D. Ron and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response, Nature Reviews Molecular Cell Biology, vol.300, issue.7, pp.519-529, 2007.
DOI : 10.1212/01.WNL.0000123259.67815.DB

P. Walter and R. D. , The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation, Science, vol.5, issue.3, pp.1081-1086, 2011.
DOI : 10.1371/journal.pbio.0050044

E. Szegezdi, S. Logue, A. Gorman, and A. Samali, Mediators of endoplasmic reticulum stress-induced apoptosis, EMBO reports, vol.12, issue.9, pp.880-885, 2006.
DOI : 10.1083/jcb.200302084

B. Roussel, A. Kruppa, E. Miranda, D. Crowther, D. Lomas et al., Endoplasmic reticulum dysfunction in neurological disease, The Lancet Neurology, vol.12, issue.1, pp.105-118, 2013.
DOI : 10.1016/S1474-4422(12)70238-7

URL : https://hal.archives-ouvertes.fr/inserm-01296824

H. Harding, Y. Zhang, and R. D. , Protein translation and folding are coupled by an endoplasmicreticulum-resident kinase, Nature, vol.397, pp.271-274, 1999.

S. Marciniak, L. Garcia-bonilla, J. Hu, H. Harding, and R. D. , Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK, The Journal of Cell Biology, vol.9, issue.2, pp.201-209, 2006.
DOI : 10.1128/MCB.22.11.3864-3874.2002

URL : http://jcb.rupress.org/content/jcb/172/2/201.full.pdf

H. Harding, Y. Zhang, H. Zeng, I. Novoa, P. Lu et al., An Integrated Stress Response Regulates Amino Acid Metabolism and Resistance to Oxidative Stress, Molecular Cell, vol.11, issue.3, pp.619-633, 2003.
DOI : 10.1016/S1097-2765(03)00105-9

URL : http://doi.org/10.1016/s1097-2765(03)00105-9

S. Marciniak, C. Yun, S. Oyadomari, I. Novoa, Y. Zhang et al., CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum, Genes & Development, vol.18, issue.24, pp.3066-3077, 2004.
DOI : 10.1101/gad.1250704

B. Mollereau, N. Rzechorzek, B. Roussel, M. Sedru, D. Van-den-brink et al., Adaptive preconditioning in neurological diseases ??? therapeutic insights from proteostatic perturbations, Brain Research, vol.1648, pp.603-616, 2016.
DOI : 10.1016/j.brainres.2016.02.033

URL : https://hal.archives-ouvertes.fr/hal-01282346

A. Rissanen, J. Sivenius, and J. Jolkkonen, Prolonged bihemispheric alterations in unfolded protein response related gene expression after experimental stroke, Brain Research, vol.1087, issue.1, pp.60-66, 2006.
DOI : 10.1016/j.brainres.2006.02.095

V. Nakka, A. Gusain, and R. Raghubir, Endoplasmic Reticulum Stress Plays Critical Role in Brain Damage After Cerebral Ischemia/Reperfusion in Rats, Neurotoxicity Research, vol.22, issue.9478, pp.189-202, 2010.
DOI : 10.1172/JCI0216784

K. Szydlowska and M. Tymianski, Calcium, ischemia and excitotoxicity, Cell Calcium, vol.47, issue.2, pp.122-129, 2010.
DOI : 10.1016/j.ceca.2010.01.003

X. Qi, Y. Okuma, T. Hosoi, and Y. Nomura, Edaravone Protects against Hypoxia/Ischemia-Induced Endoplasmic Reticulum Dysfunction, Journal of Pharmacology and Experimental Therapeutics, vol.311, issue.1, pp.388-393, 2004.
DOI : 10.1124/jpet.104.069088

URL : http://jpet.aspetjournals.org/content/jpet/311/1/388.full.pdf

S. Tajiri, S. Oyadomari, S. Yano, M. Morioka, T. Gotoh et al., Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP, Cell Death and Differentiation, vol.11, issue.4, pp.403-415, 2004.
DOI : 10.1038/sj.cdd.4401365

T. Hayashi, A. Saito, S. Okuno, M. Ferrand-drake, R. Dodd et al., Damage to the Endoplasmic Reticulum and Activation of Apoptotic Machinery by Oxidative Stress in Ischemic Neurons, Journal of Cerebral Blood Flow & Metabolism, vol.155, issue.39, pp.41-53, 2005.
DOI : 10.1006/exnr.1998.7002

