D. Avila, H. Melo, R. C. Parreira, G. G. Werneck-barroso, E. Castro-faria-neto et al., Mycobacterium bovis bacillus Calmette-Guérin induces TLR2- mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo, P.T, 2006.

D. Avila, H. Freire-de-lima, C. G. Roque, N. R. Teixeira, L. Barja-fidalgo et al., Host cell lipid bodies triggered by Trypanosoma cruzi infection and enhanced by the uptake of, Cell Microbiol, vol.19, p.12688, 2011.

W. J. Beil, P. F. Weller, M. A. Peppercorn, S. J. Galli, and A. M. Dvorak, Ultrastructural immunogold localization of subcellular sites of TNF-alpha in colonic Crohn's disease, J Leukoc Biol, vol.58, pp.284-298, 1995.

P. E. Bickel, J. T. Tansey, and M. A. Welte, PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.6, pp.419-440, 2009.
DOI : 10.1016/j.bbalip.2009.04.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782626

L. Bougnères, J. Helft, S. Tiwari, P. Vargas, B. H. Chang et al., A Role for Lipid Bodies in the Cross-presentation of Phagocytosed Antigens by MHC Class I in Dendritic Cells, Immunity, vol.31, issue.2, pp.232-244, 2009.
DOI : 10.1016/j.immuni.2009.06.022

A. Boyer, A. Dumans, E. Beaumont, L. Etienne, P. Roingeard et al., The Association of Hepatitis C Virus Glycoproteins with Apolipoproteins E and B Early in Assembly Is Conserved in Lipoviral Particles, Journal of Biological Chemistry, vol.263, issue.27, pp.18904-18913, 2014.
DOI : 10.1016/j.virol.2009.08.037

P. T. Bozza, R. C. Melo, and C. Bandeira-melo, Leukocyte lipid bodies regulation and function: Contribution to allergy and host defense, Pharmacology & Therapeutics, vol.113, issue.1, pp.30-49, 2007.
DOI : 10.1016/j.pharmthera.2006.06.006

G. Camus, E. Herker, A. A. Modi, J. T. Haas, H. R. Ramage et al., Diacylglycerol Acyltransferase-1 Localizes Hepatitis C Virus NS5A Protein to Lipid Droplets and Enhances NS5A Interaction with the Viral Capsid Core, Journal of Biological Chemistry, vol.272, issue.14, pp.9915-9923, 2013.
DOI : 10.1111/j.1742-4658.2012.08684.x

URL : http://www.jbc.org/content/288/14/9915.full.pdf

F. Cao, A. Castrillo, P. Tontonoz, F. Re, and G. I. Byrne, Chlamydia pneumoniae-Induced Macrophage Foam Cell Formation Is Mediated by Toll-Like Receptor 2, Infection and Immunity, vol.75, issue.2, pp.753-759, 2007.
DOI : 10.1128/IAI.01386-06

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1828523

W. Cheung, M. Gill, A. Esposito, C. F. Kaminski, N. Courousse et al., Rotaviruses Associate with Cellular Lipid Droplet Components To Replicate in Viroplasms, and Compounds Disrupting or Blocking Lipid Droplets Inhibit Viroplasm Formation and Viral Replication, Journal of Virology, vol.84, issue.13, pp.6782-6798, 2010.
DOI : 10.1128/JVI.01757-09

URL : https://hal.archives-ouvertes.fr/hal-00593236

J. L. Cocchiaro, Y. Kumar, E. R. Fischer, T. Hackstadt, and R. H. Valdivia, Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole, Proceedings of the National Academy of Sciences, vol.279, issue.22, pp.9379-9384, 2008.
DOI : 10.1074/jbc.M310546200

C. M. Coffey, A. Sheh, I. S. Kim, K. Chandran, M. L. Nibert et al., Reovirus Outer Capsid Protein ??1 Induces Apoptosis and Associates with Lipid Droplets, Endoplasmic Reticulum, and Mitochondria, Journal of Virology, vol.80, issue.17, pp.8422-8438, 2006.
DOI : 10.1128/JVI.02601-05

