M. Table and S. , Association between baseline characteristics and number of copies of ?4 allele of APOE genotype: the MEMENTO cohort

. A?, Amyloid-?; AD: Alzheimer's disease; ADNI: Alzheimer's Disease Neuroimaging Initiative; ADRD: Alzheimer's disease and related disorders; aMCI: Amnestic mild cognitive impairment; APOE: Apolipoprotein E; BOLD: Blood oxygen level-dependent imaging; CATI: Center for Automated Treatment of Images, CDR: Clinical Dementia Rating

C. Inserm, U. , I. De-santé-publique, . Epidémiologie, and . De-développement, Bordeaux School of Public Health Pole de sante publique, F-33000 Bordeaux, France. 3 Institute of Memory and Alzheimer's Disease (IM2A) and Brain and Spine Institute (ICM) UMR S 1127, Memory Resource and Research Centre, issue.275006 4 6 7

M. Resource, R. Centre, /. Strasbourg, and . Colmar, 8 Memory Resource and Research Centre of Paris Nord, AP-HP, Groupe Hospitalier Saint-Louis Lariboisière Fernand Widal, F-75010 Paris, France. 9 Memory Resource and Research Centre, Memory Resource and Research Centre of Bordeaux, p.1233000

F. Bordeaux, 13 Memory Resource and Research Centre of Montpellier, p.14

M. Resource, R. Centre-of-marseille, L. Chu-de-marseille, and . Timone, 15 Memory Resource and Research Centre of Angers, CHU d'Angers, F-49000 Angers, France. 16 Memory Resource and Research Centre of Lyon, Hospices Civils de Lyon, Hôpital des Charpennes, F-69000 Lyon, France. 17 Memory Resource and Research Centre of Nice, Cognition Behaviour Technology Memory Resource and Research Centre Memory Resource and Research, p.20, 2019.

M. Clinic, H. Avicenne, and . Ap-hp, Hôpitaux Universitaires Paris-Seine-Saint-Denis, F-93009 Bobigny, France. 21 Memory Resource and Research Centre of Saint-Etienne, CHU de Saint-Etienne, Hôpital Nord, F-42000 Saint-Etienne, France. 22 Memory Resource and Research Centre of Saint-Etienne, p.42000

F. Saint-etienne, 23 Memory Resource and Research Centre of Rouen, pp.76031-76055

F. Nancy, 26 Memory Resource and Research Centre of Poitiers, CHU de Poitiers, Hôpital de La Milétrie, F-86000 Poitiers, France. 27 Memory Resource and Research Centre of Grenoble, 28 Memory Resource and Research Centre of Center Region Memory Resource and Research Centre of Strasbourg, p.2968000

F. Colmar, 31 Memory Resource and Research Centre of Nantes, CHU de Nantes, F-44000 Nantes, France. 32 Memory Resource and Research Centre of Clermont-Ferrand, CHU de Clermont-Ferrand, F-63000 Clermont-Ferrand, France. 33 Memory Resource and Research Centre of, p.25000

F. Besançon, 35 Centre pour l'Acquisition et le Traitement des Images, p.36

C. Inserm and I. Du-cerveau-et-la-moelle, ICM) -Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013 Paris, France. 37 Nuclear Medicine Department, Pitié-Salpêtrière University Hospital

H. Jacqmin-gadda, A. Alperovitch, C. Montlahuc, D. Commenges, K. Leffondre et al., 20-Year prevalence projections for dementia and impact of preventive policy about risk factors, European Journal of Epidemiology, vol.64, issue.5, pp.493-502, 2013.
DOI : 10.1002/ana.21509

J. Jr, C. Knopman, D. Jagust, W. Petersen, R. Weiner et al., Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers, Lancet Neurol, vol.12, pp.207-223, 2013.