W. Paschen, T. Hayashi, A. Saito, and P. Chan, GADD34 protein levels increase after transient ischemia in the cortex but not in the CA1 subfield: implications for post-ischemic recovery of protein synthesis in ischemia-resistant cells, Journal of Neurochemistry, vol.90, issue.3, pp.694-701, 2004.
DOI : 10.1111/j.1471-4159.2004.02555.x

D. Mccaig, H. Imai, L. Gallagher, D. Graham, H. J. et al., Evolution of GADD34 expression after focal cerebral ischaemia, Brain Research, vol.1034, issue.1-2, pp.51-61, 2005.
DOI : 10.1016/j.brainres.2004.11.058

C. Chaveroux, V. Carraro, L. Canaple, J. Averous, A. Maurin et al., In vivo imaging of the spatiotemporal activity of the eIF2??-ATF4 signaling pathway: Insights into stress and related disorders, Science Signaling, vol.5, issue.5, p.5, 2015.
DOI : 10.1016/S1097-2765(00)80330-5

C. Orset, R. Macrez, A. Young, D. Panthou, E. Angles-cano et al., Mouse Model of In Situ Thromboembolic Stroke and Reperfusion, Stroke, vol.38, issue.10, pp.2771-2778, 2007.
DOI : 10.1161/STROKEAHA.107.487520

A. Chevilley, F. Lesept, S. Lenoir, C. Ali, J. Parcq et al., Impacts of tissue-type plasminogen activator (tPA) on neuronal survival, Frontiers in Cellular Neuroscience, vol.106, issue.e71263, p.415, 2015.
DOI : 10.1161/01.CIR.0000023942.10849.41

M. Yepes, Tissue-type plasminogen activator is a neuroprotectant in the central nervous system, Frontiers in Cellular Neuroscience, vol.171, p.304, 2015.
DOI : 10.2353/ajpath.2007.070472

M. Yepes, B. Roussel, C. Ali, and D. Vivien, Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic, Trends in Neurosciences, vol.32, issue.1, pp.48-55, 2009.
DOI : 10.1016/j.tins.2008.09.006

URL : https://hal.archives-ouvertes.fr/inserm-01296642

F. Correa, M. Gauberti, J. Parcq, R. Macrez, Y. Hommet et al., Tissue plasminogen activator prevents white matter damage following stroke, The Journal of Experimental Medicine, vol.122, issue.6, pp.1229-1242, 2011.
DOI : 10.1111/j.1471-4159.2007.04866.x

URL : http://jem.rupress.org/content/jem/208/6/1229.full.pdf

E. Lemarchand, E. Maubert, B. Haelewyn, C. Ali, M. Rubio et al., Stressed neurons protect themselves by a tissue-type plasminogen activator-mediated EGFR-dependent mechanism, Cell Death and Differentiation, vol.333, issue.1, 2015.
DOI : 10.1182/blood-2010-06-290338

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815983

X. Zhang, R. Polavarapu, H. She, Z. Mao, and M. Yepes, Tissue-Type Plasminogen Activator and the Low-Density Lipoprotein Receptor-Related Protein Mediate Cerebral Ischemia-Induced Nuclear Factor-??B Pathway Activation, The American Journal of Pathology, vol.171, issue.4, pp.1281-1290, 2007.
DOI : 10.2353/ajpath.2007.070472

J. An, C. Zhang, R. Polavarapu, X. Zhang, and M. Yepes, Tissue-type plasminogen activator and the low-density lipoprotein receptor-related protein induce Akt phosphorylation in the ischemic brain, Blood, vol.112, issue.7, pp.2787-2794, 2008.
DOI : 10.1182/blood-2008-02-141630

M. Gonzalez-gronow, M. Selim, J. Papalas, and S. Pizzo, GRP78: A Multifunctional Receptor on the Cell Surface, Antioxidants & Redox Signaling, vol.11, issue.9, pp.2299-2306, 2009.
DOI : 10.1089/ars.2009.2568

Y. Tsai, Y. Zhang, C. Tseng, R. Stanciauskas, F. Pinaud et al., Characterization and Mechanism of Stress-induced Translocation of 78-Kilodalton Glucose-regulated Protein (GRP78) to the Cell Surface, Journal of Biological Chemistry, vol.11, issue.13, pp.8049-8064, 2015.
DOI : 10.1083/jcb.200604014

R. Kumar, S. Azam, J. Sullivan, C. Owen, D. Cavener et al., Brain ischemia and reperfusion activates the eukaryotic initiation factor 2?? kinase, PERK, Journal of Neurochemistry, vol.179, issue.5, pp.1418-1421, 2001.
DOI : 10.1128/MCB.18.12.7499