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1563861

J. Daniel, H. Maamar, C. Deb, T. D. Sirakova, and P. E. Kolattukudy, Mycobacterium tuberculosis Uses Host Triacylglycerol to Accumulate Lipid Droplets and Acquires a Dormancy-Like Phenotype in Lipid-Loaded Macrophages, PLoS Pathogens, vol.11, issue.259, p.1002093, 2011.
DOI : 10.1371/journal.ppat.1002093.t003

C. Deb, J. Daniel, T. D. Sirakova, B. Abomoelak, V. S. Dubey et al., A Novel Lipase Belonging to the Hormone-sensitive Lipase Family Induced under Starvation to Utilize Stored Triacylglycerol in Mycobacterium tuberculosis, Journal of Biological Chemistry, vol.281, issue.7, pp.3866-3875, 2006.
DOI : 10.1074/jbc.M505556200

A. F. Faustino, F. A. Carvalho, I. C. Martins, M. A. Castanho, R. Mohana-borges et al., Dengue virus capsid protein interacts specifically with very low-density lipoproteins, Nanomedicine: Nanotechnology, Biology and Medicine, vol.10, issue.1, pp.247-255, 2014.
DOI : 10.1016/j.nano.2013.06.004

URL : http://doi.org/10.1016/j.bpj.2013.11.2194

P. Ferraris, E. Beaumont, R. Uzbekov, D. Brand, J. Gaillard et al., Sequential biogenesis of host cell membrane rearrangements induced by hepatitis C virus infection, Cellular and Molecular Life Sciences, vol.19, issue.7, pp.1297-306, 2013.
DOI : 10.1016/j.tim.2010.11.005

URL : https://hal.archives-ouvertes.fr/inserm-00805157

Q. Gao and J. M. Goodman, The lipid droplet???a well-connected organelle, Frontiers in Cell and Developmental Biology, vol.3, p.49, 2015.
DOI : 10.1007/s13238-012-2025-6

E. R. Gaunt, Q. Zhang, W. Cheung, M. J. Wakelam, A. M. Lever et al., Lipidome analysis of rotavirus-infected cells confirms the close interaction of lipid droplets with viroplasms, Journal of General Virology, vol.94, issue.Pt_7, pp.1576-1586
DOI : 10.1099/vir.0.049635-0

E. R. Gaunt, W. Cheung, J. E. Richards, A. Lever, and U. Desselberger, Inhibition of rotavirus replication by downregulation of fatty acid synthesis, Journal of General Virology, vol.94, issue.Pt_6, pp.1310-1317
DOI : 10.1099/vir.0.050146-0

A. F. Gomes, K. G. Magalhães, R. M. Rodrigues, L. De-carvalho, R. Molinaro et al., Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2, Parasites & Vectors, vol.7, issue.1, p.47, 2014.
DOI : 10.1128/IAI.69.2.1044-1052.2001

N. S. Heaton, R. Perera, K. L. Berger, S. Khadka, D. J. Lacount et al., Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of, Cell Microbiol, vol.19, p.12688, 2010.

K. J. Helbig, N. S. Eyre, E. Yip, S. Narayana, K. Li et al., The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A, Hepatology, vol.281, issue.5, pp.1506-1517, 2011.
DOI : 10.1074/jbc.M604516200

K. J. Helbig, J. M. Carr, J. K. Calvert, S. Wati, J. N. Clarke et al., Viperin Is Induced following Dengue Virus Type-2 (DENV-2) Infection and Has Anti-viral Actions Requiring the C-terminal End of Viperin, PLoS Neglected Tropical Diseases, vol.107, issue.Pt 3, p.2178, 2013.
DOI : 10.1371/journal.pntd.0002178.s001

E. Herker, C. Harris, C. Hernandez, A. Carpentier, K. Kaehlcke et al., Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1, Nature Medicine, vol.16, issue.11, pp.1295-1298, 2010.
DOI : 10.1038/nm.2238

