V. T. Samuel, G. I. Shulman, D. Thiebaud, E. Jacot, R. A. Defronzo et al., The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux, Journal of Clinical Investigation, vol.126, issue.1, pp.12-22, 1982.
DOI : 10.1172/JCI77812

C. Chan, S. K. Gan, A. T. Wong, P. H. Barrett, G. F. Watts et al., Association between skeletal muscle fat content and very-low-density lipoprotein-apolipoprotein B-100 transport in obesity: effect of weight loss Rieusset, Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles?, Lipotoxicity: when tissues overeat, pp.261-269, 1997.

S. Tull, M. J. O-'callaghan, C. R. Mcconville, and . Bruce, Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse, Biochem. Biophys. Res. Commun, vol.462, pp.27-32, 2015.

J. Patrac, C. Bertrand-michel, M. Migne, J. Collin, Y. Chardigny et al., Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through eIF2? activation, Aging Cell, vol.13, pp.1001-1011, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01132248

J. Couturier, J. Salles, Y. Renou, B. Boirie, and . Morio, Diets high in sugar, fat, and energy induce muscle type-specific adaptations in mitochondrial functions in rats, J. Nutr, pp.136-2194, 2006.

D. Laurent, L. Didier, B. Yerby, B. Yerby, R. Deacon et al., Diet-induced modulation of mitochondrial activity in rat muscle, Am. J. Physiol. Endocrinol. Metab, vol.293, pp.1169-1177, 2007.

M. S. Schaart, W. Westerterp-plantenga, M. K. Langhans, V. B. Hesselink, P. Schrauwen-hinderling et al., Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.11711-11716, 2012.

T. R. Sharer, M. E. Nagy, P. A. Young, Q. Wood, and . Yang, Carnitine Palmitoyltransferase 1b Deficiency Protects Mice from Diet-Induced Insulin Resistance, J. Diabetes Metab, vol.5

R. L. Dobbins, L. S. Szczepaniak, B. Bentley, V. Esser, J. Myhill et al., Prolonged Inhibition of Muscle Carnitine Palmitoyltransferase-1 Promotes Intramyocellular Lipid Accumulation and Insulin Resistance in Rats, Diabetes, vol.50, issue.1, pp.50-123, 2001.
DOI : 10.2337/diabetes.50.1.123

T. Kim, J. F. Moore, J. D. Sharer, K. Yang, P. A. Wood et al., Carnitine Palmitoyltransferase 1b Deficient Mice Develop Severe Insulin Resistance After Prolonged High Fat Diet Feeding, Journal of Diabetes & Metabolism, vol.05, issue.07, pp.10-4172, 2014.
DOI : 10.4172/2155-6156.1000401

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286342

P. D. Wasserman and . Neufer, Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans, J. Clin. Invest, vol.119, pp.573-581, 2009.

N. Cleasby, G. J. Turner, E. W. Cooney, and . Kraegen, Overexpression of manganese superoxide dismutase ameliorates high-fat diet-induced insulin resistance in rat skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.303, pp.798-805, 2011.

J. Vidal and . Rieusset, Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice, J. Clin. Invest, vol.118, pp.789-800, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00808486

W. L. Jones, D. A. Holland, E. D. Mcclain, and . Abel, Early mitochondrial adaptations in skeletal muscle to diet-induced obesity are strain dependent and determine oxidative stress and energy expenditure but not insulin sensitivity, Endocrinology, vol.153, pp.2677-2688102011, 1210.

. Hoeks, Targeting of mitochondrial reactive oxygen species production does not avert lipidinduced insulin resistance in muscle tissue from mice, Diabetologia, pp.55-2759, 2012.

. Holloszy, High-fat diets cause insulin resistance despite an increase in muscle mitochondria, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.7815-7820, 2008.

J. A. Wanders, K. Jeneson, J. J. Nicolay, and . Prompers, Increased mitochondrial content rescues in vivo muscle oxidative capacity in long-term high-fat-diet-fed rats, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.24, pp.1354-1364, 2010.

T. R. Koves, P. Li, J. An, T. Akimoto, D. Slentz et al., Peroxisome Proliferator-activated Receptor-?? Co-activator 1??-mediated Metabolic Remodeling of Skeletal Myocytes Mimics Exercise Training and Reverses Lipid-induced Mitochondrial Inefficiency, Journal of Biological Chemistry, vol.50, issue.39, pp.33588-33598, 2005.
DOI : 10.2337/diabetes.50.12.2809

L. M. Sparks, H. Xie, R. A. Koza, R. Mynatt, M. W. Hulver et al., A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle, Diabetes, pp.54-1926, 2005.