R. Casanova, S. Varma, B. Simpson, M. Kim, Y. An et al., Blood metabolite markers of preclinical Alzheimer's disease in two longitudinally followed cohorts of older individuals, Alzheimer's & Dementia, vol.12, issue.7, pp.815-837, 2016.
DOI : 10.1016/j.jalz.2015.12.008

C. Winston, E. Goetzl, J. Akers, B. Carter, E. Rockenstein et al., Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile, Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, vol.3, pp.63-72, 2016.
DOI : 10.1016/j.dadm.2016.04.001

P. Nelson, H. Braak, and W. Markesbery, Neuropathology and Cognitive Impairment in Alzheimer Disease: A Complex but Coherent Relationship, Journal of Neuropathology & Experimental Neurology, vol.68, issue.1, pp.1-14, 2009.
DOI : 10.1097/NEN.0b013e3181919a48

S. Salloway, R. Sperling, N. Fox, K. Blennow, W. Klunk et al., Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer's Disease, New England Journal of Medicine, vol.370, issue.4, pp.322-355, 2014.
DOI : 10.1056/NEJMoa1304839

S. Dong, Y. Duan, Y. Hu, and Z. Zhao, Advances in the pathogenesis of Alzheimer's disease: a re-evaluation of amyloid cascade hypothesis, Transl Neurodegener, vol.1, p.18, 2012.

J. Jr, C. Holtzman, and D. , Biomarker modeling of Alzheimer's disease, Neuron, vol.80, pp.1347-58, 2013.

P. Nelson, I. Alafuzoff, E. Bigio, C. Bouras, H. Braak et al., Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature, Journal of Neuropathology & Experimental Neurology, vol.71, issue.5, pp.362-81, 2012.
DOI : 10.1097/NEN.0b013e31825018f7

J. Morris, The Clinical Dementia Rating (CDR): Current version and scoring rules, Neurology, vol.43, issue.11, pp.2412-2416, 1993.
DOI : 10.1212/WNL.43.11.2412-a

L. Hugonot-diner, . Mms-version-consensuelle, and . Greco, In: La consultation en gériatrie, pp.13-20, 2001.

E. Grober, H. Buschke, H. Crystal, S. Bang, and R. Dresner, Screening for dementia by memory testing, Neurology, vol.38, issue.6, pp.900-903, 1988.
DOI : 10.1212/WNL.38.6.900

E. Barbeau, M. Didic, E. Tramoni, O. Felician, S. Joubert et al., Evaluation of visual recognition memory in MCI patients, Neurology, vol.62, issue.8, pp.1317-1339, 2004.
DOI : 10.1212/01.WNL.0000120548.24298.DB

L. Thurstone, L. L. By, and . Thurstone, Psychophysical Analysis, The American Journal of Psychology, vol.100, issue.3/4, pp.587-609, 1927.
DOI : 10.2307/1422696

G. Deloche, D. Hannequin, M. Dordain, D. Perrier, B. Pichard et al., Picture Confrontation Oral Naming: Performance Differences between Aphasics and Normals, Brain and Language, vol.53, issue.1, pp.105-125, 1996.
DOI : 10.1006/brln.1996.0039

P. Peigneux and M. Van-der-liden, Presentation d'une batterie neuropsychologique et cognitive pour l'evaluation de l'apraxie gestuelle, Rev Neuropsychol, vol.10, pp.311-62, 2000.

A. Benton, N. Varney, and K. Hamsher, Visuospatial Judgment, Archives of Neurology, vol.35, issue.6, pp.364-371, 1978.
DOI : 10.1001/archneur.1978.00500300038006

F. Reischies and P. Neu, Comorbidity of mild cognitive disorder and depression - a neuropsychological analysis, European Archives of Psychiatry and Clinical Neuroscience, vol.250, issue.4, pp.186-93, 2000.
DOI : 10.1007/s004060070023

T. Tombaugh, Trail Making Test A and B: Normative data stratified by age and education, Archives of Clinical Neuropsychology, vol.19, issue.2, pp.203-217, 2004.
DOI : 10.1016/S0887-6177(03)00039-8

