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ABSTRACT  

 

Introduction: Direct targeting of Bcl-2 members for therapeutic purposes in cancer has become a 

clinical reality with the FDA approval of ABT-199/Venetoclax. Other highly specific BH3-mimetics are 

in pre-clinical development. Understanding the functional interactions among the Bcl-2 family is of 

prime importance to fully exploit their potential. NOXA is considered a rather weak BH3-only 

member but it has unexplored potential in various settings, which are of relevance in cancer. NOXA is 

best known as a selective inhibitor of MCL1, itself overexpressed in many cancers, and this protein 

pair forms an important rheostat in many forms of cell stress.  

 

Areas covered: We summarize the distinct pathways that induce NOXA RNA and protein, and how 

this may be exploited in solid and hematopoietic cancers, with a focus on multiple myeloma and 

chronic lymphocytic leukemia.  

 

Expert opinion: The therapeutic potential to induce NOXA is not yet fully explored nor exploited, and 

we suggest 1) areas that require further fundamental investigation, including replicative stress and 

epigenetics, 2) areas where translation to therapeutic application seems more imminent (ER stress, 

ROS, inhibition of NOXA degradation) 3) a complementary approach to inducing NOXA by direct 

targeting of MCL1 via the novel BH3 mimetic S63845 and similar compounds.  
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Article highlights  

• Functional interactions among Bcl-2 proteins are of crucial importance in determining cancer 

cell survival 

• Direct targeting of pro-survival Bcl-2 proteins is now clinically achievable for various cancers 

• The therapeutic potential of NOXA is not yet fully explored nor exploited 

• Clinical evaluation of inducers of ER-stress that induce Noxa, as well as inhibitors of NOXA 

protein degradation seems promising 

• The therapeutic potential of NOXA can also be exploited in the context of direct targeting of 

MCL1 by specific and potent novel reagents  
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Abbreviations 
AICAR - 5-Aminoimidazole-4-carboxamide ribonucleotide 
AML – acute myeloid leukemia 
AMPK – AMP activated kinase 
ATF -  
BCR – B cell receptor 
BH3 – Bcl-2 homology domain 3 
BTK – Bruton’s tyrosine kinase 
CHOP - C/EBP-homologous protein 
CLL – chronic lymphocytic leukemia  
eIf2α - Eukaryotic Initiation Factor 2 aplha 
ER – endoplasmatic reticulum 
ERAD – ER associated protein degradation 
HDAC – histone diacetylase 
HIF – hypoxia inducible factor 
LN – lymph node 
MCL – mantle cell lymphoma  
MEF – murine embryonic fibroblast 
MM – multiple myeloma 
MTOR – mammalian target of rapamycin
NAE - NEDD8-activating enzyme 
NEDD8 - Neural precursor cell expressed developmentally down-regulated protein 8 
PB – peripheral blood 
PMAIP – phorbol 12-myristate 13-acetate inducible protein 
ROS – reactive oxygen species 
SERCA – sarco-endoplasmic reticulum Ca2+-ATPase 
TLR – Toll-like receptor 
TOR – target of rapamycin 
TP53 – Tumor suppressor of 53 kD 
UPR- unfolded protein response 
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1. INTRODUCTION  
1.1 The Bcl-2 family of proteins  
Regulated cell death or apoptosis is a process whereby superfluous, damaged or pathological cells 
are removed via ordered proteolytic breakdown. As a result of diverse stress signals, cytoplasmic 
cysteine proteases called caspases become activated, which trigger the actual execution of 
apoptosis. The most prominent executioner is caspase-3 1. Two upstream routes to apoptosis are 
known; the extrinsic or death receptor pathway and the intrinsic or mitochondrial pathway. The 
intrinsic pathway is predominant in most cell types 2, and is controlled at the mitochondrion as 
central sensor organelle of cell stress.  
Stress signals culminate in shifts in expression levels and/or interactions in a group of proteins, which 
collectively form the Bcl-2 family. The Bcl-2 family consists of three subgroups: the pro-survival Bcl-2-
like (BCL2, BCLXL, MCL1, BCL2A1, BCLB and BCLW), the pro-apoptotic multi-domain BAX and BAK1 (to 
which also the more obscure member Bok is assigned), and the single domain BH3-only proteins 
(BIM, PUMA/BBC3, BID, BAD, BIK, BMF, NOXA, HRK). Of note, there are additional BCL-2(like) 
proteins which are less well studied or have predominantly non-apoptotic functions, and these 
members, or splice variants with opposing functions of e.g MCL1 and BCLXL that are generally 
expressed at low levels will not be discussed further in the present review 3-5. Changes in the balance 
between Bcl-2-like and BH3-only members occur upon pro-survival or stress/apoptotic stimuli. This 
can lead to activation and multimerization of BAX and/or BAK1, which causes pore formation in the 
mitochondrial outer membrane. Through these pores, inter-membrane proteins leak into the 
cytoplasm, most prominently cytochrome C, which becomes a co-factor for caspase-9 activation once 
bound by the adapter protein APAF-1 in the cytoplasm 6. Caspase-9 and its co-factors form the 
multimeric apoptosome, which constitutes the generator of active caspase-3. Although minor 
mitochondrial damage or membrane permeabilization and subsequent caspase-9 activation can still 
be quenched by inhibitory fail-safe mechanisms, massive pore formation by BAX/BAK1, cytochrome C 
release and apoptosome formation can be considered as the point of no return for apoptosis 7. It 
follows that, in order to promote or prevent apoptosis for therapeutic purposes, the interactions 
among the Bcl-2 family are crucial determinants. 
 
