P. J. Allen, O. Josephs, T. , and R. , A Method for Removing Imaging Artifact from Continuous EEG Recorded during Functional MRI, NeuroImage, vol.12, issue.2, pp.230-239, 2000.
DOI : 10.1006/nimg.2000.0599

P. J. Allen, G. Polizzi, K. Krakow, D. R. Fish, and L. Lemieux, Identification of EEG Events in the MR Scanner: The Problem of Pulse Artifact and a Method for Its Subtraction, NeuroImage, vol.8, issue.3, pp.229-2390361, 1998.
DOI : 10.1006/nimg.1998.0361

E. Bagarinao, K. Matsuo, T. Nakai, and S. Sato, Estimation of general linear model coefficients for real-time application, NeuroImage, vol.19, issue.2, pp.422-429, 2003.
DOI : 10.1016/S1053-8119(03)00081-8

E. Bannier, M. Mano, R. Stoermer, I. Corouge, L. Perronnet et al., On the feasibility and specificity of simultaneous EEG and ASL MRI at 3T, 23rd Annual Meeting: ISMRM), 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01113276

M. Bianciardi, M. Fukunaga, P. Van-gelderen, S. G. Horovitz, J. A. De-zwart et al., Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study, Magnetic Resonance Imaging, vol.27, issue.8, pp.1019-1029, 2009.
DOI : 10.1016/j.mri.2009.02.004

F. Bießmann, S. Plis, F. C. Meinecke, T. Eichele, and K. Muller, Analysis of Multimodal Neuroimaging Data, IEEE Reviews in Biomedical Engineering, vol.4, pp.26-58, 2011.
DOI : 10.1109/RBME.2011.2170675

N. Birbaumer, S. Ruiz, and R. Sitaram, Learned regulation of brain metabolism, Trends in Cognitive Sciences, vol.17, issue.6, pp.295-302, 2013.
DOI : 10.1016/j.tics.2013.04.009

V. D. Calhoun, T. Adali, G. Pearlson, and K. Kiehl, Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data, NeuroImage, vol.30, issue.2, pp.544-553, 2006.
DOI : 10.1016/j.neuroimage.2005.08.060

V. D. Calhoun, J. Liu, and T. Adali, A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data, NeuroImage, vol.45, issue.1, 2009.
DOI : 10.1016/j.neuroimage.2008.10.057

M. Chiew, Development and Application of Methods for Real-Time fMRI Neurofeedback, 2013.

R. Christopher-decharms, F. Maeda, G. H. Glover, D. Ludlow, J. M. Pauly et al., Control over brain activation and pain learned by using real-time functional MRI, Proceedings of the National Academy of Sciences, vol.19, issue.1, pp.18626-18631, 2005.
DOI : 10.3171/jns.1962.19.2.0089

R. W. Cox, AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages, Computers and Biomedical Research, vol.29, issue.3, pp.162-173, 1996.
DOI : 10.1006/cbmr.1996.0014

R. W. Cox, A. Jesmanowicz, and J. S. Hyde, Real-Time Functional Magnetic Resonance Imaging, Magnetic Resonance in Medicine, vol.1, issue.2, pp.230-236, 1995.
DOI : 10.1007/978-1-4684-1423-3_16

X. Cui, S. Bray, and A. L. Reiss, Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics, NeuroImage, vol.49, issue.4, 2010.
DOI : 10.1016/j.neuroimage.2009.11.050

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818571

F. Esposito, E. Seifritz, E. Formisano, R. Morrone, T. Scarabino et al., Real-time independent component analysis of fMRI time-series, NeuroImage, vol.20, issue.4, pp.2209-2224, 2003.
DOI : 10.1016/j.neuroimage.2003.08.012

J. R. Evans and A. Abarbanel, Introduction to Quantitative EEG and Neurofeedback, 1999.

K. J. Friston, C. D. Frith, R. S. Frackowiak, T. , and R. , Characterizing Dynamic Brain Responses with fMRI: A Multivariate Approach, NeuroImage, vol.2, issue.2, pp.166-172, 1995.
DOI : 10.1006/nimg.1995.1019

D. Gembris, J. G. Taylor, S. Schor, W. Frings, D. Suter et al., Functional magnetic resonance imaging in real time (FIRE): Sliding-window correlation analysis and reference-vector optimization, Magnetic Resonance in Medicine, vol.276, issue.2, pp.259-268, 2000.
DOI : 10.1126/science.276.5315.1094

URL : http://juser.fz-juelich.de/record/55368/files/MagneResoMed_2000_Gembris_Posse_Functional%20Magnetic.pdf

R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri et al., Review on solving the inverse problem in EEG source analysis, Journal of NeuroEngineering and Rehabilitation, vol.5, issue.1, 2008.
DOI : 10.1186/1743-0003-5-25