B. Dubois, A. Slachevsky, I. Litvan, and B. Pillon, The FAB: A frontal assessment battery at bedside, Neurology, vol.55, issue.11, pp.1621-1627, 2000.
DOI : 10.1212/WNL.55.11.1621

A. Slachevsky, J. Villalpando, M. Sarazin, V. Hahn-barma, B. Pillon et al., Frontal Assessment Battery and Differential Diagnosis of Frontotemporal Dementia and Alzheimer Disease, Archives of Neurology, vol.61, issue.7, pp.1104-1111, 2004.
DOI : 10.1001/archneur.61.7.1104

K. De-medeiros, P. Robert, S. Gauthier, F. Stella, A. Politis et al., The Neuropsychiatric Inventory-Clinician rating scale (NPI-C): reliability and validity of a revised assessment of neuropsychiatric symptoms in dementia, International Psychogeriatrics, vol.62, issue.06, pp.984-94, 2010.
DOI : 10.1212/01.WNL.0000118301.92105.EE

M. Hagstromer, P. Oja, and M. Sjostrom, The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity, Public Health Nutrition, vol.71, issue.06, pp.755-62, 2006.
DOI : 10.1080/02701367.2000.10608875

S. Katz, A. Ford, R. Moskowitz, B. Jackson, and M. Jaffe, Studies of Illness in the Aged, JAMA, vol.185, issue.12, pp.914-923, 1963.
DOI : 10.1001/jama.1963.03060120024016

M. Lawton, Scales to measure competence in everyday activities, Psychopharmacol Bull, vol.24, pp.609-623, 1988.

J. Guralnik, E. Simonsick, L. Ferrucci, R. Glynn, L. Berkman et al., A Short Physical Performance Battery Assessing Lower Extremity Function: Association With Self-Reported Disability and Prediction of Mortality and Nursing Home Admission, Journal of Gerontology, vol.49, issue.2, pp.85-94, 1994.
DOI : 10.1093/geronj/49.2.M85

G. Operto, M. Chupin, B. Batrancourt, M. Habert, O. Colliot et al., CATI: A Large Distributed Infrastructure for the Neuroimaging of Cohorts, Neuroinformatics, vol.134, issue.7, pp.253-64, 2016.
DOI : 10.1126/science.134.3473.161

URL : https://hal.archives-ouvertes.fr/hal-01303094

M. Habert, M. S. Bertin, H. Reynal, M. Martini, J. Diallo et al., Optimization of brain PET imaging for a multicentre trial: the French CATI experience, EJNMMI Physics, vol.40, issue.7, p.6, 2016.
DOI : 10.1007/s00259-013-2391-1

URL : https://hal.archives-ouvertes.fr/hal-01300073

A. Varrone, S. Asenbaum, V. Borght, T. Booij, J. Nobili et al., EANM procedure guidelines for PET brain imaging using
DOI : 10.1007/s00259-009-1264-0

E. Prieto, J. Marti-climent, J. Arbizu, P. Garrastachu, I. Dominguez et al., Evaluation of spatial resolution of a PET scanner through the simulation and experimental measurement of the recovery coefficient, Computers in Biology and Medicine, vol.40, issue.1, pp.75-80, 2010.
DOI : 10.1016/j.compbiomed.2009.11.002

M. Chupin, A. Hammers, R. Liu, O. Colliot, J. Burdett et al., Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation, NeuroImage, vol.46, issue.3, pp.749-61, 2009.
DOI : 10.1016/j.neuroimage.2009.02.013

URL : https://hal.archives-ouvertes.fr/hal-00805390

M. Chupin, A. Mukuna-bantumbakulu, D. Hasboun, E. Bardinet, S. Baillet et al., Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer???s disease, NeuroImage, vol.34, issue.3, pp.996-1019, 2007.
DOI : 10.1016/j.neuroimage.2006.10.035