A. Hammarstedt, P. Jansson, C. Wesslau, X. Yang, and U. Smith, Reduced expression of PGC-1 and insulin-signaling molecules in adipose tissue is associated with insulin resistance, Biochemical and Biophysical Research Communications, vol.301, issue.2, pp.301-578, 2003.
DOI : 10.1016/S0006-291X(03)00014-7

M. Kohane, R. Costello, E. J. Saccone, A. B. Landaker, E. Goldfine et al., Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.8466-8471, 2003.

M. Mensink, M. K. Hesselink, A. P. Russell, G. Schaart, J. Sels et al., Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha and PPAR beta/delta gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus, Int. J. Obes, pp.31-1302, 2005.

. Musi, Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study, Diabetes, vol.56, pp.836-848, 2007.

Z. Haohao, Q. Guijun, Z. Juan, K. Wen, and C. Lulu, Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion, Journal of Physiology and Biochemistry, vol.8, issue.1, pp.121-131, 2015.
DOI : 10.1371/journal.pone.0054059

T. E. Luiken, J. J. Graham, A. Heikkila, and . Bonen, Modest PGC-1alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria, J. Biol. Chem, vol.283, pp.4228-4240, 2008.

J. J. Glatz, A. Luiken, A. Chabowski, and . Bonen, Increased levels of peroxisome proliferatoractivated receptor gamma, coactivator 1 alpha (PGC-1alpha) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats, Diabetologia, vol.53, pp.2008-2019, 2010.

P. Mishra and D. C. Chan, Metabolic regulation of mitochondrial dynamics, The Journal of Cell Biology, vol.6, issue.4, 2016.
DOI : 10.1038/ng1341

R. Liu, P. Jin, L. Yu, Y. Null-liqunyu, L. Wang et al., Impaired Mitochondrial Dynamics and Bioenergetics in Diabetic Skeletal Muscle, PLoS ONE, vol.21, issue.3
DOI : 10.1371/journal.pone.0092810.s003

URL : http://doi.org/10.1371/journal.pone.0092810

H. Palacín, F. Vidal, M. Rivera, A. Brand, and . Zorzano, Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity, J. Biol. Chem, vol.278, pp.17190-17197, 2003.

D. Sebastián, M. I. Hernández-alvarez, J. Segalés, E. Sorianello, J. P. Muñoz et al., Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis, Proceedings of the National Academy of Sciences, vol.20, issue.3, pp.5523-5528, 2012.
DOI : 10.1016/j.ccr.2011.08.014

D. Kong, G. Song, C. Wang, H. Ma, L. Ren et al., Overexpression of mitofusin 2 improves translocation of glucose transporter 4 in skeletal muscle of high? fat diet? fed rats through AMP? activated protein kinase signaling

X. Zhang, C. Wang, G. Song, K. Gan, D. Kong et al., Mitofusion-2-mediated alleviation of insulin resistance in rats through reduction in lipid intermediate accumulation in skeletal muscle, Journal of Biomedical Science, vol.20, issue.1, pp.45-55, 2013.
DOI : 10.1186/1423-0127-20-45

G. Chen, W. Lian, G. Wang, S. Wang, Y. Yang et al., Altered microRNA expression in skeletal muscle results from high-fat diet-induced insulin resistance in mice, Mol. Med. Rep, vol.5, pp.1362-1368, 2012.

I. J. Gallagher, C. Scheele, P. Keller, A. R. Nielsen, J. Remenyi et al., Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes, Genome Medicine, vol.2, issue.2, 2010.
DOI : 10.1186/gm130

Z. Gao and . Xia, MicroRNA-106b induces mitochondrial dysfunction and insulin resistance in C2C12 myotubes by targeting mitofusin-2, Mol. Cell. Endocrinol, vol.381, 2013.

J. R. Mingrone, H. Zierath, A. Vidal, and . Zorzano, Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6, Diabetes, pp.54-2685, 2005.

. Tsai, Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle, Mol. Cell. Biol, vol.32, pp.309-31905603, 2012.

D. J. Klionsky, Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, vol.4, issue.4, 2016.
DOI : 10.4161/auto.6.4.12244

URL : https://hal.archives-ouvertes.fr/hal-01343085

J. J. Lemasters, Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3), Redox Biology, vol.2, pp.749-754, 2014.
DOI : 10.1016/j.redox.2014.06.004

D. Daraei, L. Sitz, J. Vergnes, K. Wanagat, M. A. Reue et al., HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle, Diabetes, vol.63, pp.1488-1505, 2014.

