et al., T cell survival in HIV infection, The Journal of Experimental Medicine, vol.105, issue.10, pp.2281-9216954372, 2006.
DOI : 10.1074/jbc.M300633200

Y. Liu, Y. Yu, S. Yang, B. Zeng, Z. Zhang et al., Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells, Cancer Immunology, Immunotherapy, vol.170, issue.5, pp.687-9718828017, 2009.
DOI : 10.4049/jimmunol.170.10.5064

S. Chikuma, S. Terawaki, T. Hayashi, R. Nabeshima, T. Yoshida et al., PD-1-Mediated Suppression of IL-2 Production Induces CD8+ T Cell Anergy In Vivo, The Journal of Immunology, vol.182, issue.11, pp.6682-919454662, 2009.
DOI : 10.4049/jimmunol.0900080

B. Youngblood, K. Oestreich, S. Ha, J. Duraiswamy, R. Akondy et al., Chronic Virus Infection Enforces Demethylation of the Locus that Encodes PD-1 in Antigen-Specific CD8+ T Cells, Immunity, vol.35, issue.3, pp.400-1221943489, 2011.
DOI : 10.1016/j.immuni.2011.06.015

T. Yokosuka, M. Takamatsu, W. Kobayashi-imanishi, A. Hashimoto-tane, M. Azuma et al., Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2, The Journal of Experimental Medicine, vol.209, issue.6, pp.1201-1722641383, 2012.
DOI : 10.1038/nri2326

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371732/pdf

E. Hui, J. Cheung, J. Zhu, X. Su, M. Taylor et al., T cell costimulatory receptor CD28 is a primary target for PD-1???mediated inhibition, Science, vol.155, issue.6332, pp.1428-3328280247, 2017.
DOI : 10.1038/nri1056

M. Ahmadzadeh, L. Johnson, B. Heemskerk, J. Wunderlich, M. Dudley et al., Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired, Blood, vol.114, issue.8, pp.1537-1581, 2009.
DOI : 10.1182/blood-2008-12-195792

J. Fourcade, P. Kudela, Z. Sun, H. Shen, S. Land et al., PD-1 Is a Regulator of NY-ESO-1-Specific CD8+ T Cell Expansion in Melanoma Patients, The Journal of Immunology, vol.182, issue.9, pp.5240-5249, 2009.
DOI : 10.4049/jimmunol.0803245

J. Fourcade, Z. Sun, M. Benallaoua, P. Guillaume, I. Luescher et al., T cell dysfunction in melanoma patients, The Journal of Experimental Medicine, vol.18, issue.10, pp.2175-8620819923, 2010.
DOI : 10.1038/ni1271

J. Chauvin, O. Pagliano, J. Fourcade, Z. Sun, H. Wang et al., TIGIT and PD-1 impair tumor antigen???specific CD8+ T cells in melanoma patients, Journal of Clinical Investigation, vol.125, issue.5, pp.2046-5825866972, 2015.
DOI : 10.1172/JCI80445DS1

URL : http://www.jci.org/articles/view/80445/files/pdf

T. Inozume, K. Hanada, Q. Wang, M. Ahmadzadeh, J. Wunderlich et al., Selection of CD8+PD-1+ Lymphocytes in Fresh Human Melanomas Enriches for Tumor-reactive T Cells, Journal of Immunotherapy, vol.33, issue.9, pp.956-6420948441, 2010.
DOI : 10.1097/CJI.0b013e3181fad2b0

A. Gros, P. Robbins, X. Yao, Y. Li, S. Turcotte et al., PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors, Journal of Clinical Investigation, vol.124, issue.5, pp.2246-5910, 2014.
DOI : 10.1172/JCI73639DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001555

S. Simon, V. Vignard, L. Florenceau, B. Dreno, A. Khammari et al., PD-1 expression conditions T cell avidity within an antigen-specific repertoire, OncoImmunology, vol.6, issue.1, 2016.
DOI : 10.1097/CJI.0b013e3181fad2b0

URL : https://hal.archives-ouvertes.fr/inserm-01280886

A. Gros, M. Parkhurst, E. Tran, A. Pasetto, P. Robbins et al., Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients, Nature Medicine, vol.22, issue.4, pp.433-826901407, 2016.
DOI : 10.4049/jimmunol.1103020

K. Pauken and E. Wherry, Overcoming T cell exhaustion in infection and cancer, Trends in Immunology, vol.36, issue.4, pp.265-76, 2015.
DOI : 10.1016/j.it.2015.02.008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393798

M. Singer, C. Wang, L. Cong, N. Marjanovic, M. Kowalczyk et al., A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells, Cell, vol.166, issue.6, p.27610572, 2016.
DOI : 10.1016/j.cell.2016.08.052

C. Wang, M. Singer, and A. Anderson, Molecular Dissection of CD8 + T-Cell Dysfunction, Trends in Immunology, vol.38, issue.8, 2017.
DOI : 10.1016/j.it.2017.05.008

L. Chen and X. Han, Anti???PD-1/PD-L1 therapy of human cancer: past, present, and future, Journal of Clinical Investigation, vol.125, issue.9, pp.3384-9110, 2015.
DOI : 10.1172/JCI80011