1.2 NOXA is a weak BH3-only member, or is it perhaps not? 
Structurally, the Bcl-2 family is quite uniform despite the fact that individual members can have 
opposing pro-death or pro-survival functions. The Bcl-2-like and BAX-like members share homology 
domains (numbered BH1-4) and have a similar 3D structure. The most numerous subgroup of Bcl-2 
proteins is formed by the BH3-only proteins, which only share the 10-12 amino acid BH3 domain, and 
have no (common) ordered structure. However, upon binding with a Bcl-2-like member, the BH3-
only domain is inserted into a hydrophobic groove of their binding partner 8. Initially, it was unclear 
what the distinction among the pro- and anti-apoptotic Bcl-2 members was, as overexpression of any 
BH3-only protein can trigger apoptosis (in fact that is a prominent criterion to be included in the 
family). Conversely, all Bcl-2-like members can protect against various apoptotic stimuli when 
overexpressed 9-11.  
In several seminal studies, the group of David Huang uncovered that the BH3-only proteins have 
vastly different interactions and binding properties. Some, such as BIM and BID are promiscuous and 
bind to all the pro-survival Bcl-2 members, while BAD and NOXA have a much more restricted binding 
12,13. In particular, BAD interacts with BCL-2, BCLXL and BCLW, while NOXA binds only to MCL1 and 
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BCL2A1. This division of BH3-only proteins in strong and weak interactors is reflected by their 
capacity to trigger apoptosis; BID and BIM are generally strong apoptosis activators, since they bind 
all pro-survival Bcl-2 members. NOXA in contrast, is considered a ‘weak’ or indirect activator as it can 
only bind and neutralize the pro-survival members MCL1 and BCL2A1, thereby preventing them from 
keeping BAX and BAK1 in check. These (non-mutually exclusive) modes of direct versus indirect 
control of BAX and BAK1 have been an area of quite some controversy 14-18, and not all details have 
been elucidated yet. Currently, there seems consensus that BIM, BID and most probably PUMA 19 can 
directly activate BAX or BAK1 in a hit-and-run mechanism which will trigger apoptosis, whereas the 
other BH3-only proteins cannot (Figure 1).  
Still, In addition to BIM, BID and PUMA, there are convincing reports that BMF and NOXA can also 
directly bind BAX and potentially also BAK1, depending on whether BIM and BID are present, and 
whether other anti-apoptotic proteins such as BCLXL are inhibited 20.  The potential of NOXA as direct 
activator is weaker than that of BIM or BIM, and also seems to critically depend on whether full-
length NOXA protein 21 or a BH3-peptide is applied 22. Genetic data support that NOXA can indeed 
bind directly to BAX, and thereby induce cell death in BIM/BID/PUMA triple knock-out cells 23. 
Biochemically, BAX binding capacity was uncovered using full-length, in vitro translated NOXA. 
Combined these data suggests that, if valid under physiological circumstances, the interaction of 
NOXA with BAX/BAK is of significantly lower affinity than that of BIM or BID. Nevertheless, these 
studies hint that perhaps the dust has not yet settled in the arena of Bcl-2 family interactions (Figure 
1). Moreover, they implicate that under certain conditions, the role of NOXA can be decisive in 
triggering apoptosis.  
Therefore, there is a rationale to explore in detail whether any hidden potential of NOXA can be 
unleashed to combat cancer. Before we go deeper into the properties of NOXA and the pathways it 
may be involved in that can be targeted for therapeutic purposes, we will first address the important 
interaction with its binding partner MCL-1, followed by NOXA gene and mRNA expression under 
various forms of cell stress. It will become clear that NOXA gene and protein regulation is complex 
and can be activated by a multitude of signals involved in DNA damage, cell division/proliferation and 
cell stress. We will then summarize recent developments regarding drugs that directly target pro-
survival Bcl-2 members, most prominent the so-called BH3 mimetics, before we merge these sections 
in a conclusion and expert opinion section.  
 
2. PROTEIN REGULATION OF MCL1 AND NOXA 
Under what circumstances can NOXA have a significant impact on apoptosis? It follows from its 
established interactions that this occurs in cells that depend on their survival on either MCL1 or 
BCL2A1. BCL2A1 function has been mostly described in the context of lymphocytes after antigen or 
CD40 stimulation, and, due to a paucity of good reagents for both mouse A1 and human BCL2A1, 
detailed insight into its importance or contribution to apoptosis is still incomplete 24. With the recent 
description of modified BH3 peptide reagents that are highly specific for BCL2A1 over other pro-
survival Bcl-2 members 25, insight into the functional contribution of BCL2A1 may soon improve. In 
this light, the recent description that a peptide based on human NOXA is able to covalently attach to 
BCL2A1 via cysteine bonds, with great selectivity over MCL-1, may allow further probing into the role 
of BCL2A1 but also of NOXA, in cancer cells but also under specific conditions such as UV light and 
ROS generation 26. 
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For MCL1 there is ample evidence for its importance in many cell types and under various 
circumstances. MCL1 is widely expressed in hematopoietic and other tissues, and is regulated by a 
variety of transcriptional, post-transcriptional and –translational processes. The consensus model is 
that upstream signals control phosphorylation of various residues and thereby proteasomal 
degradation. Four E3 ubiquitin-ligases (MULE27, SCFβ-TrCP 28, SCFFbw7 29 and Trim17 30) and a 
deubiquitinase (USP9X 31), that respectively mediate and oppose MCL1 ubiquitination, have been 
identified. Moreover, MCL1 is overexpressed in a variety of cancers 32. NOXA binds and sequesters 
MCL1, thereby lowering the cell’s capacity to counteract direct activator BH3 only members. In 
addition, it has been shown that NOXA binding actively decrease the half-life of MCL1 actively 13. One 
way MCL1 protein levels are regulated, is via ubiquitination and proteasomal targeting mediated by 
the E3 ligase MULE, which also contains a BH3-only domain able to bind MCL1 27. Recent findings 
characterizing the conformational dynamic change of a MCL1 region following NOXA or BIM binding 
respectively 33 explain the fact that, NOXA hands over MCL1 to the ubiquitination system 34,35 in 
contrast to BIM that inhibits its ubiquitination. Indeed, the conformation of a dynamic 
Q221R222N223 motif of the BH3 domain of MCL1 controls MCL1 ubiquitination. While NOXABH3 
binding modifies this motif towards a helical conformation favoring MCL1 ubiquitination, BIM binding 
biases it towards a non-helical conformation inhibiting MCL1 ubiquitination 33. (Figure 3). 
In addition to being a potential chaperone for MCL1, there are various reports that NOXA itself is also 
regulated via post-translational control, specifically by the (de)-ubiquitination cycling system 36. The 
possibility that NOXA is ubiquitinated at lysine residues was investigated and this culminated with 
the surprising finding that it is degraded via the 26S proteasome, but in a ubiquitin-independent way 
37,38. In contrast, the de-ubiquitinating enzyme UCH-L1 was postulated to protect NOXA from 
proteasomal degradation by removing Lys(48)-linked polyubiquitin chains 39. Epigenetic silencing of 
UCH-L1 in various cancer types would then determine whether NOXA was controlled by this system 
or not. However, this explanation did not clarify which E3 ligase is responsible for ubiquitination of 
Noxa. Recently, a possible answer was provided in a study showing that the Cullin-Ring-ligase-5 
(CLR5) E3 ligase can ubiquitinate NOXA by Lysine-11 ubiquitin ligation, instead of by the canonical 
Lysine-48 ligation, resulting in the proteasomal targeting of NOXA (Figure 3). NOXA levels, and the 
responsible neddylating enzyme UBE2F correlated with survival in lung cancer patients, providing in 
in vivo support for these findings 40.  
In agreement with the notion that the CLR5 E3 ligase controls NOXA protein half-life, an inhibitor of 
the proximal regulator of the neddylation system (NEDD8-activating enzyme, NAE) called MLN4924 is 
able to kill various cancer cells by induction of NOXA41-43. MLN4924 or pevonedistat is currently in 
phase I-II for various cancers.  
Thus, it now seems plausible that NOXA itself, in addition to its best studied binding partner MCL1, is 
under tight post-translational control. This protein pair, which has a large impact on cell survival, is 
thus in a prime position to function as a rheostat under various forms of cell stress. In the following 
sections we will summarize conditions of cell stress where a role for NOXA has been either clearly 
shown, or was suggested but where the mechanism is still largely unclear.  
 