P. Scheltens, L. Launer, F. Barkhof, H. Weinstein, and W. Van-gool, Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: Interobserver reliability, Journal of Neurology, vol.57, issue.Suppl 2, pp.557-60, 1995.
DOI : 10.1016/S0140-6736(86)90837-8

B. Fischl, A. Van-der-kouwe, C. Destrieux, E. Halgren, F. Segonne et al., Automatically Parcellating the Human Cerebral Cortex, Cerebral Cortex, vol.14, issue.1, pp.11-22, 2004.
DOI : 10.1093/cercor/bhg087

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Desikan, F. Segonne, B. Fischl, B. Quinn, B. Dickerson et al., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage, vol.31, issue.3, pp.968-80, 2006.
DOI : 10.1016/j.neuroimage.2006.01.021

J. Mangin, E. Jouvent, and A. Cachia, In-vivo measurement of cortical morphology: means and meanings, Current Opinion in Neurology, vol.23, pp.359-67, 2010.
DOI : 10.1097/WCO.0b013e32833a0afc

M. Perrot, D. Riviere, and J. Mangin, Cortical sulci recognition and spatial normalization, Medical Image Analysis, vol.15, issue.4, pp.529-50, 2011.
DOI : 10.1016/j.media.2011.02.008

URL : https://hal.archives-ouvertes.fr/hal-00776670

T. Samaille, L. Fillon, R. Cuingnet, E. Jouvent, H. Chabriat et al., Contrast-Based Fully Automatic Segmentation of White Matter Hyperintensities: Method and Validation, PLoS ONE, vol.41, issue.1, p.48953, 2012.
DOI : 10.1371/journal.pone.0048953.s005

URL : https://hal.archives-ouvertes.fr/hal-00789657

F. Fazekas, F. Barkhof, L. Wahlund, L. Pantoni, T. Erkinjuntti et al., CT and MRI Rating of White Matter Lesions, Cerebrovascular Diseases, vol.13, issue.2, pp.31-37, 2002.
DOI : 10.1159/000049147

P. Guevara, D. Duclap, C. Poupon, L. Marrakchi-kacem, P. Fillard et al., Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas, NeuroImage, vol.61, issue.4, pp.1083-99, 2012.
DOI : 10.1016/j.neuroimage.2012.02.071

URL : https://hal.archives-ouvertes.fr/hal-00700800

D. Duclap, A. Lebois, B. Scmitt, O. Riff, P. Guevara et al., Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA, 2012.

R. Buchert, F. Wilke, B. Chakrabarti, B. Martin, W. Brenner et al., Adjusted Scaling of FDG Positron Emission Tomography Images for Statistical Evaluation in Patients With Suspected Alzheimer's Disease, Journal of Neuroimaging, vol.50, issue.3, pp.348-55, 2005.
DOI : 10.1038/jcbfm.1995.94

P. Toussaint, V. Perlbarg, P. Bellec, S. Desarnaud, L. Lacomblez et al., Resting state FDG-PET functional connectivity as an early biomarker of Alzheimer's disease using conjoint univariate and independent component analyses, NeuroImage, vol.63, issue.2, pp.936-982, 2012.
DOI : 10.1016/j.neuroimage.2012.03.091

G. Mckhann, D. Drachman, M. Folstein, R. Katzman, D. Price et al., Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease, Neurology, vol.34, issue.7, pp.939-983, 1984.
DOI : 10.1212/WNL.34.7.939

. American-psychiatric-association, Diagnostic and statistical manual of mental disorders American Psychiatric Association, 1994.