K. Oestreich, H. Yoon, R. Ahmed, and J. Boss, NFATc1 Regulates PD-1 Expression upon T Cell Activation, The Journal of Immunology, vol.181, issue.7, pp.4832-918802087, 2008.
DOI : 10.4049/jimmunol.181.7.4832

URL : http://www.jimmunol.org/content/jimmunol/181/7/4832.full.pdf

B. Youngblood, A. Noto, F. Porichis, R. Akondy, Z. Ndhlovu et al., Cutting Edge: Prolonged Exposure to HIV Reinforces a Poised Epigenetic Program for PD-1 Expression in Virus-Specific CD8 T Cells, The Journal of Immunology, vol.191, issue.2, pp.540-423772031, 2013.
DOI : 10.4049/jimmunol.1203161

E. Ahn, B. Youngblood, J. Lee, J. Lee, S. Sarkar et al., ABSTRACT, Journal of Virology, vol.90, issue.19, pp.8934-8980, 2016.
DOI : 10.1128/JVI.00798-16

G. Martinez, R. Pereira, ?. Aij?-o, T. Kim, E. Marangoni et al., The Transcription Factor NFAT Promotes Exhaustion of Activated CD8 + T Cells, Immunity, vol.42, issue.2, p.25680272, 2015.
DOI : 10.1016/j.immuni.2015.01.006

L. Chen and D. Flies, Molecular mechanisms of T cell co-stimulation and co-inhibition, Nature Reviews Immunology, vol.120, issue.4, pp.227-4223470321, 2013.
DOI : 10.1182/blood-2012-09-455105

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/pdf

P. Lu, B. Youngblood, J. Austin, A. Mohammed, R. Butler et al., Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection, The Journal of Experimental Medicine, vol.211, issue.3, pp.515-2724590765, 2014.
DOI : 10.1084/jem.188.12.2205

J. Scott-browne, I. Moyado, S. Trifari, V. Wong, L. Chavez et al., Dynamic Changes in Chromatin Accessibility Occur in CD8+ T Cells Responding to Viral Infection, Immunity, vol.45, issue.6, p.27939672, 2016.
DOI : 10.1016/j.immuni.2016.10.028

K. Pauken, M. Sammons, P. Odorizzi, S. Manne, J. Godec et al., Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade, Science, vol.41, issue.21, pp.1160-527789795, 2016.
DOI : 10.1093/nar/gkt850

D. Sen, J. Kaminski, R. Barnitz, M. Kurachi, U. Gerdemann et al., The epigenetic landscape of T cell exhaustion, Science, vol.12, issue.6, pp.1165-927789799, 2016.
DOI : 10.1038/ni.2034

M. Staron, S. Gray, H. Marshall, I. Parish, J. Chen et al., The Transcription Factor FoxO1 Sustains Expression of the Inhibitory Receptor PD-1 and Survival of Antiviral CD8+ T Cells during Chronic Infection, Immunity, vol.41, issue.5, pp.802-1425464856, 2014.
DOI : 10.1016/j.immuni.2014.10.013

M. Quigley, F. Pereyra, B. Nilsson, F. Porichis, C. Fonseca et al., Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF, Nature Medicine, vol.16, issue.10, pp.1147-5120890291, 2010.
DOI : 10.1038/nm.2232

C. Badoual, S. Hans, N. Merillon, C. Van-ryswick, P. Ravel et al., PD-1-Expressing Tumor-Infiltrating T Cells Are a Favorable Prognostic Biomarker in HPV-Associated Head and Neck Cancer, Cancer Research, vol.73, issue.1, pp.128-166, 2013.
DOI : 10.1158/0008-5472.CAN-12-2606

Y. Kawakami, S. Eliyahu, K. Sakaguchi, P. Robbins, L. Rivoltini et al., Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes, Journal of Experimental Medicine, vol.180, issue.1, pp.347-527516411, 1994.
DOI : 10.1084/jem.180.1.347

P. Coulie, V. Brichard, V. Pel, A. Wolfel, T. Schneider et al., A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas, Journal of Experimental Medicine, vol.180, issue.1, pp.35-428006593, 1994.
DOI : 10.1084/jem.180.1.35

Y. Godet, A. Moreau-aubry, Y. Guilloux, V. Vignard, A. Khammari et al., MELOE-1 is a new antigen overexpressed in melanomas and involved in adoptive T cell transfer efficiency, The Journal of Experimental Medicine, vol.6, issue.11, pp.2673-8218936238, 2008.
DOI : 10.1038/76292

M. Allard, B. Couturaud, L. Carretero-iglesia, M. Duong, J. Schmidt et al., TCRligand dissociation rate is a robust and stable biomarker of CD8C T cell potency, JCI Insight, vol.2, p.28724801, 2017.