 
3. NOXA Transcriptional and protein regulation by various forms of cell stress 
3.1 Chromosomal locus 



Acc
ep

ted
 M

an
us

cri
pt

8 

 

The NOXA transcript which encodes NOXA was first identified as a phorbol-12-myristate-13-acetate 
(PMA) responsive gene in the Jurkat acute T-cell leukemia cell line and in human peripheral blood 
cells, and consequently, the gene was named PMA-induced protein 1 (PMAIP1)44. The human PMAIP 
locus resides at the cytogenetic band 18q21.23, and the gene contains three exons of which exon 2 is 
not encoded in the NOXA protein that spans only 54 amino acid residues. Two unstable splice 
variants of 136 and 70 amino acids have been described, which have no apparent role in the 
regulation of apoptosis. Apparently, the first reported PMAIP transcript originated from one of these 
non-functional transcripts 45, therefore we maintain here the designation NOXA. The NOXA promoter 
region extents over approximately 4 kb, and contains several enhancer regions located upstream and 
downstream of the actual gene locus. These regulatory regions contain binding sites for over 40 
different transcription factors and co-activators suggesting that NOXA can be differentially regulated 
by many signals and conditions (Figure 2). This explains the marked tissue/cell type-specific 
regulation of NOXA expression (reviewed by Ploner et al 46. Here, we discuss the different modalities 
of NOXA regulation and its consequences for health and disease. 
 
3.2 DNA damage and genotoxic stress 
Originally, NOXA was described to be regulated by p53, as it was found that adenoviral delivery of 
p53 into p53-deficient mouse embryonic fibroblasts (MEFs) resulted in the rapid induction of NOXA 
mRNA. NOXA is part of the p53-dependent transcriptional response following genotoxic stress, 
shown by induction of NOXA mRNA upon γ-irradiation. However, the functional consequences of 
DNA damage-induced NOXA expression were shown to be cell type-specific, as NOXA-deficient 
thymocytes underwent apoptosis upon γ-irradiation as efficiently as wildtype thymocytes, despite 
induction of NOXA expression. In contrast, MEFs from NOXA-deficient mice were more resistant to γ-
irradiation and DNA damaging agents such as adriamycin and etoposide than wildtype MEFs 47-49. The 
mechanistic basis for these cell type and cell state specific effects remains elusive. Importantly, it has 
been shown that Puma deficiency conferred significantly more resistance to DNA damage-induced 
apoptosis of thymocytes and untransformed fibroblasts, whereas the expression of the oncogenic 
E1A protein sensitized cells to NOXA-induced apoptosis. The mechanism of the differential 
involvement of NOXA and PUMA under these conditions remains to be studied 50. In addition, not 
only the cellular context but also the nature of the genotoxic stressor is of importance in determining 
the involvement of the different BH3-only family members in DNA damage-induced apoptosis. 
Ultraviolet (UV) radiation-induced cell death is p53-dependent, and in this context, loss of NOXA 
suppressed UV radiation-induced apoptosis of keratinocytes, whereas loss of PUMA provided no 
protection 51. In addition, anti-mitotic drugs such as microtubule-targeting agents cause mitotic 
arrest, which when unresolved leads to DNA damage and p53 activation. It was recently 
demonstrated that NOXA is the rate-limiting BH3-only protein in mitotic arrest-associated cell death 
52, but whether this requires an intact p53 pathway remains to be confirmed. In agreement, in a 
genome-wide siRNA screen in HeLa cervical carcinoma cells treated with the anti-mitotic drug taxol, 
NOXA was identified a critical initiator of mitotic cell death 53.  
The NOXA promoter contains a consensus p53-binding motif just proximal to the transcription start 
site (TSS) that is important for promoter activity. However, additional studies have demonstrated 
that p73, which is a member of the p53 family of proteins, is also able to bind the p53 consensus site 
and provoke transactivation 54. Indeed, p73 was implicated in the p53-independent NOXA induction 
following genotoxic stress and in adenoviral E1A-mediated apoptosis 55. There are several other 
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indications that genotoxic stress can induce NOXA in a p53-independent fashion, for instance by 
cisplatin treatment 56,57. 
In conclusion, the function of NOXA in DNA damage-induced cell death generally seems subordinate 
to that of PUMA, yet the known data imply that the regulation of NOXA expression may represent a 
potential therapeutic target in defined situations.  
 
