T. Cloughesy, W. Cavenee, and P. Mischel, Glioblastoma: From Molecular Pathology to Targeted Treatment, Annual Review of Pathology: Mechanisms of Disease, vol.9, issue.1, pp.1-25, 2014.
DOI : 10.1146/annurev-pathol-011110-130324

R. Stupp, W. Mason, and M. Van-den-bent, Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.987-996, 2005.
DOI : 10.1056/NEJMoa043330

X. Yuan, J. Curtin, and Y. Xiong, Isolation of cancer stem cells from adult glioblastoma multiforme, Oncogene, vol.23, issue.58, pp.9392-9400, 2004.
DOI : 10.1038/sj.onc.1208311

J. Lathia, S. Mack, and E. Mulkearns-hubert, Cancer stem cells in glioblastoma, Genes & Development, vol.29, issue.12, pp.1203-1217, 2015.
DOI : 10.1101/gad.261982.115

A. Kreso and J. Dick, Evolution of the Cancer Stem Cell Model, Cell Stem Cell, vol.14, issue.3, pp.275-291, 2014.
DOI : 10.1016/j.stem.2014.02.006

C. Calabrese, H. Poppleton, and M. Kocak, A Perivascular Niche for Brain Tumor Stem Cells, Cancer Cell, vol.11, issue.1, pp.69-82, 2007.
DOI : 10.1016/j.ccr.2006.11.020

E. Galan-moya, L. Guelte, A. Fernandes, and E. , Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway, EMBO reports, vol.19, issue.5, pp.470-476, 2011.
DOI : 10.1038/sj.onc.1208311

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090013

E. Galan-moya, L. Treps, and L. Oliver, Endothelial Secreted Factors Suppress Mitogen Deprivation-Induced Autophagy and Apoptosis in Glioblastoma Stem-Like Cells, PLoS ONE, vol.13, issue.3, p.93505, 2014.
DOI : 10.1371/journal.pone.0093505.g004

URL : https://hal.archives-ouvertes.fr/inserm-01075054

E. Fessler, T. Borovski, and J. Medema, Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF, Molecular Cancer, vol.9, issue.1, p.157, 2015.
DOI : 10.1016/j.ccr.2006.02.019

O. Chinot, W. Wick, and W. Mason, Bevacizumab plus Radiotherapy???Temozolomide for Newly Diagnosed Glioblastoma, New England Journal of Medicine, vol.370, issue.8, pp.709-722, 2014.
DOI : 10.1056/NEJMoa1308345

URL : http://umu.diva-portal.org/smash/get/diva2:725879/FULLTEXT01

M. Gilbert, J. Dignam, and T. Armstrong, A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma, New England Journal of Medicine, vol.370, issue.8, pp.699-708, 2014.
DOI : 10.1056/NEJMoa1308573

T. Batchelor, D. Reardon, D. Groot, and J. , Antiangiogenic Therapy for Glioblastoma: Current Status and Future Prospects, Clinical Cancer Research, vol.20, issue.22, pp.5612-5619, 2014.
DOI : 10.1158/1078-0432.CCR-14-0834

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234180

S. Bao, Q. Wu, and S. Sathornsumetee, Stem Cell???like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor, Cancer Research, vol.66, issue.16, pp.7843-7848, 2006.
DOI : 10.1158/0008-5472.CAN-06-1010

C. Folkins, Y. Shaked, and S. Man, Glioma Tumor Stem-Like Cells Promote Tumor Angiogenesis and Vasculogenesis via Vascular Endothelial Growth Factor and Stromal-Derived Factor 1, Cancer Research, vol.69, issue.18, pp.7243-7251, 2009.
DOI : 10.1158/0008-5472.CAN-09-0167

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409689

L. Treps, S. Edmond, and E. Harford-wright, Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma, Oncogene, vol.119, issue.20, pp.2615-2623, 2016.
DOI : 10.1038/ncomms7999

URL : https://hal.archives-ouvertes.fr/inserm-01406334

L. Guelte, A. Galan-moya, E. Dwyer, and J. , Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation, Journal of Cell Science, vol.125, issue.17, pp.4137-4146, 2012.
DOI : 10.1242/jcs.108282

URL : https://hal.archives-ouvertes.fr/hal-01541442

M. Yanez-mo, P. Siljander, and Z. Andreu, Biological properties of extracellular vesicles and their physiological functions, Journal of Extracellular Vesicles, vol.40, issue.1, p.27066, 2015.
DOI : 10.1093/nar/gks658

M. Colombo, G. Raposo, and C. Théry, Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles, Annual Review of Cell and Developmental Biology, vol.30, issue.1, pp.255-289, 2014.
DOI : 10.1146/annurev-cellbio-101512-122326