D. C. Henstridge, C. R. Bruce, B. G. Drew, K. Tory, A. Kolonics et al., Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance, Diabetes, pp.63-1881, 2014.
DOI : 10.2337/db13-0967

URL : http://diabetes.diabetesjournals.org/content/diabetes/63/6/1881.full.pdf

R. Kruse, B. F. Vind, S. J. Petersson, J. M. Kristensen, and K. Højlund, Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes, Diabetologia, vol.288, issue.9, pp.2087-2095, 2015.
DOI : 10.1074/jbc.M113.456228

C. R. Bruce, A. L. Carey, J. A. Hawley, and M. A. Febbraio, Intramuscular Heat Shock Protein 72 and Heme Oxygenase-1 mRNA Are Reduced in Patients With Type 2 Diabetes: Evidence That Insulin Resistance Is Associated With a Disturbed Antioxidant Defense Mechanism, Diabetes, vol.52, issue.9, pp.52-2338, 2003.
DOI : 10.2337/diabetes.52.9.2338

H. Alemán-mateo, M. T. López-teros, F. A. Ramírez, and H. Astiazarán-garcía, Association Between Insulin Resistance and Low Relative Appendicular Skeletal Muscle Mass: Evidence From a Cohort Study in Community-Dwelling Older Men and Women Participants, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.69, issue.7, pp.871-877, 2014.
DOI : 10.1093/gerona/glt193

S. Lee, Y. Kim, D. A. White, J. L. Kuk, and S. Arslanian, Relationships between insulin sensitivity, skeletal muscle mass and muscle quality in obese adolescent boys, European Journal of Clinical Nutrition, vol.32, issue.12, pp.1366-1368, 2012.
DOI : 10.1139/H07-002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656505

S. Moon, Low skeletal muscle mass is associated with insulin resistance, diabetes, and metabolic syndrome in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANES), Endocr. J, pp.61-61, 2009.

M. Sandri, L. Barberi, A. Y. Bijlsma, B. Blaauw, K. A. Dyar et al., Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway, Biogerontology, vol.96, issue.6, pp.14-303, 1007.
DOI : 10.1073/pnas.96.13.7324

URL : https://hal.archives-ouvertes.fr/pasteur-01027573

C. G. Lee, E. J. Boyko, E. S. Strotmeyer, C. E. Lewis, P. M. Cawthon et al., Association Between Insulin Resistance and Lean Mass Loss and Fat Mass Gain in Older Men without Diabetes Mellitus, Journal of the American Geriatrics Society, vol.88, issue.Spec No 2, pp.1217-1224, 2011.
DOI : 10.1210/jc.2002-030316

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716256

S. W. Park, B. H. Goodpaster, J. S. Lee, L. H. Kuller, R. Boudreau et al., Excessive Loss of Skeletal Muscle Mass in Older Adults With Type 2 Diabetes, Health, Aging, and Body Composition Study, Excessive loss of skeletal muscle mass in older adults with type 2 diabetes, pp.1993-199710, 2009.
DOI : 10.2337/dc09-0264

P. Srikanthan, A. L. Hevener, and A. S. Karlamangla, Sarcopenia exacerbates obesityassociated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III, PloS One, vol.5, 2010.
DOI : 10.1371/journal.pone.0010805

URL : http://doi.org/10.1371/journal.pone.0010805

S. Deschodt-arsac, E. Miraux, P. Thiaudiere, D. Pasdois, J. Detaille et al., Mitochondrial energetics is impaired in vivo in aged skeletal muscle, Aging Cell, vol.13, pp.39-48, 2014.

I. Trounce, E. Byrne, and S. Marzuki, DECLINE IN SKELETAL MUSCLE MITOCHONDRIAL RESPIRATORY CHAIN FUNCTION: POSSIBLE FACTOR IN AGEING, The Lancet, vol.333, issue.8639, pp.637-639, 1989.
DOI : 10.1016/S0140-6736(89)92143-0

J. M. Nguyen, B. D. Aranda, M. Sandesara, T. M. Pahor, E. Manini et al., The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high-and low-functioning elderly individuals, Aging Cell, vol.11, pp.801-809, 2012.

M. Sandri, J. Lin, C. Handschin, W. Yang, Z. P. Arany et al., PGC-1?? protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription, Proceedings of the National Academy of Sciences, vol.244, issue.12, pp.16260-16265, 2006.
DOI : 10.1038/nature01667

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637570

D. Sebastián, E. Sorianello, J. Segalés, A. Irazoki, V. Ruiz-bonilla et al., Mfn2 deficiency links age???related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway, The EMBO Journal, vol.35, issue.15, pp.1677-1693, 2016.
DOI : 10.15252/embj.201593084

M. D. Thomas, L. Antonio, L. Politi, E. Schaeffer, S. Clementi et al., Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation, Cell Death Dis, vol.6

R. Semenzato, V. Menabò, G. Costa, P. Civiletto, C. Pesce et al., The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage, Cell Metab, vol.21, pp.834-844, 2015.