3.3 Epigenetic regulation  
It has become clear that NOXA expression is also dynamically regulated at the epigenetic and 
chromatin level. For instance, the polycomb group gene Bmi1 repressed NOXA expression in memory 
CD4+ T cells by inducing trimethylation of histone 3 on Lysine 27 (H3K27Me3), and by recruitment of 
the DNA methyltransferase Dnmt1, resulting in CpG methylation. Accordingly, enhanced cell death of 
Bmi1-/- memory T cells was observed 58. Chemical compounds that alter DNA and chromatin marks, 
such as histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, constitute a 
novel class of epigenetic drugs with promising activities towards cancer and immune-mediated 
diseases 59. Interestingly, the HDAC inhibitor SNX-275 (Entinostat) was active in acute myeloid 
leukemia (AML) blasts, by transcriptional upregulation of BIM (BCL2L11) and NOXA 60. Other HDAC 
inhibitors such as Kendine 92 and suberoylanilide hydroxamic acid (SAHA, also known as vorinostat), 
induced apoptosis of chronic lymphocytic leukemia (CLL) cells by increasing the expression of PUMA, 
BIM and NOXA61.  
 
3.4 Hypoxia 
Next to genotoxic stress, various other cellular stressors result in the induction of NOXA expression. 
Hypoxia is a well-known source of cellular stress related to insufficient oxygen supply to tissues and 
cells, and is a characteristic feature of most tumors caused by inadequate vascularization and blood 
supply. The adaptive response to hypoxia involves altered metabolism and proliferative capacity and 
ultimately cell death in case of extreme or prolonged hypoxia. The hypoxia inducible factor –alpha 
subunit (Hif1α) transcription factor plays a pivotal role in hypoxic adaptation 62. Hypoxic conditions 
were shown to induce NOXA expression in several different tissues and tumors in a p53-independent 
fashion, by Hif1α-dependent transactivation and binding to a hypoxia-response element in the NOXA 
promoter 63. Induction of expression seems to be an early response to hypoxia and results in the 
reactive oxygen species (ROS)-dependent release of cytochrome C and cell death, which could have 
therapeutic potential 63. Hypoxia is intimately connected to activation of the mammalian target of 
rapamycin (mTOR) signaling and the unfolded protein response (UPR) stress response 64, which are 
both implicated in the induction of NOXA expression, see also below. 
 
3.5 ER stress 
The endoplasmatic reticulum (ER) plays an essential role in the regulation of cellular homeostasis by 
controlling protein folding assembly and transport. Many cellular stress conditions trigger the 
accumulation of improperly folded proteins resulting in ER stress. To handle ER stress, the unfolded 
protein response (UPR) takes place as a cytoprotective response that switches to apoptosis if the ER 
stress cannot be resolved. Selective BH3-only proteins such as BIM, NOXA and perhaps to a lesser 
extent PUMA65 have been identified as the main players responsible for the cell death by ER stress. 
The role of BIM in ER stress induced apoptosis has been unequivocally demonstrated previously. BIM 
is subject to C/EBP-homologous protein (CHOP)-mediated transcriptional induction as well as post-
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translational control 66. Our purpose here is to focus on the subsequently uncovered critical role of 
NOXA.  Indeed, knockdown of NOXA strongly reduced cell death induced by ER stress which can be 
elicited by numerous drugs such as the ER-associated protein degradation (ERAD) inhibitor 
fenretinide 67, the SERCA inhibitor thapsigargin 68, the “BH3 mimetic like” such as Gossypol, 
Apogossypol, HA14-1, S169 70, oncolytic virus 71, pemetrexed 72, or the heat shock response inducer 
aurin 73. Of note, the induction of NOXA by certain “BH3 mimetic-like” compounds allows to 
distinguish them from the true BH3 mimetics that do not exhibit this property 74. The UPR signaling 
involves three adaptive pathways that operate in parallel namely IRE1, PERK and ATF6. While 
crosstalk between the UPR branches is of functional importance, only the PERK signaling leads to the 
induction of Noxa. Indeed, PERK activation mediates the phosphorylation of eIF2α resulting in 
attenuation of global translation and in parallel to the specific translational activation of ATF4, one of 
the main transcriptional regulators of the UPR response. Of interest, knockdown of ATF4 strongly 
reduced NOXA expression suggesting that ATF4 functions as a transcriptional activator of NOXA in 
tumor cells under ER stress 68. On the other hand, it was shown that both ATF3 and ATF4 are induced 
by ER stress and that only ATF3 is able to directly bind to the NOXA promoter 75 and indirectly 
recruits ATF4 to it. Altogether, regardless of the cellular model and the drugs involved, the 
transcription of NOXA in an ATF4/ATF3-dependent manner plays a major role in the apoptosis 
induced under ER stress. This implies that induction of ER stress by any of the means mentioned 
above, or by novel therapeutic compounds, is in fact an indirect way of unleashing the apoptotic 
potential of NOXA. 
 