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431199

E. R. Hinson and P. Cresswell, The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic ??-helix, Proceedings of the National Academy of Sciences, vol.113, issue.15, pp.20452-20457
DOI : 10.1182/blood-2008-07-171942

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778571

B. D. Hodges and C. C. Wu, Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets, Journal of Lipid Research, vol.109, issue.2, pp.262-273, 2010.
DOI : 10.1091/mbc.E05-07-0659

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803228

C. Hourioux, M. Ait-goughoulte, R. Patient, D. Fouquenet, F. Arcanger-doudet et al., Core protein domains involved in hepatitis C virus-like particle assembly and budding at the endoplasmic reticulum membrane, Cellular Microbiology, vol.72, issue.6, pp.1014-1027, 2007.
DOI : 10.1073/pnas.0503596102

URL : https://hal.archives-ouvertes.fr/inserm-00137282

C. Hourioux, R. Patient, A. Morin, E. Blanchard, A. Moreau et al., The genotype 3-specific hepatitis C virus core protein residue phenylalanine 164 increases steatosis in an in vitro cellular model, Gut, vol.56, issue.9, pp.1302-1308, 2007.
DOI : 10.1136/gut.2006.108647

URL : https://hal.archives-ouvertes.fr/inserm-00167783

J. P. Hunn, C. G. Feng, A. Sher, H. , and J. C. , The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens, Mammalian Genome, vol.104, issue.3, pp.43-54, 2011.
DOI : 10.1371/journal.ppat.1000288

A. R. Kimmel, D. L. Brasaemle, M. Mc-andrews-hill, C. Sztalryd, and C. Londos, Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins: TABLE 1., Journal of Lipid Research, vol.258, issue.3, pp.468-471, 2010.
DOI : 10.1242/jcs.012013

Y. Kumar, J. Cocchiaro, and R. H. Valdivia, The Obligate Intracellular Pathogen Chlamydia trachomatis Targets Host Lipid Droplets, Current Biology, vol.16, issue.16, pp.1646-1651, 2006.
DOI : 10.1016/j.cub.2006.06.060

URL : http://doi.org/10.1016/j.cub.2006.06.060

H. Lecoeur, E. Giraud, M. C. Prévost, G. Milon, L. et al., Reprogramming Neutral Lipid Metabolism in Mouse Dendritic Leucocytes Hosting Live Leishmania amazonensis Amastigotes, PLoS Neglected Tropical Diseases, vol.358, issue.6, p.2276, 2013.
DOI : 10.1371/journal.pntd.0002276.s004

URL : http://doi.org/10.1371/journal.pntd.0002276

K. A. Mattos, F. A. Lara, V. G. Oliveira, L. S. Rodrigues, H. Avila et al., Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes, Cellular Microbiology, vol.9, issue.2, pp.259-273, 2011.
DOI : 10.1002/pmic.200800584

J. Mclauchlan, M. K. Lemberg, G. Hope, and B. Martoglio, Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets, The EMBO Journal, vol.21, issue.15, pp.3980-3988, 2002.
DOI : 10.1093/emboj/cdf414

R. C. Melo, H. Avila, D. L. Fabrino, P. E. Almeida, and P. T. Bozza, Macrophage lipid body induction by Chagas disease in vivo: putative intracellular domains for eicosanoid formation during infection, Tissue and Cell, vol.35, issue.1, pp.59-67, 2003.
DOI : 10.1016/S0040-8166(02)00105-2

R. C. Melo, D. L. Fabrino, F. F. Dias, and G. G. Parreira, Lipid bodies: structural markers of inflammatory macrophages in innate immunity, Inflammation Research, vol.55, issue.8, pp.342-348, 2006.
DOI : 10.1007/s00011-006-5205-0