P. Masiero, M. Del-piccolo, L. Foretz, R. Scorrano, M. Rudolf et al., Mitochondrial fission and remodelling contributes to muscle atrophy, EMBO J, vol.29, pp.1774-1785, 2010.

A. Richardson, J. A. Mcardle, M. J. Faulkner, and . Jackson, Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity, Aging Cell, vol.5, 2006.

K. Min, A. J. Smuder, O. Kwon, A. N. Kavazis, H. H. Szeto et al., Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy, Journal of Applied Physiology, vol.111, issue.5, pp.1459-1466, 1985.
DOI : 10.1152/japplphysiol.00591.2011

URL : http://jap.physiology.org/content/jap/111/5/1459.full.pdf

E. E. Talbert, A. J. Smuder, K. Min, O. S. Kwon, H. H. Szeto et al., Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant, Journal of Applied Physiology, vol.115, issue.4, pp.529-538, 1985.
DOI : 10.1152/japplphysiol.00471.2013

F. Barbat-artigas, T. Lemieux, J. A. Taivassalo, M. Morais, R. T. Aubertin-leheudre et al., Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.28, pp.1621-1633, 2014.

R. T. Dirksen and S. Reticulum, Sarcoplasmic reticulum???mitochondrial through-space coupling in skeletal muscleThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference????? Muscles as Molecular and Metabolic Machines, and has undergone the Journal???s usual peer review process., Applied Physiology, Nutrition, and Metabolism, vol.34, issue.3, pp.389-395, 2009.
DOI : 10.1139/H09-044

K. Hirschberg, J. Rodger, and A. H. Futerman, The long-chain sphingoid base of sphingolipids is acylated at the cytosolic surface of the endoplasmic reticulum in rat liver, Biochemical Journal, vol.290, issue.3, pp.751-757, 1993.
DOI : 10.1042/bj2900751

J. M. Adams, T. Pratipanawatr, R. Berria, E. Wang, R. A. Defronzo et al., Ceramide content is increased in skeletal muscle from obese insulin-resistant humans, Diabetes, pp.53-78, 2004.
DOI : 10.2337/diabetes.53.1.25

C. R. Gault, L. M. Obeid, and Y. A. Hannun, An Overview of Sphingolipid Metabolism: From Synthesis to Breakdown, Adv. Exp. Med. Biol, pp.688-689, 2010.
DOI : 10.1007/978-1-4419-6741-1_1

. Summers, A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids, J. Biol. Chem, vol.278, 2003.

D. J. Powell, E. Hajduch, G. Kular, and H. S. Hundal, Ceramide Disables 3-Phosphoinositide Binding to the Pleckstrin Homology Domain of Protein Kinase B (PKB)/Akt by a PKC??-Dependent Mechanism, Molecular and Cellular Biology, vol.23, issue.21, pp.7794-7808, 2003.
DOI : 10.1128/MCB.23.21.7794-7808.2003

C. Mitchell and . Schmitz-peiffer, Ceramide accumulation in L6 skeletal muscle cells due to increased activity of ceramide synthase isoforms has opposing effects on insulin action to those caused by palmitate treatment, Diabetologia, vol.56, pp.2697-2701, 2013.

. Peiffer, Saturated-and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors, Endocrinology, vol.151, pp.4187-4196, 2010.

S. D. Lopaschuk, W. Proctor, D. M. Keung, G. D. Muoio, and . Lopaschuk, Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption, Diabetes, vol.59, pp.2453-2464, 2010.

A. B. Thrush, E. Harasim, A. Chabowski, R. Gulli, L. Stefanyk et al., A single prior bout of exercise protects against palmitate-induced insulin resistance despite an increase in total ceramide content, AJP: Regulatory, Integrative and Comparative Physiology, vol.300, issue.5, pp.1200-1208, 2011.
DOI : 10.1152/ajpregu.00091.2010

C. Hetz, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nature Reviews Molecular Cell Biology, vol.22, pp.89-102, 2012.
DOI : 10.1101/gad.1640108

C. Hetz, E. Chevet, and S. A. Oakes, Proteostasis control by the unfolded protein response, Nature Cell Biology, vol.276, issue.7, pp.829-838, 2015.
DOI : 10.1038/nrd3976

URL : https://hal.archives-ouvertes.fr/hal-01175531

M. Wang and R. J. Kaufman, Protein misfolding in the endoplasmic reticulum as a conduit to human disease, Nature, vol.13, issue.7586, pp.326-335, 2016.
DOI : 10.4161/cc.27726

S. Hwang, J. H. Yang, Y. Jeong, Y. D. Kim, X. Li et al., Tanshinone IIA improves endoplasmic reticulum stress-induced insulin resistance through AMP-activated protein kinase, Biochemical and Biophysical Research Communications, vol.430, issue.4, pp.430-2013
DOI : 10.1016/j.bbrc.2012.12.066