3.6 Proteasome inhibition  
Bortezomib is a highly selective and reversible inhibitor of the 26S proteasome, which was initially 
described as an inhibitor of the NF-κB pathway. Bortezomib is approved for treating  
multiple myeloma (MM) and mantle cell lymphoma (MCL), two life-threatening hematological 
malignancies with a dismal clinical outcome. In both diseases, Bortezomib is used as initial therapy or 
for relapsed/refractory patients. While its mechanism of action is not yet fully unraveled, there is 
consensus regarding its multifactor biological consequences, which include ER stress and apoptosis 
induction, ROS production and alteration of NF-κB activity. Among these processes, the ER stress due 
to the inhibition of the degradation of ubiquitinated proteins is considered to be the central 
mechanism triggering cell death 76. The engagement of the intrinsic mitochondrial pathway by 
Bortezomib was consistently characterized by the induction of NOXA in numerous malignant cell 
types i.e. hematopoietic cells (MM, MCL, CLL) as well as solid tumor cells (melanoma, carcinoma 
cells) 67,68,75,77,78. In all malignant cells except in CLL cells 38, the rapid induction of NOXA protein after 
proteasome inhibitor exposure was preceded by an up-regulation of NOXA mRNA. Knockdown of 
NOXA invariably protected malignant cells from Bortezomib-induced cell death, underlining the 
critical and common role of NOXA in Bortezomib-induced apoptosis, although this protection may 
remain partial. Two other common characteristics of NOXA induction are its independence of the 
basal level of NOXA and of the p53 status. Indeed, the rapid induction of NOXA protein takes place 
even if it is undetectable before exposure to Bortezomib 77,79, suggesting that NOXA itself is under 
strict control by the proteasome. Finally, although the activation of p53 pathway maybe dispensable 
for NOXA induction, the fold increase of NOXA mRNA was superior in p53 wild-type cells compared 
to p53 mutant cells, when comparing the same cell type 79. Regardless of the cellular model studied, 
the PERK/eIf2a/ATF4 pathway appears as one of the main mechanisms responsible for NOXA 
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induction in response to Bortezomib. The expression of the non-phosphorylated form of eIf2α in MEF 
cells triggers resistance to Bortezomib accompanied by the absence of the induction of ATF4 and 
NOXA67. In agreement with the implication of the PERK/ATF4 pathway, the low basal levels of ATF3 
and ATF4 in MM patients are associated with weak efficiency of Bortezomib/dexamethasone 
treatment via the reduced induction of NOXA and CHOP 80. The induction of NOXA through the 
activation of the PERK pathway was also found with carfilzomib, a second-generation proteasome 
inhibitor 81,82. 
Besides the implication of the ATF3/ATF4 in the induction of NOXA by proteasome inhibitors, several 
other mechanisms have been proposed according to the cell type studied. In MM, the KLF9 gene was 
identified as significantly over-expressed in patients that responded to Bortezomib compared to non-
responder patients. KLF9 was shown to directly interact with the PMAIP1 promoter in a Bortezomib-
dependent manner 83. Furthermore, the ectopic expression of KLF9 was sufficient to induce NOXA 
and apoptosis in the absence of Bortezomib, indicating that KLF9 levels beyond a certain threshold 
are able to induce apoptosis through NOXA expression. In MCL, NOXA induction was first shown to 
be dependent on ROS generation 79, as, ROS scavengers blocked NOXA upregulation in response to 
Bortezomib. More recently, NOXA induction was shown to be dependent on PRDM1 84. PRDM1, also 
known as Blimp-1, is a transcriptional repressor required for terminal B cell differentiation. 
Knockdown of PRDM1 blocks both basal and Bortezomib-induced NOXA expression. Because PRDM1 
is a repressor protein, it has been proposed that it could suppress a player whose absence may allow 
NOXA induction. Thus, although ATF3 and ATF4 play essential roles in the induction of NOXA by 
proteasome inhibitors, the role of other, cell type specific, transcription factors cannot be ruled out 
for optimal transcription of NOXA in response to proteasome inhibitors.  
 
3.7 Metabolic stress – glucose & nutrients 
As mentioned above, various stress response pathways regulate MCL1 protein half-life . A prominent 
pathway is via PI3K/AKT/GSK3β, which has been implicated in various cell types and conditions, 
ranging from cytokine- to glucose deprivation 85-87. Apart from its contribution as BH3 protein and 
chaperone for MCL1 degradation, a unique role for NOXA in glucose- or nutrient-deprivation has 
been difficult to identify mechanistically 88. An intriguing possibility is that NOXA may alter cellular 
metabolism by shunting glucose to the pentose phosphate pathway, which was proposed to be 
regulated by Ser13 phosphorylation 89.  Such a switch of function of NOXA from apoptotic to 
metabolic regulator is somewhat reminiscent of the dual role of BAD in apoptosis and glucose 
metabolism in endocrine tissues 90, but firm proof has yet to be provided.  
We and others have investigated a potential role of the ATP/AMP-sensing kinase AMPK in MCL1 
phosphorylation 88,91. A direct functional interaction could not be found, yet there is the intriguing 
action of the AMPK activator AICAR that induces cell death in an AMPK-independent fashion, which 
required BIM/NOXA91.  The picture that emerges is that the NOXA/MCL1 protein pair can be 
considered a rheostat that senses cellular metabolism via glucose and other nutrient levels in various 
cell types. The sensors or kinases that would couple glucose, nutrient or ATP levels to MCL1 or NOXA 
phosphorylation remain to be identified. Thus, although cellular metabolism is clearly linked to 
apoptosis, therapeutic exploitation of this potential via targeting of MCL1/NOXA requires further 
mechanistic investigation. 
 
3.8 Autophagy 
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Autophagy is a degradative process whereby cells recycle their organelles and large protein 
complexes. In most cells this is a steady state flux that can be increased in times of stress, such as 
nutrient shortage. Autophagy is positively and negatively controlled by AMPK and MTOR, 
respectively. Cellular constituents are engulfed in membrane compartments that subsequently fuse 
with lysosomes to degrade the cargo. In recent years, the genes and proteins involved in this 
complex process have been largely elucidated 92. In general, it has been proposed that ‘too much’ 
autophagy will lead to cell death, either in a caspase-dependent or –independent fashion. 
Furthermore, cancer cells require active autophagy in order to cope with their intrinsically stressed 
state 93, which implicates that targeting autophagy would be therapeutically beneficial. The 
(reciprocal) link between autophagy and cell death has been studied for many years, but the basic 
aspects are still unclear and sometimes quite controversial, for a summary of open questions, see 94. 
An often studied connection is the central autophagy regulator Beclin, which contains a BH3(like) 
domain allowing interaction with BCL2, BCLXL and MCL1. The affinity of the Beclin-BCLXL interaction 
is reported to be in the micro-molar range 95,96, which is substantially lower than the nano-molar 
affinities of ‘regular’ BH3 proteins, implying that additional interactions or protein modifications are 
required for Beclin in order to compete with other BH3 proteins, and thereby shift the apoptotic 
balance.  
In relation to autophagic cell death, two types of NOXA involvement have been suggested. The first 
involves endosomal TLR3, or cytoplasmic dsRNA recognition by MDA5, which induces NOXA protein 
in melanoma cells by an as yet unidentified mechanism 97. Second, oncogenic, inducible Ras activity 
in cell lines was reported to result in autophagic cell death, by ERK-dependent upregulation of NOXA 
protein. NOXA-dependent autophagy was associated with displacement and degradation of MCL1 
from Beclin-1 98, suggesting that NOXA itself may compete with Beclin to liberate MCL1 and trigger 
lethal autophagy. Additionally, various reports mention NOXA in connection with autophagy, but 
generally, these also contain features of ER- or proteasomal stress. As described above, it is known 
that NOXA plays a role under these conditions, making it difficult to adequately assess the role of 
NOXA in the autophagic aspects of cell death. In summary, several basic aspects of autophagic cell 
death are still unclear, and a specific role for NOXA has been described in restricted cases, which 
does not yet suggest modes of therapeutic application. 
 