C. Owen, R. Kumar, P. Zhang, B. Mcgrath, D. Cavener et al., PERK is responsible for the increased phosphorylation of eIF2?? and the severe inhibition of protein synthesis after transient global brain ischemia, Journal of Neurochemistry, vol.22, issue.5, pp.1235-1242, 2005.
DOI : 10.1001/archneur.1973.00490300062008

Y. Zhang, R. Liu, M. Ni, P. Gill, and A. Lee, Cell Surface Relocalization of the Endoplasmic Reticulum Chaperone and Unfolded Protein Response Regulator GRP78/BiP, Journal of Biological Chemistry, vol.174, issue.20, pp.15065-15075, 2010.
DOI : 10.1158/1535-7163.MCT-09-0282

B. Hardy, A. Battler, C. Weiss, O. Kudasi, and A. Raiter, Therapeutic angiogenesis of mouse hind limb ischemia by novel peptide activating GRP78 receptor on endothelial cells, Biochemical Pharmacology, vol.75, issue.4, pp.891-899, 2008.
DOI : 10.1016/j.bcp.2007.10.008

A. Raiter, C. Weiss, Z. Bechor, I. Ben-dor, A. Battler et al., Activation of GRP78 on Endothelial Cell Membranes by an ADAM15-Derived Peptide Induces Angiogenesis, Journal of Vascular Research, vol.47, issue.5, pp.399-411, 2010.
DOI : 10.1159/000281580

U. Misra, M. Gonzalez-gronow, G. Gawdi, J. Hart, C. Johnson et al., -Macroglobulin-induced Signal Transduction, Journal of Biological Chemistry, vol.273, issue.44, pp.42082-42087, 2002.
DOI : 10.1074/jbc.M000434200

URL : https://hal.archives-ouvertes.fr/hal-00555170

M. Gonzalez-gronow, S. Kaczowka, S. Payne, F. Wang, G. Gawdi et al., Plasminogen Structural Domains Exhibit Different Functions When Associated with Cell Surface GRP78 or the Voltage-dependent Anion Channel, Journal of Biological Chemistry, vol.52, issue.45, pp.32811-32820, 2007.
DOI : 10.1189/jlb.1104685

S. Jindadamrongwech, C. Thepparit, and D. Smith, Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2, Archives of Virology, vol.149, issue.5, pp.915-927, 2004.
DOI : 10.1007/s00705-003-0263-x

K. Triantafilou, D. Fradelizi, K. Wilson, and M. Triantafilou, GRP78, a Coreceptor for Coxsackievirus A9, Interacts with Major Histocompatibility Complex Class I Molecules Which Mediate Virus Internalization, Journal of Virology, vol.76, issue.2, pp.633-643, 2002.
DOI : 10.1128/JVI.76.2.633-643.2002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC136810

N. Goldenberg-cohen, A. Raiter, V. Gaydar, O. Dratviman-storobinsky, T. Goldstein et al., Peptide-binding GRP78 protects neurons from hypoxia-induced apoptosis, Apoptosis, vol.415, issue.10, pp.278-288, 2012.
DOI : 10.1042/BJ20081118

J. Kim, G. Fonarow, E. Smith, M. Reeves, D. Navalkele et al., Treatment With Tissue Plasminogen Activator in the Golden Hour and the Shape of the 4.5-Hour Time-Benefit Curve in the National United States Get With The Guidelines-Stroke PopulationClinical Perspective, Circulation, vol.135, issue.2, pp.128-139, 2016.
DOI : 10.1161/CIRCULATIONAHA.116.023336

S. Tsirka, A. Gualandris, D. Amaral, and S. Strickland, Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator, Nature, vol.377, issue.6547, pp.340-344, 1995.
DOI : 10.1038/377340a0

O. Nicole, F. Docagne, C. Ali, I. Margaill, P. Carmeliet et al., The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling, Nat Med, vol.7, pp.59-64, 2001.

G. Liot, B. Roussel, N. Lebeurrier, K. Benchenane, J. Lopez-atalaya et al., Tissue-type plasminogen activator rescues neurones from serum deprivation-induced apoptosis through a mechanism independent of its proteolytic activity, Journal of Neurochemistry, vol.20, issue.5, pp.1458-1464, 2006.
DOI : 10.1016/j.expneurol.2004.05.032

URL : https://hal.archives-ouvertes.fr/inserm-01296667

J. Parcq, T. Bertrand, A. Montagne, A. Baron, R. Macrez et al., Unveiling an exceptional zymogen: the single-chain form of tPA is a selective activator of NMDA receptor-dependent signaling and neurotoxicity, Cell Death and Differentiation, vol.92, issue.12, pp.1983-1991, 2012.
DOI : 10.1016/S0165-0270(01)00374-0