A. Bronisz, J. Godlewski, and E. Chiocca, Extracellular Vesicles and MicroRNAs: Their Role in Tumorigenicity and Therapy for Brain Tumors, Cellular and Molecular Neurobiology, vol.19, issue.3, pp.361-376, 2016.
DOI : 10.1038/mt.2011.164

D. Chistiakov and V. Chekhonin, Extracellular vesicles shed by glioma cells: pathogenic role and clinical value, Tumor Biology, vol.119, issue.2, pp.8425-8438, 2014.
DOI : 10.3171/2013.3.JNS122226

G. Andre-gregoire and J. Gavard, Spitting out the demons: Extracellular vesicles in glioblastoma, Cell Adhesion & Migration, vol.6, issue.2, pp.1-9, 2016.
DOI : 10.1093/neuonc/nov170

URL : https://hal.archives-ouvertes.fr/inserm-01382405

J. Skog, T. Würdinger, and S. Van-rijn, Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nature Cell Biology, vol.94, issue.12, pp.1470-1476, 2008.
DOI : 10.1371/journal.pone.0000571

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423894

P. Kucharzewska, H. Christianson, and J. Welch, Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development, Proceedings of the National Academy of Sciences, vol.12, issue.1, pp.7312-7317, 2013.
DOI : 10.1038/ncb2000

H. Bergström, S. Hägglöf, C. Thysell, and E. , Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth, Scientific Reports, vol.30, issue.1, p.31805, 2016.
DOI : 10.1093/nar/30.9.e36

A. Chow, W. Zhou, and L. Liu, Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-?B. Sci Rep, p.5750, 2015.

N. Yang, S. Li, and G. Li, The role of extracellular vesicles in mediating progression, metastasis and potential treatment of hepatocellular carcinoma, Oncotarget, vol.8, pp.3683-3695, 2017.
DOI : 10.18632/oncotarget.12465

M. Tkach and C. Théry, Communication by Extracellular Vesicles: Where We Are and Where We Need to Go, Cell, vol.164, issue.6, pp.1226-1232, 2016.
DOI : 10.1016/j.cell.2016.01.043

K. Witwer, E. Buzas, and L. Bemis, Standardization of sample collection, isolation and analysis methods in extracellular vesicle research, Journal of Extracellular Vesicles, vol.117, issue.1, 2013.
DOI : 10.1182/blood-2010-11-318691

Y. Yoshioka, Y. Konishi, and N. Kosaka, Comparative marker analysis of extracellular vesicles in different human cancer types, Journal of Extracellular Vesicles, vol.57, issue.1, 2013.
DOI : 10.1016/j.lungcan.2007.01.032

B. Weksler, E. Subileau, and N. Perrière, Blood-brain barrier-specific properties of a human adult brain endothelial cell line, The FASEB Journal, vol.19, issue.13, pp.1872-1874, 2005.
DOI : 10.1096/fj.04-3458fje

A. Goodwin, In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents, Microvascular Research, vol.74, issue.2-3, pp.2-3172, 2007.
DOI : 10.1016/j.mvr.2007.05.006

L. Guelte, A. Dwyer, J. Gavard, and J. , Jumping the barrier: VE-cadherin, VEGF and other angiogenic modifiers in cancer, Biology of the Cell, vol.63, issue.12, pp.593-605, 2011.
DOI : 10.1158/1078-0432.CCR-10-0839

L. Muller, S. Muller-haegele, and M. Mitsuhashi, Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival, OncoImmunology, vol.52, issue.6, p.1008347, 2015.
DOI : 10.1373/clinchem.2013.213850

K. Vallabhaneni, P. Penfornis, and S. Dhule, Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites, Oncotarget, vol.6, issue.7, pp.4953-4967, 2015.
DOI : 10.18632/oncotarget.3211

URL : https://hal.archives-ouvertes.fr/inserm-01179843

L. Cicero, A. Majkowska, I. Nagase, and H. , Microvesicles shed by oligodendroglioma cells and rheumatoid synovial fibroblasts contain aggrecanase activity, Matrix Biology, vol.31, issue.4, pp.229-233, 2012.
DOI : 10.1016/j.matbio.2012.02.005

H. Dvorak, L. Brown, and M. Detmar, Vascular Permeability Factor/Vascular Endothelial Growth Factor and the Significance of Microvascular Hyperpermeability in Angiogenesis
DOI : 10.1007/978-3-642-59953-8_6

J. Nagy, L. Benjamin, and H. Zeng, Vascular permeability, vascular hyperpermeability and angiogenesis, Angiogenesis, vol.237, issue.Pt 6, pp.109-119, 2008.
DOI : 10.1016/S0002-9440(10)64337-4

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480489

T. Fong, L. Shawver, and L. Sun, SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types, Cancer Res, vol.59, issue.1, pp.99-106, 1999.