S. Haller, N. Birbaumer, R. Veit, O. Ghosh, S. Thompson et al., Real-time fMRI feedback training may improve chronic tinnitus, European Radiology, vol.9, issue.2, pp.696-703, 2010.
DOI : 10.1007/s00330-009-1595-z

M. Jenkinson, P. Bannister, M. Brady, and S. Smith, Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images, NeuroImage, vol.17, issue.2, pp.825-841, 2002.
DOI : 10.1006/nimg.2002.1132

J. Jorge, F. Grouiller, R. Gruetter, W. Van-der-zwaag, and P. Figueiredo, Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion, NeuroImage, vol.120, pp.143-153, 2015.
DOI : 10.1016/j.neuroimage.2015.07.020

J. Jorge, W. Van-der-zwaag, and P. Figueiredo, EEG???fMRI integration for the study of human brain function, NeuroImage, vol.102, 2014.
DOI : 10.1016/j.neuroimage.2013.05.114

E. Karahan, P. A. Rojas-lopez, M. L. Bringas-vega, P. A. Valdes-hernandez, and P. A. Valdes-sosa, Tensor Analysis and Fusion of Multimodal Brain Images, Proc. IEEE 103, pp.1531-1559, 2015.
DOI : 10.1109/JPROC.2015.2455028

URL : http://ieeexplore.ieee.org:80/stamp/stamp.jsp?tp=&arnumber=7214360

J. N. Keynan, Y. Meir-hasson, G. Gilam, A. Cohen, G. Jackont et al., Limbic Activity Modulation Guided by Functional Magnetic Resonance Imaging???Inspired Electroencephalography Improves Implicit Emotion Regulation, Biological Psychiatry, vol.80, issue.6, pp.490-496, 2016.
DOI : 10.1016/j.biopsych.2015.12.024

S. Kinreich, I. Podlipsky, N. Intrator, and T. Hendler, Categorized EEG Neurofeedback Performance Unveils Simultaneous fMRI Deep Brain Activation, Machine Learning and Interpretation in Neuroimaging, pp.108-115, 2012.
DOI : 10.1109/78.492555

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Klovatch-podlipsky, T. Gazit, F. Fahoum, B. Tsirelson, S. Kipervasser et al., Dual array EEG-fMRI: An approach for motion artifact suppression in EEG recorded simultaneously with fMRI, NeuroImage, vol.142, pp.674-686, 2016.
DOI : 10.1016/j.neuroimage.2016.07.014

B. Koo, H. Lee, Y. Nam, H. Kang, C. S. Koh et al., A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery, Journal of Neuroscience Methods, vol.244, pp.26-32, 2015.
DOI : 10.1016/j.jneumeth.2014.04.016

B. Kotchoubey, U. Strehl, C. Uhlmann, S. Holzapfel, M. König et al., Modification of Slow Cortical Potentials in Patients with Refractory Epilepsy: A Controlled Outcome???Study, Epilepsia, vol.23, issue.3, pp.406-416, 2001.
DOI : 10.1016/S0010-9452(76)80035-4

Y. Koush, M. J. Rosa, F. Robineau, K. Heinen, S. W. Rieger et al., Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI, NeuroImage, vol.81, pp.422-430, 2013.
DOI : 10.1016/j.neuroimage.2013.05.010

URL : http://doi.org/10.1016/j.neuroimage.2013.05.010

Y. Koush, M. Zvyagintsev, M. Dyck, K. A. Mathiak, and K. Mathiak, Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI, NeuroImage, vol.59, issue.1, pp.478-489, 2012.
DOI : 10.1016/j.neuroimage.2011.07.076

X. Li, K. J. Hartwell, J. Borckardt, J. J. Prisciandaro, M. E. Saladin et al., Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study, Addiction Biology, vol.54, issue.20, pp.739-748, 2013.
DOI : 10.1016/j.neuroimage.2010.08.008

D. E. Linden, I. Habes, S. J. Johnston, S. Linden, R. Tatineni et al., Real-Time Self-Regulation of Emotion Networks in Patients with Depression, PLoS ONE, vol.6, issue.57, 2012.
DOI : 10.1371/journal.pone.0038115.t003

F. Lotte and C. Guan, Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms, IEEE Transactions on Biomedical Engineering, vol.58, issue.2, pp.355-362, 2010.
DOI : 10.1109/TBME.2010.2082539

URL : https://hal.archives-ouvertes.fr/inria-00476820

C. Maumet, P. Maurel, J. Ferré, and C. Barillot, An a contrario approach for the detection of patient-specific brain perfusion abnormalities with arterial spin labelling, NeuroImage, vol.134, pp.424-433, 2016.
DOI : 10.1016/j.neuroimage.2016.03.054