R. Petersen, Mild cognitive impairment as a diagnostic entity, Journal of Internal Medicine, vol.57, issue.3, pp.183-94, 2004.
DOI : 10.1212/WNL.57.9.1655

J. Langbaum, K. Chen, W. Lee, C. Reschke, D. Bandy et al., Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer's Disease Neuroimaging Initiative (ADNI), NeuroImage, vol.45, issue.4, pp.1107-1123, 2009.
DOI : 10.1016/j.neuroimage.2008.12.072

J. Weuve, C. Proust-lima, M. Power, A. Gross, S. Hofer et al., Guidelines for reporting methodological challenges and evaluating potential bias in dementia research, Alzheimer's & Dementia, vol.11, issue.9, pp.1098-109, 2015.
DOI : 10.1016/j.jalz.2015.06.1885

URL : https://hal.archives-ouvertes.fr/hal-01288885

E. Cavedo, S. Lista, Z. Khachaturian, P. Aisen, P. Amouyel et al., The road ahead to cure Alzheimer's disease: development of biological markers and neuroimaging methods for prevention trials across all stages and target populations, J Prev Alzheimers Dis, vol.1, pp.181-202, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01098836

J. Schneider and D. Bennett, Where Vascular Meets Neurodegenerative Disease, Stroke, vol.41, issue.10, Supplement 1, pp.144-146, 2010.
DOI : 10.1161/STROKEAHA.110.598326

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967303

P. Visser, F. Verhey, D. Knol, P. Scheltens, L. Wahlund et al., Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study, The Lancet Neurology, vol.8, issue.7, pp.619-646, 2009.
DOI : 10.1016/S1474-4422(09)70139-5

M. Murray, N. Graff-radford, O. Ross, R. Petersen, R. Duara et al., Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study, The Lancet Neurology, vol.10, issue.9, pp.785-96, 2011.
DOI : 10.1016/S1474-4422(11)70156-9

J. Barnes, B. Dickerson, C. Frost, L. Jiskoot, D. Wolk et al., Alzheimer's disease first symptoms are age dependent: Evidence from??the NACC dataset, Alzheimer's & Dementia, vol.11, issue.11, pp.1349-57, 2015.
DOI : 10.1016/j.jalz.2014.12.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619185

S. Farias, D. Mungas, B. Reed, D. Harvey, and C. Decarli, Progression of Mild Cognitive Impairment to Dementia in Clinic- vs Community-Based Cohorts, Archives of Neurology, vol.66, issue.9, pp.1151-1158, 2009.
DOI : 10.1001/archneurol.2009.106

J. Yesavage, O. Hara, R. Kraemer, H. Noda, A. Taylor et al., Modeling the prevalence and incidence of Alzheimer???s disease and mild cognitive impairment, Journal of Psychiatric Research, vol.36, issue.5, pp.281-287, 2002.
DOI : 10.1016/S0022-3956(02)00020-1

N. Mattsson, H. Zetterberg, O. Hansson, N. Andreasen, L. Parnetti et al., CSF Biomarkers and Incipient Alzheimer Disease in Patients With Mild Cognitive Impairment, JAMA, vol.302, issue.4, pp.385-93, 2009.
DOI : 10.1001/jama.2009.1064

B. Dickerson, R. Sperling, B. Hyman, M. Albert, and D. Blacker, Clinical Prediction of Alzheimer Disease Dementia Across the Spectrum of Mild Cognitive Impairment, Archives of General Psychiatry, vol.64, issue.12, pp.1443-50, 2007.
DOI : 10.1001/archpsyc.64.12.1443

R. Petersen, P. Aisen, L. Beckett, M. Donohue, A. Gamst et al., Alzheimer's Disease Neuroimaging Initiative (ADNI): Clinical characterization, Neurology, vol.74, issue.3, pp.201-210, 2010.
DOI : 10.1212/WNL.0b013e3181cb3e25

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2809036

R. Sperling, D. Rentz, K. Johnson, J. Karlawish, M. Donohue et al., The A4 Study: Stopping AD Before Symptoms Begin?, Science Translational Medicine, vol.1, issue.1, pp.228-241, 2014.
DOI : 10.1056/NEJMp1302513

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049292