4. Bcl-2 members as therapeutic target - BH3 mimetics and beyond 
The preceding sections have focused mostly on NOXA and highlighted situations where its induction 
may play a decisive role in cell death induction. In addition, the impressive progress on direct 
therapeutic targeting of pro-survival Bcl-2 members in cancer warrants a summary of these 
developments, which we will subsequently merge from the perspective of NOXA biology. 
In 2005, the first ‘true’ anti-Bcl2 family compound was reported, now dubbed BH3 mimetics. Abbott 
developed a potent inhibitor (ABT-737) of BCL2, BCLXL and BCLW which kills susceptible cells in a 
BAX/BAK1 dependent fashion 99. An orally administrable variant, ABT-263 or Navitoclax, had clinical 
efficacy in CLL and other B-cell malignancies 100, but inhibition of BCLXL in platelets led to 
thrombocytopenia and dose limiting toxicity 101, which halted further development. Subsequently, a 
search for compounds that target single Bcl-2 family members, has led to important clinical as well as 
pre-clinical success. Conversion of ABT-263 into a Bcl-2-specific compound resulted in ABT-199, 
which efficiently kills BCL2-dependent cancer cells such as CLL but spares platelets 102. The success 
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story of ABT-199 or Venetoclax is now well-known, and FDA approval for previously treated CLL with 
17p deletion was granted in April 2016. Venetoclax shows impressive clinical efficacy with minimal 
side-effects in CLL 103.  
This success sparked further development that resulted in BCLXL- as well as MCL1-specific 
compounds - we will mention here the most well-studied. WEHI-539 and the more recently 
developed A-1155463 inhibit BCLXL with subnanomolar affinity 104,105. Though potent BCLXL 
inhibition obviously has the drawback that it will induce (transient) thrombocytopenia, this may be a 
manageable hazard in cancers that strongly depend on BCLXL . MCL1-specific inhibitors have also 
been developed 106,107. The initial compounds such as A-1210477 were specific though not very 
potent, but very recently the high affinity MCL1 inhibitor S63845 was described 108. Given the severe 
effects of even single allele ablation of MCL1 in mice 109-112, the predominant notion in the field was 
that inhibiting MCL1 would be toxic for non-malignant tissues. The data with S63845 contradict this 
and suggest there is a clear therapeutic window. In hindsight, this may not be too surprising as many 
tumors in fact express MCL1 at levels far above normal cells. Interestingly, S63845 causes increased 
MCL1 protein stability, indicating it behaves like BIM rather than NOXA108.  
Additional MCL1 inhibitors are being developed by other companies, notably AMG 176 which is in 
Phase 1 for MM (http://www.amgenpipeline.com/pipeline/) and optimization of A-1210477 107 can 
also be expected. Another novel development is engineering of covalent compounds that target the 
MCL1 BH3 groove and/or other reactive cysteine or lysine residues 113,114. While a detailed 
description and comparison of the data obtained with these novel MCL1 inhibitors is beyond the 
scope of this review, it seems clear that covalent targeting may greatly enhance specificity. On the 
other hand, introducing reactive groups into compounds may also enhance binding to non-target 
proteins. Future research in cellular and animal or human systems will have to determine 
pharmacological properties and clinical potential of these novel compounds. In addition, their 
availability will allow to discriminate whether they act as ‘pseudo’ NOXA or rather like BIM to target 
MCL1 or BCL2A1 26. Finally, these highly specific and cell-permeable reagents can also be used to 
quantitatively profile each cancer cell type for its dependence on pro-survival BCL2 members 115, an 
approach that was previously only possible with relatively high concentrations of peptides and 
permeabilized cells 116. 
 

5. NOXA INDUCTION IN CANCER  
5.1 Melanoma and solid cancers. Induction of NOXA gene expression and protein function have been 
linked to cell death in various hematopoietic and solid cancers. We will briefly summarize data on 
several stress pathways leading to NOXA involvement in solid cancers, before we discuss in more 
details two hematopoietic cancers where NOXA expression and function can be clearly linked to 
existing and novel therapeutic applications. 
Especially for melanoma, many reports have described various inducers and pathways of cell stress 
leading to NOXA gene and-or protein induction and cell death. These pathways can be considered 
exemplary for other solid cancers and have been recently reviewed 117. The most significant 
pathways have been mentioned in the preceding sections: proteasome inhibition, ER stress, and 
generation of reactive oxygen species (ROS) by various types of drugs, have been broadly recognized 
as inducers of NOXA. In addition, inhibitors that target the epigenome may de-repress NOXA gene 
transcription 118. 
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5.2 Multiple myeloma 
MM is a plasma-cell malignancy that is heterogeneous, and can be classified into four main subtypes 
of MM patients defined as hyperdiploid (HY), CCND1 t(11;14), MAF t(16;14) or t(14.20), and MMSET 
t(4;14). In this pathology, the combined profile of BCL2, BCLXL, and MCL1 is sufficient to distinguish 
these 4 molecular subgroups of MM 119. NOXA is also very heterogeneously expressed in the 
different subgroups of myeloma patients. The CCND1 and MMSET subgroups have high levels of 
Noxa, while the HY and MAF subgroups express very heterogeneous but consistently lower levels of 
NOXA119. A unique feature of the CCND1 subgroup is the high level of BCL2 and the lowest levels of 
MCL1. Thus, we can hypothesize that in this subgroup the anti-apoptotic role of MCL1 is mainly 
neutralized by the high expression of Noxa, explaining that this subgroup is mainly BCL2 dependent. 
In agreement with this hypothesis, the majority of MM patients responsive to the BCL2 antagonist 
Venetoclax (ABT-199) are found in the BCL2high MCL1low and NOXAhigh CCND1 subgroup. In myeloma 
cell lines, a very heterogeneous expression of NOXA is reported, which is not related to p53 status 
120. Indeed, some cell lines have undetectable Noxa, either at mRNA or protein level, while other 
myeloma cell lines express very high levels of endogenous NOXA120. Since the vast majority of MM 
cells are known to be strongly MCL1 dependent for survival 121,122, NOXA is expected to play a major 
role in the induction of cell death through the neutralization of MCL1 77,123,124.  In accordance, S63845 
is effective in MM cells that depend on MCL1 108. 
 