URL : https://hal.archives-ouvertes.fr/inserm-01291748

Y. Meir-hasson, S. Kinreich, I. Podlipsky, T. Hendler, and N. Intrator, An EEG Finger-Print of fMRI deep regional activation, NeuroImage, vol.102, pp.128-141, 2014.
DOI : 10.1016/j.neuroimage.2013.11.004

T. Nakai, E. Bagarinao, K. Matsuo, Y. Ohgami, and C. Kato, Dynamic monitoring of brain activation under visual stimulation using fMRI???The advantage of real-time fMRI with sliding window GLM analysis, Journal of Neuroscience Methods, vol.157, issue.1, pp.158-167, 2006.
DOI : 10.1016/j.jneumeth.2006.04.017

W. Nakamura, K. Anami, T. Mori, O. Saitoh, A. Cichocki et al., Removal of Ballistocardiogram Artifacts From Simultaneously Recorded EEG and fMRI Data Using Independent Component Analysis, IEEE Transactions on Biomedical Engineering, vol.53, issue.7, pp.1294-1308, 2006.
DOI : 10.1109/TBME.2006.875718

H. Nakano, K. Ueta, M. Osumi, and S. Morioka, Brain Activity during the Observation, Imagery, and Execution of Tool Use: An fNIRS/EEG Study, Journal of Novel Physiotherapies, vol.01, issue.S1, pp.1-009, 2012.
DOI : 10.4172/2165-7025.S1-009

I. Neuner, J. Arrubla, J. Felder, and N. J. Shah, Simultaneous EEG???fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4T: Perspectives and challenges, NeuroImage, vol.102, pp.71-79, 2014.
DOI : 10.1016/j.neuroimage.2013.06.048

T. Nierhaus, C. Gundlach, D. Goltz, S. D. Thiel, B. Pleger et al., Internal ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG-fMRI, NeuroImage, vol.74, pp.70-76, 2013.
DOI : 10.1016/j.neuroimage.2013.02.016

P. L. Nunez, A. F. Westdorp, R. D. Pascual-marqui, M. Esslen, K. Kochi et al., The surface laplacian, high resolution eeg and controversies Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review Available online at: http://www.uzh.ch/keyinst Statistical Parametric Mapping: The Analysis of Functional Brain Images, Brain Topogr. Methods Find. Exp. Clin. Pharmacol, vol.6, issue.24, pp.221-226, 1994.

W. D. Penny, K. E. Stephan, A. Mechelli, and K. J. Friston, Modelling functional integration: a comparison of structural equation and dynamic causal models, NeuroImage, vol.23, 2004.
DOI : 10.1016/j.neuroimage.2004.07.041

L. Perronnet, A. Lécuyer, M. Mano, E. Bannier, F. Lotte et al., Hybrid EEG-fMRI neurofeedback of a motor-imagery task, 22nd Annual Meeting, OHBM, 2016.

S. Roberts, Control Chart Tests Based on Geometric Moving Averages, Technometrics, vol.37, issue.1, pp.97-101, 2000.
DOI : 10.1080/00401706.2000.10485986

T. Ros, J. Théberge, P. A. Frewen, R. Kluetsch, M. Densmore et al., Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback, NeuroImage, vol.65, pp.324-335, 2013.
DOI : 10.1016/j.neuroimage.2012.09.046

S. Ruiz, S. Lee, S. R. Soekadar, A. Caria, R. Veit et al., Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia, Human Brain Mapping, vol.256, issue.Suppl 1, pp.200-212, 2013.
DOI : 10.1148/radiol.10091701

M. Shtark, E. Verevkin, L. Kozlova, K. Mazhirina, M. Pokrovskii et al., Synergetic fMRI-EEG Brain Mapping in Alpha-Rhythm Voluntary Control Mode, Bulletin of Experimental Biology and Medicine, vol.85, issue.3, pp.644-649, 2015.
DOI : 10.1016/j.neuroimage.2013.04.126

R. Sitaram, R. Veit, B. Stevens, A. Caria, C. Gerloff et al., Acquired Control of Ventral Premotor Cortex Activity by Feedback Training, Neurorehabilitation and Neural Repair, vol.21, issue.3, pp.256-265, 1177.
DOI : 10.1097/WCO.0b013e328315ee2d

N. Soldati, V. D. Calhoun, L. Bruzzone, and J. Jovicich, ICA analysis of fMRI with real-time constraints: an evaluation of fast detection performance as function of algorithms, parameters and a priori conditions, Frontiers in Human Neuroscience, vol.7, 2013.
DOI : 10.3389/fnhum.2013.00019

N. Soldati, V. D. Calhoun, L. Bruzzone, and J. Jovicich, The Use of a priori Information in ICA-Based Techniques for Real-Time fMRI: An Evaluation of Static/Dynamic and Spatial/Temporal Characteristics, Frontiers in Human Neuroscience, vol.7, 2013.
DOI : 10.3389/fnhum.2013.00064