R. C. Melo and A. M. Dvorak, Lipid Body???Phagosome Interaction in Macrophages during Infectious Diseases: Host Defense or Pathogen Survival Strategy?, PLoS Pathogens, vol.54, issue.7, p.1002729, 2012.
DOI : 10.1371/journal.ppat.1002729.t001

URL : http://doi.org/10.1371/journal.ppat.1002729

R. C. Melo and P. F. Weller, Lipid droplets in leukocytes: Organelles linked to inflammatory responses, Experimental Cell Research, vol.340, issue.2, pp.193-197, 2016.
DOI : 10.1016/j.yexcr.2015.10.028

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744558

Y. Miyanari, K. Atsuzawa, N. Usuda, K. Watashi, T. Hishiki et al., The lipid droplet is an important organelle for hepatitis C virus production, Nature Cell Biology, vol.71, issue.9, pp.1089-1097, 2007.
DOI : 10.1007/s00418-005-0061-5

H. W. Murray, M. Mitchell-flack, G. A. Taylor, M. , and X. , IFN-??-induced macrophage antileishmanial mechanisms in mice: A role for immunity-related GTPases, Irgm1 and Irgm3, in Leishmania donovani infection in the liver, Experimental Parasitology, vol.157, pp.103-109, 2015.
DOI : 10.1016/j.exppara.2015.07.005

P. Pacheco, F. A. Bozza, R. N. Gomes, M. Bozza, P. F. Weller et al., Lipopolysaccharide-Induced Leukocyte Lipid Body Formation In Vivo: Innate Immunity Elicited Intracellular Loci Involved in Eicosanoid Metabolism, The Journal of Immunology, vol.169, issue.11, pp.6498-6506, 2002.
DOI : 10.4049/jimmunol.169.11.6498

A. Pol, S. P. Gross, and R. G. Parton, Biogenesis of the multifunctional lipid droplet: Lipids, proteins, and sites, The Journal of Cell Biology, vol.25, issue.5, pp.635-646, 2014.
DOI : 10.1046/j.1432-1327.2000.01103.x

I. Rabhi, S. Rabhi, R. Ben-othman, A. Rasche, A. Daskalaki et al., Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View, PLoS Neglected Tropical Diseases, vol.6, issue.8, p.1763, 2012.
DOI : 10.1371/journal.pntd.0001763.s003

URL : https://hal.archives-ouvertes.fr/pasteur-00726648

R. G. Rank, J. Whittimore, A. K. Bowlin, and P. B. Wyrick, In Vivo Ultrastructural Analysis of the Intimate Relationship between Polymorphonuclear Leukocytes and the Chlamydial Developmental Cycle, Infection and Immunity, vol.79, issue.8, pp.3291-3301, 2011.
DOI : 10.1128/IAI.00200-11

P. Roingeard and C. Hourioux, Hepatitis C virus core protein, lipid droplets and steatosis, Journal of Viral Hepatitis, vol.87, issue.3, pp.157-164, 2008.
DOI : 10.1016/j.jhep.2006.10.019

URL : https://hal.archives-ouvertes.fr/inserm-00211731

P. Roingeard, C. Hourioux, E. Blanchard, and G. Prensier, Hepatitis C virus budding at lipid droplet-associated ER membrane visualized by 3D electron microscopy, Histochemistry and Cell Biology, vol.102, issue.3, pp.561-566, 2008.
DOI : 10.1007/s00418-008-0447-2

URL : https://hal.archives-ouvertes.fr/inserm-00285203

P. Roingeard, Hepatitis C virus diversity and hepatic steatosis, Journal of Viral Hepatitis, vol.130, issue.2, pp.77-84, 2013.
DOI : 10.1053/j.gastro.2006.03.014

URL : https://hal.archives-ouvertes.fr/inserm-00805585

D. G. Russell, P. J. Cardona, M. J. Kim, S. Allain, A. et al., Foamy macrophages and the progression of the human tuberculosis granuloma, Nature Immunology, vol.65, issue.9, pp.943-948, 2009.
DOI : 10.1038/ni.1758