T. Ijuin, T. Hosooka, and T. Takenawa, Phosphatidylinositol 3,4,5-Trisphosphate Phosphatase SKIP Links Endoplasmic Reticulum Stress in Skeletal Muscle to Insulin Resistance, Mol. Cell. Biol, vol.36, pp.108-118, 2016.
DOI : 10.1128/mcb.00921-15

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702590

M. F. Musi, L. J. Hirshman, and . Goodyear, Tribbles 3 mediates endoplasmic reticulum stressinduced insulin resistance in skeletal muscle, Nat. Commun, vol.4

E. Yoon, Y. Jeong, and X. Li, Glyceollin improves endoplasmic reticulum stressinduced insulin resistance through CaMKK-AMPK pathway in L6 myotubes, J. Nutr
DOI : 10.1016/j.jnutbio.2012.08.003

J. Rieusset, M. Chauvin, A. Durand, A. Bravard, F. Laugerette et al., Reduction of endoplasmic reticulum stress using chemical chaperones or Grp78 overexpression does not protect muscle cells from palmitate-induced insulin resistance, Biochemical and Biophysical Research Communications, vol.417, issue.1, pp.439-445, 2012.
DOI : 10.1016/j.bbrc.2011.11.135

URL : https://hal.archives-ouvertes.fr/inserm-00839433

. Vázquez-carrera, Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism, Diabetologia, vol.56, pp.1372-1382, 2013.

L. Deldicque, L. Bertrand, A. Patton, M. Francaux, and K. Baar, ER Stress Induces Anabolic Resistance in Muscle Cells through PKB-Induced Blockade of mTORC1, PLoS ONE, vol.297, issue.6, 2011.
DOI : 10.1371/journal.pone.0020993.t001

S. Hwang, X. Li, J. Lee, and H. W. Chang, Improved insulin sensitivity by rapamycin is associated with reduction of mTOR and S6K1 activities in L6 myotubes, Biochemical and Biophysical Research Communications, vol.418, issue.2, pp.402-407, 2012.
DOI : 10.1016/j.bbrc.2012.01.038

E. Panzhinskiy, Y. Hua, B. Culver, J. Ren, and S. Nair, Endoplasmic reticulum stress upregulates protein tyrosine phosphatase 1B and impairs glucose uptake in cultured myotubes, Diabetologia, vol.15, issue.3, pp.598-607, 2013.
DOI : 10.1210/me.15.11.1864

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568946

. Vázquez-carrera, PPAR?/? prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism, Diabetologia, vol.57, pp.2126-2135, 2014.

F. Urano, X. Wang, A. Bertolotti, Y. Zhang, P. Chung et al., Coupling of Stress in the ER to Activation of JNK Protein Kinases by Transmembrane Protein Kinase IRE1, Science, vol.287, issue.5453, pp.287-664, 2000.
DOI : 10.1126/science.287.5453.664

. Häring, Insulin-induced stimulation of JNK and the PI 3-kinase/mTOR pathway leads to phosphorylation of serine 318 of IRS-1 in C2C12 myotubes, Biochem. Biophys. Res

T. Ijuin, N. Hatano, T. Hosooka, and T. Takenawa, Regulation of insulin signaling in skeletal muscle by PIP3 phosphatase, SKIP, and endoplasmic reticulum molecular chaperone glucose-regulated protein 78, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1853, issue.12, pp.1853-3192, 2015.
DOI : 10.1016/j.bbamcr.2015.09.009

G. A. Raciti, C. Iadicicco, L. Ulianich, B. F. Vind, M. Gaster et al., Glucosamineinduced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells, Diabetologia, pp.53-955, 2010.
DOI : 10.1007/s00125-010-1676-1

Y. Jeong, Y. D. Kim, Y. Jung, D. Park, D. Lee et al., Low Molecular Weight Fucoidan Improves Endoplasmic Reticulum Stress-Reduced Insulin Sensitivity through AMP-Activated Protein Kinase Activation in L6 Myotubes and Restores Lipid Homeostasis in a Mouse Model of Type 2 Diabetes, Molecular Pharmacology, vol.84, issue.1, pp.147-157, 2013.
DOI : 10.1124/mol.113.085100

H. J. Kwak, H. Choi, J. Jang, S. K. Park, Y. Bae et al., Bortezomib attenuates palmitic acid-induced ER stress, inflammation and insulin resistance in myotubes via AMPK dependent mechanism, Cellular Signalling, vol.28, issue.8, pp.788-797, 2016.
DOI : 10.1016/j.cellsig.2016.03.015

X. Sun, Q. Wu, and . Xu, A natural compound jaceosidin ameliorates endoplasmic reticulum stress and insulin resistance via upregulation of SERCA2b, Biomed. Pharmacother. Biomedecine Pharmacother, vol.89, 2017.