M. E. Spencer, R. M. Leahy, J. Mosher, L. , and P. , Adaptive filters for monitoring localized brain activity from surface potential time series, [1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers, pp.156-161, 1992.
DOI : 10.1109/ACSSC.1992.269278

K. E. Stephan, L. Kasper, L. M. Harrison, J. Daunizeau, H. E. Den-ouden et al., Nonlinear dynamic causal models for fMRI, NeuroImage, vol.42, issue.2, pp.649-662, 2008.
DOI : 10.1016/j.neuroimage.2008.04.262

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2636907

L. Stoeckel, K. A. Garrison, S. S. Ghosh, P. Wighton, C. A. Hanlon et al., Optimizing real time fMRI neurofeedback for therapeutic discovery and development, NeuroImage: Clinical, vol.5, pp.245-255, 2014.
DOI : 10.1016/j.nicl.2014.07.002

URL : http://doi.org/10.1016/j.nicl.2014.07.002

U. Strehl, U. Leins, G. Goth, C. Klinger, T. Hinterberger et al., Self-regulation of Slow Cortical Potentials: A New Treatment for Children With Attention-Deficit/Hyperactivity Disorder, PEDIATRICS, vol.118, issue.5, pp.1530-1540, 2006.
DOI : 10.1542/peds.2005-2478

A. Subasi and M. I. Gursoy, EEG signal classification using PCA, ICA, LDA and support vector machines, Expert Systems with Applications, vol.37, issue.12, pp.8659-8666, 2010.
DOI : 10.1016/j.eswa.2010.06.065

L. Subramanian, J. V. Hindle, S. Johnston, M. V. Roberts, M. Husain et al., Real-Time Functional Magnetic Resonance Imaging Neurofeedback for Treatment of Parkinson's Disease, Journal of Neuroscience, vol.31, issue.45, pp.16309-16317, 2011.
DOI : 10.1523/JNEUROSCI.3498-11.2011

N. Tzourio-mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard et al., Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain, NeuroImage, vol.15, issue.1, pp.273-2890978, 2001.
DOI : 10.1006/nimg.2001.0978

M. Ullsperger and S. Debener, Simultaneous EEG and fMRI: Recording, Analysis, and Application, 2010.
DOI : 10.1093/acprof:oso/9780195372731.001.0001

P. A. Valdes-sosa, J. M. Sanchez-bornot, R. C. Sotero, Y. Iturria-medina, Y. Aleman-gomez et al., Model driven EEG/fMRI fusion of brain oscillations, Human Brain Mapping, vol.31, issue.9, pp.2701-2721, 2009.
DOI : 10.1007/978-3-662-02619-9

C. R. Vogel, Computational Methods for, Inverse Problems, vol.23, 2002.

N. Weiskopf, Real-time fMRI and its application to neurofeedback, NeuroImage, vol.62, issue.2, pp.682-692, 2012.
DOI : 10.1016/j.neuroimage.2011.10.009

S. Yoo and F. A. Jolesz, Functional MRI for neurofeedback: feasibility studyon a hand motor task, Neuroreport, vol.13, issue.11, pp.1377-1381, 2002.
DOI : 10.1097/00001756-200208070-00005

J. Yu, K. K. Ang, C. Guan, W. , and C. , A multimodal fNIRS and EEG-based BCI study on motor imagery and passive movement, 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp.5-8, 2013.
DOI : 10.1109/NER.2013.6695857

C. Zich, S. Debener, C. Kranczioch, M. G. Bleichner, I. Gutberlet et al., Real-time EEG feedback during simultaneous EEG???fMRI identifies the cortical signature of motor imagery, NeuroImage, vol.114, pp.438-447, 2015.
DOI : 10.1016/j.neuroimage.2015.04.020

A. Zilverstand, B. Sorger, J. Zimmermann, A. Kaas, and R. Goebel, Windowed Correlation: A Suitable Tool for Providing Dynamic fMRI-Based Functional Connectivity Neurofeedback on Task Difficulty, PLoS ONE, vol.56, issue.1, 2014.
DOI : 10.1371/journal.pone.0085929.t003

V. Zotev, H. Yuan, M. Misaki, R. Phillips, K. D. Young et al., Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression, NeuroImage: Clinical, vol.11, pp.224-238, 2016.
DOI : 10.1016/j.nicl.2016.02.003

URL : http://doi.org/10.1016/j.nicl.2016.02.003

V. Zotev, H. Yuan, R. Phillips, and J. Bodurka, EEG-assisted retrospective motion correction for fMRI: E-REMCOR, NeuroImage, vol.63, issue.2, 2012.
DOI : 10.1016/j.neuroimage.2012.07.031

URL : http://arxiv.org/abs/1201.4481