D. Leffler and J. Lamont, Infection, New England Journal of Medicine, vol.372, issue.16, pp.1539-1587, 2015.
DOI : 10.1056/NEJMra1403772

F. Lessa, Y. Mu, W. Bamberg, Z. Beldavs, G. Dumyati et al., Infection in the United States, New England Journal of Medicine, vol.372, issue.9, pp.825-859, 2015.
DOI : 10.1056/NEJMoa1408913

E. Dubberke and M. Olsen, Burden of Clostridium difficile on the Healthcare System, Clinical Infectious Diseases, vol.55, issue.suppl 2, pp.88-92, 2012.
DOI : 10.1093/cid/cis335

B. Miller, L. Chen, D. Sexton, and D. Anderson, Comparison of the burdens of hospital-onset, healthcare facility-associated Clostridium difficile Infection and of healthcare-associated infection due to methicillin-resistant Staphylococcus aureus in community hospitals Antibiotic resistance threats in the United States, Infect Control Hosp Epidemiol, vol.32, 2011.

L. Dethlefsen and D. Relman, Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation, Proceedings of the National Academy of Sciences, vol.88, issue.10, pp.4554-61, 2011.
DOI : 10.1890/06-1736.1

F. Leonard, A. Andremont, and C. Tancrede, In vivo influence of three B-lactam antibiotics on the intestinal microflora of man. A preliminary study in gnotobiotic mice, Prog Clin Biol Res, vol.181, pp.279-82, 1985.

U. Stiefel, N. Pultz, J. Harmoinen, P. Koski, K. Lindevall et al., Oral Administration of ?????Lactamase Preserves Colonization Resistance of Piperacillin???Treated Mice, The Journal of Infectious Diseases, vol.188, issue.10, pp.1605-1614, 2003.
DOI : 10.1086/379153

J. Harmoinen, S. Mentula, M. Heikkila, M. Van-der-rest, P. Rajala-schultz et al., Orally administered targeted recombinant Beta-lactamase prevents ampicillininduced selective pressure on the gut microbiota: a novel approach to reducing antimicrobial resistance P1A recombinant beta-lactamase prevents emergence of antimicrobial resistance in gut microflora of healthy subjects during intravenous administration of ampicillin, Antimicrob Agents Chemother Antimicrob Agents Chemother, vol.48, issue.53, pp.2455-62, 2004.

M. Kaleko, J. Bristol, S. Hubert, T. Parsley, G. Widmer et al., Development of SYN-004, an oral beta-lactamase treatment to protect the gut microbiome from antibiotic-mediated damage and prevent Clostridium difficile infection, Anaerobe, vol.41, pp.58-67, 2016.
DOI : 10.1016/j.anaerobe.2016.05.015

J. Kokai-kun, T. Roberts, O. Coughlin, E. Sicard, M. Rufiange et al., SYN-004 (ribaxamase), an oral betalactamase designed to protect the gut microbiome from the deleterious effects of certain intravenously administered beta-lactam antibiotics, degrades ceftriaxone excreted into the intestine in Phase 2a clinical studies, Antimicrob Agents, pp.2197-2213, 2017.

J. Pepin, N. Saheb, M. Coulombe, M. Alary, M. Corriveau et al., Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec Removal of residual colonic ciprofloxacin in the rat by activated charcoal entrapped within zincpectinate beads, Clin Infect Dis Eur J Pharm Sci, vol.41, issue.41, pp.281-289, 2005.

N. Grall, L. Massias, T. Nguyen, S. Sayah-jeanne, N. Ducrot et al., Oral DAV131, a Charcoal-Based Adsorbent, Inhibits Intestinal Colonization by ??-Lactam-Resistant Klebsiella pneumoniae in Cefotaxime-Treated Mice, Antimicrobial Agents and Chemotherapy, vol.57, issue.11, pp.5423-5428, 2013.
DOI : 10.1128/AAC.00039-13

A. Price, H. Larson, and J. Crow, Morphology of experimental antibiotic-associated enterocolitis in the hamster: a model for human pseudomembranous colitis and antibiotic-associated diarrhoea., Gut, vol.20, issue.6, pp.467-75, 1979.
DOI : 10.1136/gut.20.6.467

R. Swanson, D. Hardy, N. Shipkowitz, C. Hanson, N. Ramer et al., In vitro and in vivo evaluation of tiacumicins B and C against Clostridium difficile., Antimicrobial Agents and Chemotherapy, vol.35, issue.6, pp.1108-1119, 1991.
DOI : 10.1128/AAC.35.6.1108

G. Babcock, T. Broering, H. Hernandez, R. Mandell, K. Donahue et al., Human Monoclonal Antibodies Directed against Toxins A and B Prevent Clostridium difficile-Induced Mortality in Hamsters, Infection and Immunity, vol.74, issue.11, pp.6339-6386, 2006.
DOI : 10.1128/IAI.00982-06

R. Barker, J. Dagher, R. Davidson, D. Marquis, and J. , Review article: tolevamer, a novel toxin-binding polymer: overview of preclinical pharmacology and physicochemical properties, Alimentary Pharmacology and Therapeutics, vol.141, issue.1, pp.1525-1559, 2006.
DOI : 10.1093/infdis/141.1.92

S. Phillips, K. Nagaro, S. Sambol, S. Johnson, and D. Gerding, Susceptibility of hamsters to infection by historic and epidemic BI Clostridium difficile strains during daily administration of three fluoroquinolones166-9. 22. FDA Avelox label. https://www.accessdata.fda.gov/drugsatfda_docs/label Guide for the Care and Use of Laboratory Animals Penetration of moxifloxacin into the human aqueous humour after oral administration, Anaerobe Br J Ophthalmol, vol.17, issue.89, pp.628-659, 2005.

C. Kurtz, E. Cannon, A. Brezzani, M. Pitruzzello, C. Dinardo et al., GT160-246, a Toxin Binding Polymer for Treatment of Clostridium difficile Colitis, Antimicrobial Agents and Chemotherapy, vol.45, issue.8, pp.2340-2347, 2001.
DOI : 10.1128/AAC.45.8.2340-2347.2001

O. Burkhardt, K. Borner, H. Stass, G. Beyer, M. Allewelt et al., Single- and Multiple-dose Pharmacokinetics of Oral Moxifloxacin and Clarithromycin, and Concentrations in Serum, Saliva and Faeces, Scandinavian Journal of Infectious Diseases, vol.34, issue.12, pp.898-90310, 2002.
DOI : 10.1080/0036554021000026963