S. Faivre, C. Delbaldo, and K. Vera, Safety, Pharmacokinetic, and Antitumor Activity of SU11248, a Novel Oral Multitarget Tyrosine Kinase Inhibitor, in Patients With Cancer, Journal of Clinical Oncology, vol.24, issue.1, pp.25-35, 2006.
DOI : 10.1200/JCO.2005.02.2194

S. Zhang, K. Leung, and C. Mccrudden, The Prognostic Significance of Combining VEGFA, FLT1 and KDR mRNA Expressions in Brain Tumors, Journal of Cancer, vol.6, issue.9, pp.812-818, 2015.
DOI : 10.7150/jca.11975

P. Hamerlik, J. Lathia, and R. Rasmussen, Autocrine VEGF???VEGFR2???Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth, The Journal of Experimental Medicine, vol.63, issue.3, pp.507-520, 2012.
DOI : 10.1038/sj.cr.7310126

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302235/pdf

R. Bhattacharya, X. Ye, and R. Wang, Intracrine VEGF Signaling Mediates the Activity of Prosurvival Pathways in Human Colorectal Cancer Cells, Cancer Research, vol.76, issue.10, pp.3014-3024, 2016.
DOI : 10.1158/0008-5472.CAN-15-1605

B. Lichtenberger, P. Tan, and H. Niederleithner, Autocrine VEGF Signaling Synergizes with EGFR in Tumor Cells to Promote Epithelial Cancer Development, Cell, vol.140, issue.2, pp.268-279, 2010.
DOI : 10.1016/j.cell.2009.12.046

D. Schoeffner, S. Matheny, and T. Akahane, VEGF contributes to mammary tumor growth in transgenic mice through paracrine and autocrine mechanisms, Laboratory Investigation, vol.349, issue.5, pp.608-623, 2005.
DOI : 10.1128/MCB.12.3.954

R. Bachelder, A. Crago, and J. Chung, Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells, Cancer Res, vol.61, issue.15, pp.5736-5740, 2001.

Y. Cao, E. Guangqi, and E. Wang, VEGF Exerts an Angiogenesis-Independent Function in Cancer Cells to Promote Their Malignant Progression, Cancer Research, vol.72, issue.16, pp.3912-3918, 2012.
DOI : 10.1158/0008-5472.CAN-11-4058

R. Zhou, J. Curry, and L. Roy, A novel association of neuropilin-1 and MUC1 in pancreatic ductal adenocarcinoma: role in induction of VEGF signaling and angiogenesis, Oncogene, vol.265, issue.43, pp.5608-5618, 2016.
DOI : 10.3390/cancers3044102

H. Goel and A. Mercurio, VEGF targets the tumour cell, Nature Reviews Cancer, vol.73, issue.12, pp.871-882, 2013.
DOI : 10.1158/0008-5472.CAN-13-0529

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011842

N. Garcia-romero, J. Carrion-navarro, and S. Esteban-rubio, DNA sequences within glioma-derived extracellular vesicles can cross the intact Blood-Brain Barrier and be detected in peripheral blood of patients, Oncotarget, 2016.
DOI : 10.18632/oncotarget.13635

H. Shao, J. Chung, and L. Balaj, Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy, Nature Medicine, vol.52, issue.12, pp.1835-1840, 2012.
DOI : 10.1002/anie.201100101

M. Setti, D. Osti, and C. Richichi, Extracellular vesicle-mediated transfer of CLIC1 protein is a novel mechanism for the regulation of glioblastoma growth, Oncotarget, vol.6, issue.31, pp.31413-31427, 2015.
DOI : 10.18632/oncotarget.5105

I. Giusti, D. Monache, S. , D. Francesco, and M. , From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis, Tumor Biology, vol.453, issue.3, pp.12743-12753, 2016.
DOI : 10.1016/j.bbrc.2014.09.068

G. Taraboletti, D. Ascenzo, S. Giusti, and I. , Bioavailability of VEGF in Tumor-Shed Vesicles Depends on Vesicle Burst Induced by Acidic pH, Neoplasia, vol.8, issue.2, pp.96-103, 2006.
DOI : 10.1593/neo.05583

I. Parolini, C. Federici, and C. Raggi, Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells, Journal of Biological Chemistry, vol.265, issue.49, pp.34211-34222, 2009.
DOI : 10.1016/j.tcb.2008.03.002

C. Cossetti, N. Iraci, and T. Mercer, Extracellular Vesicles from Neural Stem Cells Transfer IFN-?? via Ifngr1 to Activate Stat1 Signaling in Target Cells, Molecular Cell, vol.56, issue.2, pp.193-204, 2014.
DOI : 10.1016/j.molcel.2014.08.020

Q. Feng, C. Zhang, and D. Lum, A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis, Nature Communications, vol.45, p.14450, 2017.
DOI : 10.1021/bi0606795