5.3 Chronic lymphocytic leukemia  
CLL is a genetically and clinically heterogeneous malignancy of mature B cells. A hallmark of chronic 
lymphocytic leukemia (CLL) is a dichotomy in survival and proliferation between the leukemic cells in 
peripheral blood (PB) and the lymph node (LN) compartments. PB CLL cells are in cell cycle arrest and 
sensitive to pro-apoptotic signals, whereas CLL cells in the LN proliferate and upregulate proteins 
that mediate resistance to apoptosis125,126. Analysis of apoptosis genes in CLL compared to normal LN 
B cell populations demonstrated not only the well-known overexpression of BCL2 in CLL, but also 
overexpression of BH3-only members BMF 127 and NOXA128. The functional significance of increased 
BMF has not yet been elucidated. A major difference between the LN and PB compartments is a 
change in the NOXA/MCL1 balance 129, which was clearly linked to apoptosis sensitivity in general, 
and to Bortezomib in particular. These observations have several implications for (novel) therapeutic 
options, which will be discussed in relation to the recent clinical success of the BTK inhibitor ibrutinib 
130, and Venetoclax 103. 
The first aspect is the cause of the intrinsic high levels of NOXA in CLL. Although NOXA was originally 
described as a p53-responsive gene, its expression in CLL is not mediated via p53, as it is not induced 
further by chemotherapeutics, and also occurs in p53 deficient patient samples 128. Another option is 
that increased expression of NOXA is a reflection of CLL biology, since CLL is intimately linked to 
continuous B cell receptor (BCR) signaling 131, and NOXA is induced in normal B cells by BCR triggering 
132. This could imply that CLL cells originate from a phase where BCR triggering lowers the apoptosis 
threshold by expression of NOXA, but apoptosis is then prevented by (pre)-malignant transformation. 
This notion is supported by a murine model of CLL 133. Arguing against it is the fact that in LN CLL 
cells, where BCR triggering is presumed to be ongoing 134, NOXA expression is low, whereas the 
reverse is true for the PB compartment. This suggests that NOXA overexpression in the PB reflects 
another form of cell stress. 
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Secondly, NOXA expression is high and indeed, PB CLL cells are very susceptible to Bortezomib in 
vitro 129, yet this does not translate into clinical efficacy of Bortezomib, for reasons that are not 
completely clear 135-137. Apart from a proposed effect of dietary flavonoids present in CLL patient 
plasma (and apparently not, or less effective in MM), an explanation might be that the required level 
of ER stress required to undergo apoptosis is not attained in CLL in vivo, while this threshold is 
reached in MM. This is consistent with the fact that MM is a highly secretory tumor type prone to ER 
stress, whereas CLL is not. 
Third, the fluctuating balance in NOXA/MCL1 between different compartments in relation to micro-
environmental stimuli in CLL would predict that this is a relevant determinant in clinical 
responses/resistance to (novel) drugs. This indeed appears to be the case. It is well known that MCL1 
is not targeted by the BH3 mimetics ABT-737 and Venetoclax, and that MCL1 expression is a 
resistance determinant for these drugs in many cancer types and also CLL 138,139. Conversely, lowering 
MCL1 levels in CLL by for instance cyclin-dependent kinase inhibition triggers cell death 140. Clinical 
testing of cyclin–dependent kinase inhibitor flavopiridol in CLL however was quite toxic 141, especially 
compared to current, more efficient alternatives. Lastly, responses to the BTK inhibitor ibrutinib, 
which forces CLL cells out of the LN by blocking adhesion 142,143, are accompanied by a reduction in 
MCL1 levels in recent LN emigrants. Resistance to ibrutinib was accompanied by a recurrence of 
MCL1 or BCLXL expression 144. 
 
 
6. CONCLUSIONS – NOXA AS DRUG OR MCL1 AS TARGET 
The preceding sections allow several conclusions. The first is that NOXA, despite its modest status as 
a weak BH3-only member, may have considerable therapeutic potential, which has not yet been fully 
explored nor exploited. The second is that some of the multifaceted means to induce NOXA gene 
transcription and/or protein expression need further mechanistic investigation, while others seem to 
be closer to therapeutic application. Thirdly, due to its very close association with MCL1, conditions 
that induce NOXA will inhibit MCL1 and thereby induce apoptosis directly, or in synergy with other 
stimuli or compounds. Indeed, there are many reports of the synergy between NOXA induction and 
sensitivity for BH3 mimetics (ABT-737 or Venetoclax) in conditions where cells are resistant to the 
latter.  
 