K. A. Kenner, E. Anyanwu, J. M. Olefsky, and J. Kusari, Protein-tyrosine Phosphatase 1B Is a Negative Regulator of Insulin- and Insulin-like Growth Factor-I-stimulated Signaling, Journal of Biological Chemistry, vol.267, issue.128, p.271, 1996.
DOI : 10.1042/bj2840569

E. Panzhinskiy, J. Ren, and S. Nair, Protein Tyrosine Phosphatase 1B and Insulin Resistance: Role of Endoplasmic Reticulum Stress/Reactive Oxygen Species/Nuclear Factor Kappa B Axis, PLoS ONE, vol.11, issue.10
DOI : 10.1371/journal.pone.0077228.s001

A. Marette, Y. Liu, and G. Sweeney, Skeletal muscle glucose metabolism and inflammation in the development of the metabolic syndrome, Reviews in Endocrine and Metabolic Disorders, vol.53, issue.7, pp.299-305, 2014.
DOI : 10.2337/diabetes.53.7.1643

P. Gurley, R. E. Simpson, P. A. Mcgehee, C. A. Kern, and . Peterson, Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action, Am. J. Physiol. Endocrinol. Metab, vol.296, 2008.

L. Cortez and V. Sim, The therapeutic potential of chemical chaperones in protein folding diseases, Prion, vol.19, issue.2, 2014.
DOI : 10.1371/journal.pone.0084531

S. Liong and M. Lappas, Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women, Molecular and Cellular Endocrinology, vol.425, 2016.
DOI : 10.1016/j.mce.2016.02.016

E. Foufelle and . Hajduch, Endoplasmic reticulum stress does not mediate palmitate-induced insulin resistance in mouse and human muscle cells, Diabetologia, pp.55-2012

L. H. Görgün, G. S. Glimcher, and . Hotamisligil, Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes, Science, vol.306, pp.457-461, 2004.

R. Ye, D. Y. Jung, J. Y. Jun, J. Li, S. Luo et al., Grp78 Heterozygosity Promotes Adaptive Unfolded Protein Response and Attenuates Diet-Induced Obesity and Insulin Resistance, Diabetes, vol.59, issue.1, pp.59-65, 2010.
DOI : 10.2337/db09-0755

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797945

G. S. Görgün and . Hotamisligil, Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes, Science, p.313, 2006.

K. Tamatani, J. Yamagata, Y. Miyagawa, O. Kitao, Y. Hori et al., The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes, Diabetes, pp.54-657, 2005.

S. Park, J. Choi, T. Nam, J. Ku, and K. Jeong, Anti-diabetic effect of 3-hydroxy-2-naphthoic acid, an endoplasmic reticulum stress-reducing chemical chaperone, European Journal of Pharmacology, vol.779
DOI : 10.1016/j.ejphar.2016.03.023

L. Deldicque, K. Van-proeyen, M. Francaux, and P. Hespel, The unfolded protein response in human skeletal muscle is not involved in the onset of glucose tolerance impairment induced by a fat-rich diet, European Journal of Applied Physiology, vol.13, issue.7, pp.1553-1558, 2011.
DOI : 10.1038/sj.cdd.4401840

T. Ogata, S. Machida, Y. Oishi, M. Higuchi, and I. Muraoka, Differential cell death regulation between adult-unloaded and aged rat soleus muscle, Mechanisms of Ageing and Development, vol.130, issue.5, 2009.
DOI : 10.1016/j.mad.2009.02.001

E. Kaufman, T. Kominami, and . Momoi, ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation, Cell Death Differ, vol.14, pp.230-239, 2007.

L. V. Yuzefovych, S. I. Musiyenko, G. L. Wilson, and L. I. Rachek, Mitochondrial DNA Damage and Dysfunction, and Oxidative Stress Are Associated with Endoplasmic Reticulum Stress, Protein Degradation and Apoptosis in High Fat Diet-Induced Insulin Resistance Mice, PLoS ONE, vol.138, issue.1
DOI : 10.1371/journal.pone.0054059.s003

C. Moorwood and E. R. Barton, Caspase-12 ablation preserves muscle function in the mdx mouse, Human Molecular Genetics, vol.23, issue.20, pp.5325-5341, 2014.
DOI : 10.1093/hmg/ddu249

C. A. Fluckey and . Peterson, Nuclear translocation of EndoG at the initiation of disuse muscle atrophy and apoptosis is specific to myonuclei, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.291, 2006.