C. Xu, X. Wu, and J. Zhu, VEGF Promotes Proliferation of Human Glioblastoma Multiforme Stem-Like Cells through VEGF Receptor 2, The Scientific World Journal, vol.13, issue.5, p.417413, 2013.
DOI : 10.3390/ijms13056424

Q. Li, G. Qiao, and J. Ma, Downregulation of VEGF expression attenuates malignant biological behavior of C6 glioma stem cells, International Journal of Oncology, vol.44, issue.5, pp.1581-1588, 2014.
DOI : 10.3892/ijo.2014.2331

D. Grun, G. Adhikary, and R. Eckert, VEGF-A acts via neuropilin-1 to enhance epidermal cancer stem cell survival and formation of aggressive and highly vascularized tumors, Oncogene, vol.492, issue.33, pp.4379-4387, 2016.
DOI : 10.1038/nature11606

S. Liu, J. Sun, and Q. Lan, Glioblastoma microvesicles promote endothelial cell proliferation through Akt/beta-catenin pathway, Int J Clin Exp Pathol, vol.7, issue.8, pp.4857-4866, 2014.

A. Rinkenbaugh, P. Cogswell, and B. Calamini, IKK/ NF-kappaB signaling contributes to glioblastoma stem cell maintenance, Oncotarget, 2016.
DOI : 10.18632/oncotarget.12507

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342468

M. Zhang, S. Kleber, and M. Rohrich, Blockade of TGF-?? Signaling by the TGF??R-I Kinase Inhibitor LY2109761 Enhances Radiation Response and Prolongs Survival in Glioblastoma, Cancer Research, vol.71, issue.23, pp.7155-7167, 2011.
DOI : 10.1158/0008-5472.CAN-11-1212

N. Podergajs, N. Brekka, and B. Radlwimmer, Expansive growth of two glioblastoma stem-like cell lines is mediated by bFGF and not by EGF, Radiology and Oncology, vol.47, issue.4, pp.330-337, 2013.
DOI : 10.2478/raon-2013-0063

N. Rafat, G. Beck, and J. Schulte, Circulating endothelial progenitor cells in malignant gliomas, Journal of Neurosurgery, vol.112, issue.1, pp.43-49, 2010.
DOI : 10.3171/2009.5.JNS081074

X. Chen, J. Fang, and S. Wang, A new mosaic pattern in glioma vascularization: exogenous endothelial progenitor cells integrating into the vessels containing tumor-derived endothelial cells, Oncotarget, vol.5, issue.7, pp.1955-1968, 2014.
DOI : 10.18632/oncotarget.1885

J. Tseng, L. Chang, and B. Jiang, Elevated circulating levels of tissue factor-positive microvesicles are associated with distant metastasis in lung cancer, Journal of Cancer Research and Clinical Oncology, vol.125, issue.7, pp.61-67, 2014.
DOI : 10.1002/ijc.24479

F. Wendler, R. Favicchio, and T. Simon, Extracellular vesicles swarm the cancer microenvironment: from tumor???stroma communication to drug intervention, Oncogene, vol.10, issue.7, pp.877-884, 2017.
DOI : 10.15252/embj.201592484

M. Westphal and K. Lamszus, Circulating biomarkers for gliomas, Nature Reviews Neurology, vol.24, issue.10, pp.556-566, 2015.
DOI : 10.1097/WCO.0b013e32834cd415

S. Azzi, L. Treps, and H. Leclair, Desert Hedgehog/Patch2 Axis Contributes to Vascular Permeability and Angiogenesis in Glioblastoma, Frontiers in Pharmacology, vol.44, issue.Pt 17, p.281, 2015.
DOI : 10.1097/MPA.0000000000000532

URL : https://hal.archives-ouvertes.fr/inserm-01247505

J. Dwyer, S. Azzi, and H. Leclair, The guanine exchange factor SWAP70 mediates vGPCR-induced endothelial plasticity, Cell Communication and Signaling, vol.13, issue.1, p.11, 2015.
DOI : 10.1593/tlo.09172

URL : https://hal.archives-ouvertes.fr/inserm-01264495

L. Treps and J. Gavard, Assaying the Action of Secreted Semaphorins on Vascular Permeability, Methods Mol Biol, vol.144, issue.2, pp.417-427, 2017.
DOI : 10.1038/onc.2015.317

H. Leclair, G. Andre-gregoire, and L. Treps, The E3 ubiquitin ligase MARCH3 controls the endothelial barrier, FEBS Letters, vol.28, issue.20, pp.3660-3668, 2016.
DOI : 10.1016/j.ccell.2015.10.004

URL : https://hal.archives-ouvertes.fr/inserm-01385212

R. Bowman, Q. Wang, and A. Carro, GlioVis data portal for visualization and analysis of brain tumor expression datasets, Neuro-Oncology, vol.19, issue.1, pp.139-141, 2017.
DOI : 10.1093/neuonc/now247