 
7. EXPERT OPINION -  ASSESSING STRESS SIGNALING TO NOXA AS KEY TO NEW APPLICATIONS 
Currently, we have an incomplete understanding of the therapeutic potential of NOXA as an inducer 
of cell death in cancer. The key to uncover this potential is a better understanding of the various, 
cancer cell type specific stress pathways. Many of these have been reported to connect in some 
manner with NOXA gene and/protein induction, and thereby to increased cell death susceptibility. 
However, a mechanistic basis for some of these instances is not yet established firmly enough, in 
order that subsequent steps to therapeutic exploitation may be taken.  
We tentatively propose a more or less hierarchical list of cell stress pathways that have been 
connected with induction of NOXA (or with reduction in MCL1), in order of increasing potential of 
therapeutic exploitation in cancer. We base this ordering on mechanistic insight of the induction or 
involvement of NOXA combined with availability of specific compounds or drugs (Table 1).  
Evaluating the currently available insight leads to a division in four areas. We hereby exclude the 
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clear link between chemotherapeutics, DNA damage, p53 activation and potential NOXA gene 
induction, as this pathway is in fact superseded by the more potent induction of PUMA along the 
same signaling path.  
First, stress pathways where mechanistic insights into the steps that lead to NOXA involvement, or 
specific drugs are lacking. Autophagy and metabolic stress are examples of this category. Although 
there are compounds available with therapeutic potential such as AICAR 91, their specificity and/or a 
link with the NOXA/MCL1 rheostat is currently underexplored. 
The second category contains instances where NOXA gene induction or de-repression has been 
documented, such as replicative stress, HDAC or DNA methyltransferase inhibition. For most of these 
instances drugs with clear therapeutic potential are available, but specific proof that the NOXA gene 
induction is direct rather than indirect is currently lacking. In addition, a general feature of ROS 
production by cells seems to be NOXA gene induction, leading to cell death. This has been reported 
for various compounds in diverse cancer cell types 56,79,145,146. Although NOXA involvement is 
frequently demonstrated by siRNA approaches, how ROS activate NOXA transcription is not yet fully 
clear. 
Third, clearly promising areas for clinical exploration are the drugs that result in NOXA protein 
accumulation. Clear examples are inducers of ER stress, inhibitors of the neddylation machinery and 
the proteasome (see references in Table 1). The latter is clinically targeted by Bortezomib in MM and 
MCL but other cancers like melanoma, AML and CLL might be good examples where clinical trials 
may lead to new applications. 
Fourth is the very recent development, directly leading to novel promising strategies by targeting 
MCL1 directly, exemplified by the novel BH3 mimetic S63845 108. Clearly, single administration and 
combination therapy with a) chemotherapy, b) other targeted compounds such as kinase inhibitors, 
c) other BH3 mimetics such as Venetoclax, will be evaluated in the coming years which will 
undoubtedly lead to novel applications. 
 
Concluding remark. The field of NOXA biology is active and still expanding, with clear expectations of 
both novel mechanistic insight and clinical applications.  
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Figure legends 

 

Figure 1. Functional interactions among Bcl-2 family members. 

A) Inhibitory interactions among pro-survival members (dark grey boxes), and strong (dark grey 
ovals) versus weak (light grey ovals) BH3-only members. 

B) Stimulatory (arrow) and inhibitory (blockline) interactions among pro-survival Bcl-2 
members, BAX/BAK1, and strong BH3-only members. NOXA is tentatively represented as 
activator of BAK and BAX based on Refs. 20-23. 

Figure compiled and adapted from information and similar schemes represented in Refs 8,9,18,23 . 

 

 

 

Figure 2. Signaling and cell stress pathways that impact on NOXA gene expression. 

Schematic depiction of the NOXA locus and promoter region. Transcription factors and cell stress 
pathways implicated in the induction of NOXA mRNA expression are shown above. Epigenetic factors 
and regulators are shown below. Arrow indicates transcription start site (TSS). See text for detailed 
description. H3K27Me3 = Histone H3 lysine27 trimethylation. 
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Figure 3. Protein regulation of NOXA and MCL1, and drugs that target these aspects. 

Schematic overview of current knowledge of protein regulation of NOXA and MCL1 via the 
(de)ubiquitination machinery. Drugs with proven or clearly expected clinical potential are indicated 
by boxes at the steps they target. See main text for details. Ub  = Ubiquitin, K11, K48 denote lysine11 



Acc
ep

ted
 M

an
us

cri
pt

27 

 

or Lys48 linkage in ubiquitin chains.
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 Table 1 Ordering of cell stress pathways that affect Noxa level or function, with potential drugs and 

stage of clinical development indicated. 

n.a. = not applicable 

 

Category 
(see 
text) 

Pathway Mechanistic 
link to Noxa Reference(s) Potential drug(s)  Clinical stage 

1.  
Autophagy Tentative 97, 98 

NA
HA14-1 
Carbamazepine 
Clonidine 
Metformin 
Rilmenidine  

preclinical
preclinical 
FDA approved 
FDA approved 
FDA approved 
FDA approved 

Metabolism Probable but 
not clear how 91 AICAR Phase I/II trial 

2.  

ROS Established but 
not clear how 56, 145, 146 

Bortezomib
Cisplatin 
Beta-lapachone (ARQ-761) 
Elesclomol 

FDA approved
FDA approved 
Phase I/II trial 
Phase III trial 

Cell cycle stress 

Probable – 
various 
transcription 
factors 
proposed 

52, 53 Taxol 
palbociclib 

FDA approved 
FDA approved 

Epigenetics 

Probable – 
various 
transcription 
factors 
proposed 

60, 61 

HDACs - Vorinostat
DNMT inhibitors (5-
azacitidine, decitabine) 
Bromodomain inhibitors 
(JQ1) 

FDA approved 
FDA approved 
Phase I/II trials 
 

3.  

Hypoxia 

Established –
Hif1a binding 
site in Noxa 
promoter 
known 

63 n.a. n.a. 

ER stress Established via 
Noxa siRNA  68-75, 82 

Bortezomib
Carfilzomib 
Gossypol (AT-101) 
Apogossypol 
HA14-1 
Pemetrexed 

FDA approved
FDA approved 
Phase I/II trial 
Preclinical 
Preclinical 
FDA approved 

Protein turnover Firmly 
established 

41-43, 76-
79, 82 

Bortezomib
Carfilzomib 
MLN4924 (Pevonedistat) 

FDA approved
FDA approved 
Phase I/II trial 

4.  Bcl-2 family 
function 

Firmly 
established – 
Noxa binding to 
Mcl-1 

108 S63845 Preclinical 