S. M. Turpin, G. I. Lancaster, I. Darby, M. A. Febbraio, and M. J. Watt, Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance, AJP: Endocrinology and Metabolism, vol.291, issue.6, 2006.
DOI : 10.1152/ajpendo.00095.2006

. Goodpaster, Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide, Diabetologia, vol.54, pp.1147-1156, 2011.

G. I. Konopka, K. S. Shulman, and . Nair, Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults, Diabetes, vol.65, pp.74-84, 2016.

F. G. Toledo, E. V. Menshikova, K. Azuma, Z. Radiková, C. A. Kelley et al., Mitochondrial Capacity in Skeletal Muscle Is Not Stimulated by Weight Loss Despite Increases in Insulin Action and Decreases in Intramyocellular Lipid Content, Diabetes, vol.57, issue.4, pp.987-994, 2008.
DOI : 10.2337/db07-1429

S. Nijhawan, W. Richards, M. F. O-'hea, J. P. Audia, and D. F. Alvarez, Bariatric surgery rapidly improves mitochondrial respiration in morbidly obese patients, Surgical Endoscopy, vol.282, issue.12, pp.4569-4573, 2013.
DOI : 10.1074/jbc.M708182200

E. Muzzin and . Bobbioni-harsch, Upregulation of peroxisome proliferator-activated receptor gamma coactivator gene (PGC1A) during weight loss is related to insulin sensitivity but not to energy expenditure, Diabetologia, vol.50, pp.2348-2355, 2007.

G. Mingrone, M. Manco, M. Calvani, M. Castagneto, D. Naon et al., Could the low level of expression of the gene encoding skeletal muscle mitofusin-2 account for the metabolic inflexibility of obesity?, Diabetologia, vol.279, issue.10, pp.2108-2114, 2005.
DOI : 10.1093/jb/mvg150

M. K. Hesselink, V. Schrauwen-hinderling, and P. Schrauwen, Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus, Nature Reviews Endocrinology, vol.53, issue.11, pp.633-645, 2016.
DOI : 10.2337/diabetes.53.6.1412

C. E. Fealy, A. Mulya, N. Lai, and J. P. Kirwan, Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin-resistant human skeletal muscle, Journal of Applied Physiology, vol.117, issue.3, pp.239-245, 1985.
DOI : 10.1152/japplphysiol.01064.2013

W. Wang, G. Karamanlidis, and R. Tian, Novel targets for mitochondrial medicine, Science Translational Medicine, vol.22, issue.22
DOI : 10.1093/hmg/ddt301

P. Schrauwen, M. Mensink, G. Schaart, E. Moonen-kornips, J. Sels et al., Reduced Skeletal Muscle Uncoupling Protein-3 Content in Prediabetic Subjects and Type 2 Diabetic Patients: Restoration by Rosiglitazone Treatment, The Journal of Clinical Endocrinology & Metabolism, vol.91, issue.4, pp.91-1520, 2006.
DOI : 10.1210/jc.2005-1572

F. Madsbad and . Dela, Opposite effects of pioglitazone and rosiglitazone on mitochondrial respiration in skeletal muscle of patients with type 2 diabetes, Diabetes Obes. Metab, vol.12, pp.806-814, 2010.

. Schrauwen, Muscle Mitochondrial Function, The Journal of Clinical Endocrinology & Metabolism, vol.93, issue.7, pp.2917-2921, 2008.
DOI : 10.1210/jc.2008-0267

C. P. Madiraju, E. Jenkinson, N. Cersosimo, R. A. Musi, and . Defronzo, Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial, Diabetologia, vol.52, pp.723-732, 2009.

S. Timmers, M. K. Hesselink, and P. Schrauwen, Therapeutic potential of resveratrol in obesity and type 2 diabetes: new avenues for health benefits?, Annals of the New York Academy of Sciences, vol.54, issue.Suppl 1, pp.83-89, 2013.
DOI : 10.1002/mnfr.200900437

V. B. Kunz, E. E. Schrauwen-hinderling, J. Blaak, P. Auwerx, and . Schrauwen, Calorie restrictionlike effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans, Cell Metab, vol.14, pp.612-622, 2011.

S. Timmers, M. De-ligt, E. Phielix, T. Van-de-weijer, J. Hansen et al., Resveratrol as Add-on Therapy in Subjects With Well-Controlled Type 2 Diabetes: A Randomized Controlled Trial, Diabetes Care, vol.39, issue.12, pp.2211-221710, 2016.
DOI : 10.2337/dc16-0499

J. D. Patterson, B. Horton, G. S. Mittendorfer, S. Hotamisligil, and . Klein, Tauroursodeoxycholic Acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women, Diabetes, vol.59, pp.1899-1905, 2010.