C. Zahm, V. Colluru, and D. Mcneel, Vaccination with High-Affinity Epitopes Impairs Antitumor Efficacy by Increasing PD-1Expression on CD8C T Cells, Cancer Immunol Res, p.28634215, 2017.
DOI : 10.1158/2326-6066.cir-16-0374

I. Tirosh, B. Izar, S. Prakadan, M. Wadsworth, D. Treacy et al., Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq, Science, vol.45, issue.2, pp.189-9627124452, 2016.
DOI : 10.1016/j.ejca.2008.10.026

S. Topalian, J. Taube, R. Anders, and D. Pardoll, Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy, Nature Reviews Cancer, vol.344, issue.5, pp.275-8727079802, 2016.
DOI : 10.1126/science.270.5238.985

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381938

P. C. Tumeh, C. Harview, J. Yearley, I. Shintaku, E. Taylor et al., PD-1 blockade induces responses by inhibiting adaptive immune resistance, Nature, vol.15, issue.7528, pp.568-7125428505, 2014.
DOI : 10.1158/1078-0432.CCR-09-1624

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246418

O. Hamid, C. Robert, A. Daud, F. Hodi, W. Hwu et al., Safety and Tumor Responses with Lambrolizumab (Anti???PD-1) in Melanoma, New England Journal of Medicine, vol.369, issue.2, pp.134-4410, 2013.
DOI : 10.1056/NEJMoa1305133

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126516

A. Ribas, D. Shin, J. Zaretsky, J. Frederiksen, A. Cornish et al., PD-1 Blockade Expands Intratumoral Memory T Cells, Cancer Immunology Research, vol.4, issue.3, pp.194-20326787823, 2016.
DOI : 10.1158/2326-6066.CIR-15-0210

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775381

A. Ribas, C. Robert, F. Hodi, J. Wolchok, A. Joshua et al., Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature, JCO, vol.33, pp.3001-3002, 2015.

M. Teng, S. Ngiow, A. Ribas, and M. Smyth, Classifying Cancers Based on T-cell Infiltration and PD-L1, Cancer Research, vol.75, issue.11, pp.2139-4525977340, 2015.
DOI : 10.1158/0008-5472.CAN-15-0255

URL : http://cancerres.aacrjournals.org/content/canres/75/11/2139.full.pdf

D. Johnson, M. Estrada, R. Salgado, V. Sanchez, D. Doxie et al., Melanomaspecific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy, Nat Commun, vol.7, p.1058226822383, 2016.
DOI : 10.1038/ncomms10582

URL : http://www.nature.com/articles/ncomms10582.pdf

A. Kamphorst, R. Pillai, S. Yang, T. Nasti, R. Akondy et al., Proliferation of PD-1C CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients, Proc Natl Acad Sci, vol.114, 2017.

N. Labarriere, A. Fortun, A. Bellec, A. Khammari, B. Dreno et al., A Full GMP Process to Select and Amplify Epitope-Specific T Lymphocytes for Adoptive Immunotherapy of Metastatic Melanoma, Clinical and Developmental Immunology, vol.164, issue.2, pp.932318-932328, 2013.
DOI : 10.4049/jimmunol.164.2.1125

S. Fernandez-poma, D. Salas-benito, T. Lozano, N. Casares, J. Riezu-boj et al., T cells Expressing PD-1 Improves the Efficacy of Adoptive T-cell Therapy, Cancer Research, vol.77, issue.13, pp.3672-84100008, 1158.
DOI : 10.1158/0008-5472.CAN-17-0236

W. Jing, J. Gershan, G. Blitzer, K. Palen, J. Weber et al., Adoptive cell therapy using PD-1+ myeloma-reactive T cells eliminates established myeloma in mice, Journal for ImmunoTherapy of Cancer, vol.50, issue.1, pp.51-61, 2017.
DOI : 10.1007/s12016-015-8514-7

A. Lloyd, O. Vickery, and B. Laugel, Beyond the Antigen Receptor: Editing the Genome of T-Cells for Cancer Adoptive Cellular Therapies, Frontiers in Immunology, vol.4, p.23935598, 2013.
DOI : 10.3389/fimmu.2013.00221

W. Wang, C. Ye, J. Liu, D. Zhang, J. Kimata et al., CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection, PLoS ONE, vol.103, issue.12, p.25541967, 2014.
DOI : 10.1371/journal.pone.0115987.s004

URL : http://doi.org/10.1371/journal.pone.0115987

S. Su, B. Hu, J. Shao, B. Shen, J. Du et al., CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients, Sci Rep, vol.6, p.26818188, 2016.
DOI : 10.1038/srep20070

URL : http://www.nature.com/articles/srep20070.pdf

L. Menger, A. Sledzinska, K. Bergerhoff, F. Vargas, J. Smith et al., TALEN-Mediated Inactivation of PD-1 in Tumor-Reactive Lymphocytes Promotes Intratumoral T-cell Persistence and Rejection of Established Tumors, Cancer Research, vol.76, issue.8, pp.2087-930008, 2016.
DOI : 10.1158/0008-5472.CAN-15-3352

L. Rupp, K. Schumann, K. Roybal, R. Gate, C. Ye et al., CRISPR/Cas9-mediated PD-1 disruption enhances antitumor efficacy of human chimeric antigen receptor T cells. Sci Rep, pp.737-747, 2017.