F. Wu, A. Nicholson, W. Haile, T. E. , A. J. Chen et al., Tissue-Type Plasminogen Activator Mediates Neuronal Detection and Adaptation to Metabolic Stress, Journal of Cerebral Blood Flow & Metabolism, vol.53, issue.11, pp.1761-1769, 2013.
DOI : 10.1016/j.neuron.2006.12.015

URL : http://journals.sagepub.com/doi/pdf/10.1038/jcbfm.2013.124

F. Wu, R. Echeverry, J. Wu, J. An, W. Haile et al., Tissue-type plasminogen activator protects neurons from excitotoxin-induced cell death via activation of the ERK1/2???CREB???ATF3 signaling pathway, Molecular and Cellular Neuroscience, vol.52, pp.9-19, 2013.
DOI : 10.1016/j.mcn.2012.10.001

Y. Wang, S. Tsirka, S. Strickland, P. Stieg, S. Soriano et al., Tissue plasminogen activator (tPA) increase neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice, Nature Medicine, vol.14, issue.2, pp.228-231, 1998.
DOI : 10.1073/pnas.94.18.9779

F. Lesept, A. Chevilley, J. Jezequel, L. Ladepeche, R. Macrez et al., Tissue-type plasminogen activator controls neuronal death by raising surface dynamics of extrasynaptic NMDA receptors, Cell Death and Disease, vol.107, issue.11, p.2466, 2016.
DOI : 10.1523/JNEUROSCI.6041-10.2011

B. Hardy and A. Raiter, Peptide-binding heat shock protein GRP78 protects cardiomyocytes from hypoxia-induced apoptosis, Journal of Molecular Medicine, vol.106, issue.11, pp.1157-1167, 2010.
DOI : 10.4049/jimmunol.175.4.2525

A. Raiter, A. Tenenbaum, M. Yackobovitch-gavan, A. Battler, and B. Hardy, Peptide binding glucose regulated protein 78 improves type 1 diabetes by preventing pancreatic beta cell apoptosis
DOI : 10.1055/s-0035-1569356

T. Kudo, S. Kanemoto, H. Hara, N. Morimoto, T. Morihara et al., A molecular chaperone inducer protects neurons from ER stress, Cell Death and Differentiation, vol.53, issue.2, pp.364-375, 2008.
DOI : 10.1016/S0169-328X(99)00102-3

Y. Oida, J. Hamanaka, K. Hyakkoku, M. Shimazawa, T. Kudo et al., Post-treatment of a BiP inducer prevents cell death after middle cerebral artery occlusion in mice, Neuroscience Letters, vol.484, issue.1, pp.43-46, 2010.
DOI : 10.1016/j.neulet.2010.08.015

B. Chir, W. Maurin, A. Carraro, V. Averous, J. Jousse et al., The eIF2alpha/ ATF4 pathway is essential for stress-induced autophagy gene expression, Nucleic Acids Res, vol.41, pp.7683-7699, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01056786

A. Baron, A. Montagne, F. Casse, S. Launay, E. Maubert et al., NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity, Cell Death and Differentiation, vol.23, issue.5, pp.860-871, 2010.
DOI : 10.1111/j.1471-4159.2006.03982.x

S. Rozen and H. Skaletsky, Primer3 on the WWW for General Users and for Biologist Programmers, Methods Mol Biol, vol.132, pp.365-386, 2000.
DOI : 10.1385/1-59259-192-2:365

G. Bruckert, D. Vivien, F. Docagne, and B. Roussel, Normalization of Reverse Transcription Quantitative PCR Data During Ageing in Distinct Cerebral Structures, Molecular Neurobiology, vol.29, issue.9, pp.1540-1550, 2015.
DOI : 10.1093/nar/29.9.e45

URL : https://hal.archives-ouvertes.fr/inserm-01296960

J. Leprince, H. Oulyadi, D. Vaudry, O. Masmoudi, P. Gandolfo et al., Synthesis, conformational analysis and biological activity of cyclic analogs of the octadecaneuropeptide ODN???, European Journal of Biochemistry, vol.37, issue.23, pp.6045-6057, 2001.
DOI : 10.1126/science.7001627

D. Chatenet, C. Dubessy, C. Boularan, E. Scalbert, B. Pfeiffer et al., Structure???Activity Relationships of a Novel Series of Urotensin II Analogues:?? Identification of a Urotensin II Antagonist, Journal of Medicinal Chemistry, vol.49, issue.24, pp.7234-7238, 2006.
DOI : 10.1021/jm0602110