S. Salloum, H. Wang, C. Ferguson, R. G. Parton, and T. A. , Rab18 Binds to Hepatitis C Virus NS5A and Promotes Interaction between Sites of Viral Replication and Lipid Droplets, PLoS Pathogens, vol.82, issue.8, p.1003513, 2013.
DOI : 10.1371/journal.ppat.1003513.s007

M. M. Samsa, J. A. Mondotte, N. G. Iglesias, I. Assunção-miranda, G. Barbosa-lima et al., Dengue Virus Capsid Protein Usurps Lipid Droplets for Viral Particle Formation, PLoS Pathogens, vol.230, issue.7, p.1000632, 2009.
DOI : 10.1371/journal.ppat.1000632.t001

URL : http://doi.org/10.1371/journal.ppat.1000632

W. C. Tang, R. J. Lin, C. L. Liao, L. , and Y. L. , Rab18 Facilitates Dengue Virus Infection by Targeting Fatty Acid Synthase to Sites of Viral Replication, Journal of Virology, vol.88, issue.12, pp.6793-6804, 2014.
DOI : 10.1128/JVI.00045-14

T. S. Teng, S. S. Foo, D. Simamarta, F. M. Lum, T. H. Teo et al., Viperin restricts chikungunya virus replication and pathology, Journal of Clinical Investigation, vol.122, issue.12, pp.4447-4460, 2012.
DOI : 10.1172/JCI63120DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533538

A. R. Thiam, R. V. Farese, W. Jr, and T. C. , The biophysics and cell biology of lipid droplets, Nature Reviews Molecular Cell Biology, vol.584, issue.12, pp.775-786, 2013.
DOI : 10.1016/j.febslet.2010.03.022

S. D. Trask, S. M. Mcdonald, and J. T. Patton, Structural insights into the coupling of virion assembly and rotavirus replication, Nature Reviews Microbiology, vol.21, issue.3, pp.165-177, 2012.
DOI : 10.1093/emboj/21.1.1

G. Unterstab, R. Gosert, D. Leuenberger, P. Lorentz, C. H. Rinaldo et al., The polyomavirus BK agnoprotein co-localizes with lipid droplets, Virology, vol.399, issue.2, pp.322-331, 2010.
DOI : 10.1016/j.virol.2010.01.011

URL : http://doi.org/10.1016/j.virol.2010.01.011

D. A. Vogt, G. Camus, E. Herker, B. R. Webster, C. L. Tsou et al., Lipid Droplet-Binding Protein TIP47 Regulates Hepatitis C Virus RNA Replication through Interaction with the Viral NS5A Protein, PLoS Pathogens, vol.272, issue.2, p.1003302, 2013.
DOI : 10.1371/journal.ppat.1003302.s003

URL : http://doi.org/10.1371/journal.ppat.1003302

M. A. Welte, Expanding Roles for Lipid Droplets, Current Biology, vol.25, issue.11, pp.470-481, 2015.
DOI : 10.1016/j.cub.2015.04.004

F. Wilfling, H. Wang, J. T. Haas, N. Krahmer, T. J. Gould et al., Triacylglycerol Synthesis Enzymes Mediate Lipid Droplet Growth by Relocalizing from the ER to Lipid Droplets, Developmental Cell, vol.24, issue.4, pp.384-399, 2013.
DOI : 10.1016/j.devcel.2013.01.013

URL : http://doi.org/10.1016/j.devcel.2013.01.013

R. Zechner, R. Zimmermann, T. O. Eichmann, S. D. Kohlwein, G. Haemmerle et al., FAT SIGNALS - Lipases and Lipolysis in Lipid Metabolism and Signaling, Cell Metabolism, vol.15, issue.3, pp.279-291
DOI : 10.1016/j.cmet.2011.12.018

URL : http://doi.org/10.1016/j.cmet.2011.12.018

. Fig, 1. Lipid droplets as platforms for viral assembly and sources of nutrients for intracellular parasites