C. Hetz, E. Chevet, and H. P. Harding, Targeting the unfolded protein response in disease, Nature Reviews Drug Discovery, vol.11, issue.9, pp.703-719, 2013.
DOI : 10.1016/j.ccr.2007.02.015

L. V. Yuzefovych, S. P. Ledoux, G. L. Wilson, and L. I. Rachek, Mitochondrial DNA Damage via Augmented Oxidative Stress Regulates Endoplasmic Reticulum Stress and Autophagy: Crosstalk, Links and Signaling, PLoS ONE, vol.105, issue.12
DOI : 10.1371/journal.pone.0083349.g004

URL : http://doi.org/10.1371/journal.pone.0083349

L. V. Yuzefovych, V. A. Solodushko, G. L. Wilson, and L. I. Rachek, Protection from Palmitate-Induced Mitochondrial DNA Damage Prevents from Mitochondrial Oxidative Stress, Mitochondrial Dysfunction, Apoptosis, and Impaired Insulin Signaling in Rat L6 Skeletal Muscle Cells, Endocrinology, vol.153, issue.1, pp.92-1002011, 2012.
DOI : 10.1210/en.2011-1442

K. Vannuvel, P. Renard, M. Raes, and T. Arnould, Functional and morphological impact of ER stress on mitochondria, Journal of Cellular Physiology, vol.6, issue.9, pp.1802-1818, 2013.
DOI : 10.4161/auto.6.5.12242

C. Giorgi, S. Missiroli, S. Patergnani, J. Duszynski, M. R. Wieckowski et al., Mitochondria-Associated Membranes: Composition, Molecular Mechanisms, and Physiopathological Implications, Antioxidants & Redox Signaling, vol.22, issue.12, pp.995-1019, 2015.
DOI : 10.1089/ars.2014.6223

C. López-crisosto, R. Bravo-sagua, M. Rodriguez-peña, C. Mera, P. F. Castro et al., ER-to-mitochondria miscommunication and metabolic diseases, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1852, issue.10, pp.1852-2015
DOI : 10.1016/j.bbadis.2015.07.011

P. Theurey and J. Rieusset, Mitochondria-Associated Membranes Response to Nutrient Availability and Role in Metabolic Diseases, Trends in Endocrinology & Metabolism, vol.28, issue.1, pp.32-45, 2017.
DOI : 10.1016/j.tem.2016.09.002

M. Alam, H. Le-romancer, J. Vidal, and . Rieusset, Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver, J. Mol. Cell Biol, vol.8, pp.129-143, 2016.

A. Durand, G. Bravard, B. Teixeira, M. Bartosch, P. Michelet et al., Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance, Diabetologia, pp.59-614, 2016.

B. Zoulim, M. Bartosch, H. Ovize, J. Vidal, and . Rieusset, Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance, Diabetes, vol.63, pp.3279-3294, 2014.

A. P. Arruda, B. M. Pers, G. Parlakgül, E. Güney, K. Inouye et al., Chronic enrichment of hepatic endoplasmic reticulum???mitochondria contact leads to mitochondrial dysfunction in obesity, Nature Medicine, vol.100, issue.12, pp.1427-1435, 2014.
DOI : 10.1172/JCI119711

A. Sancho, M. I. Díaz-ramos, D. Hernández-alvarez, C. Sebastián, M. Mauvezin et al., Mfn2 modulates the UPR and mitochondrial function via repression of PERK, EMBO J, vol.32, pp.2348-2361, 2013.

A. R. Konopka, A. Asante, I. R. Lanza, M. M. Robinson, M. L. Johnson et al., Emissions in Obese Women Are Restored to a Lean Phenotype With Aerobic Exercise Training, Diabetes, vol.64, issue.6, pp.2104-211510, 2015.
DOI : 10.2337/db14-1701

M. E. Osler, T. Fritz, K. Caidahl, A. Krook, J. R. Zierath et al., Wallberg-Henriksson, Changes in gene expression in responders and nonresponders to a low-intensity walking intervention, Diabetes Care, pp.1154-1160, 2015.

M. K. Moro, S. R. Hesselink, . Smith, and . Schrauwen, Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes, J. Clin. Endocrinol. Metab, vol.98, pp.1694-1702102012, 1210.

K. Fernström and . Sahlin, Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes, Diabetologia, vol.53, 1976.

E. Mensink, T. Phielix, J. Van-de-weijer, P. Sels, M. K. Schrauwen et al., Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity, Diabetes, pp.59-572, 2010.

I. Pagel-langenickel, D. R. Schwartz, R. A. Arena, D. C. Minerbi, D. T. Johnson et al., A discordance in rosiglitazone mediated insulin sensitization and skeletal muscle mitochondrial content/activity in Type 2 diabetes mellitus, AJP: Heart and Circulatory Physiology, vol.293, issue.5, pp.2659-2666, 2007.
DOI : 10.1152/ajpheart.00782.2007