L. Murphy and J. Blenis, MAPK signal specificity: the right place at the right time, Trends in Biochemical Sciences, vol.31, issue.5, pp.268-275, 2006.
DOI : 10.1016/j.tibs.2006.03.009

E. Kim and E. Choi, Pathological roles of MAPK signaling pathways in human diseases, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1802, issue.4, pp.396-405, 2010.
DOI : 10.1016/j.bbadis.2009.12.009

URL : https://hal.archives-ouvertes.fr/hal-00566733

Y. Sun, W. Liu, T. Liu, X. Feng, N. Yang et al., Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis, Journal of Receptors and Signal Transduction, vol.11, issue.6, pp.600-604, 2015.
DOI : 10.1016/S0003-9861(02)00218-7

A. Dhillon, S. Hagan, O. Rath, and W. Kolch, MAP kinase signalling pathways in cancer, Oncogene, vol.4, issue.22, pp.3279-3290, 2007.
DOI : 10.1158/0008-5472.CAN-05-0115

A. Claperon and M. Therrien, KSR and CNK: two scaffolds regulating RAS-mediated RAF activation, Oncogene, vol.61, issue.22, pp.3143-3158, 2007.
DOI : 10.1074/jbc.M413327200

W. Kolch, Coordinating ERK/MAPK signalling through scaffolds and inhibitors, Nature Reviews Molecular Cell Biology, vol.2004, issue.11, pp.827-837, 2005.
DOI : 10.1128/MMBR.68.2.320-344.2004

I. Wortzel and R. Seger, The ERK Cascade: Distinct Functions within Various Subcellular Organelles, Genes & Cancer, vol.2, issue.3, pp.195-209, 2011.
DOI : 10.1177/1947601911407328

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128630

D. Stuart and W. Sellers, Targeting RAF-MEK-ERK kinase-scaffold interactions in cancer, Nature Medicine, vol.19, issue.5, pp.538-540, 2013.
DOI : 10.1016/j.cellsig.2008.11.013

L. Luttrell, F. Roudabush, E. Choy, W. Miller, M. Field et al., Activation and targeting of extracellular signal-regulated kinases by ?-arrestin scaffolds, Proceedings of the National Academy of Sciences, vol.57, issue.4, pp.2449-2454, 2001.
DOI : 10.1124/mol.57.4.778

A. Tohgo, K. Pierce, E. Choy, R. Lefkowitz, and L. Luttrell, ?-Arrestin Scaffolding of the ERK Cascade Enhances Cytosolic ERK Activity but Inhibits ERK-mediated Transcription following Angiotensin AT1a Receptor Stimulation, Journal of Biological Chemistry, vol.52, issue.11, pp.9429-9436, 2002.
DOI : 10.1074/jbc.275.15.11312

G. Daou and A. Srivastava, Reactive oxygen species mediate Endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells, Free Radical Biology and Medicine, vol.37, issue.2, pp.208-215, 2004.
DOI : 10.1016/j.freeradbiomed.2004.04.018

M. Karin and E. Gallagher, From JNK to Pay Dirt: Jun Kinases, their Biochemistry, Physiology and Clinical Importance, IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), vol.57, issue.4-5, pp.283-295, 2005.
DOI : 10.1080/15216540500097111

A. Cuenda and S. Rousseau, p38 MAP-Kinases pathway regulation, function and role in human diseases, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1773, issue.8, pp.1358-1375, 2007.
DOI : 10.1016/j.bbamcr.2007.03.010

M. Hayashi and J. Lee, Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice, Journal of Molecular Medicine, vol.2, issue.12, pp.800-808, 2004.
DOI : 10.1007/s00109-004-0602-8

B. Rose, T. Force, and Y. Wang, Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale, Physiological Reviews, vol.90, issue.4, pp.1507-1546, 2010.
DOI : 10.1152/physrev.00054.2009

B. Drew, M. Burow, and B. Beckman, MEK5/ERK5 pathway: The first fifteen years, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1825, issue.1, pp.37-48, 2012.
DOI : 10.1016/j.bbcan.2011.10.002

T. Takahashi, S. Yamaguchi, K. Chida, and M. Shibuya, A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells, The EMBO Journal, vol.20, issue.11, pp.2768-2778, 2001.
DOI : 10.1093/emboj/20.11.2768

L. Lamalice, F. Houle, J. G. Huot, and J. , Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38, Oncogene, vol.23, issue.2, pp.434-445, 2004.
DOI : 10.1038/sj.onc.1207034

S. Rousseau, F. Houle, H. Kotanides, L. Witte, J. Waltenberger et al., Vascular Endothelial Growth Factor (VEGF)-driven Actin-based Motility Is Mediated by VEGFR2 and Requires Concerted Activation of Stress-activated Protein Kinase 2 (SAPK2/p38) and Geldanamycin-sensitive Phosphorylation of Focal Adhesion Kinase, Journal of Biological Chemistry, vol.277, issue.14, pp.10661-10672, 2000.
DOI : 10.1073/pnas.91.18.8324

W. Breitwieser, S. Lyons, A. Flenniken, G. Ashton, G. Bruder et al., Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells, Genes & Development, vol.21, issue.16, pp.2069-2082, 2007.
DOI : 10.1101/gad.430207

G. Remy, A. Risco, F. Inesta-vaquera, B. Gonzalez-teran, G. Sabio et al., Differential activation of p38MAPK isoforms by MKK6 and MKK3, Cellular Signalling, vol.22, issue.4, pp.660-667, 2010.
DOI : 10.1016/j.cellsig.2009.11.020

A. Cuadrado and A. Nebreda, Mechanisms and functions of p38 MAPK signalling, Biochemical Journal, vol.180, issue.3, pp.403-417, 2010.
DOI : 10.2174/138161209788682299

N. Gerits, S. Kostenko, and U. Moens, In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice, Transgenic Research, vol.270, issue.21, pp.281-314, 2007.
DOI : 10.1172/JCI16290

J. Han, J. Lee, L. Bibbs, and R. Ulevitch, A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells, Science, vol.265, issue.5173, pp.808-811, 1994.
DOI : 10.1126/science.7914033

J. Rouse, P. Cohen, S. Trigon, M. Morange, A. Alonso-llamazares et al., A novel kinase cascade triggered by stress and heat shock that

J. Raingeaud, S. Gupta, J. Rogers, M. Dickens, J. Han et al., Pro-inflammatory Cytokines and Environmental Stress Cause p38 Mitogen-activated Protein Kinase Activation by Dual Phosphorylation on Tyrosine and Threonine, Journal of Biological Chemistry, vol.268, issue.13, pp.7420-7426, 1995.
DOI : 10.1016/0955-0674(92)90131-U

B. Derijard, J. Raingeaud, T. Barrett, I. Wu, J. Han et al., Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms, Science, vol.268, issue.15, pp.682-685, 1995.
DOI : 10.1128/MCB.13.9.5738

D. Brancho, N. Tanaka, A. Jaeschke, J. Ventura, N. Kelkar et al., Mechanism of p38 MAP kinase activation in vivo, Genes & Development, vol.17, issue.16, pp.1969-1978, 2003.
DOI : 10.1101/gad.1107303

J. Salvador, P. Mittelstadt, T. Guszczynski, T. Copeland, H. Yamaguchi et al., Alternative p38 activation pathway mediated by T cell receptor???proximal tyrosine kinases, Nature Immunology, vol.16, issue.4, pp.390-395, 2005.
DOI : 10.1016/S1074-7613(02)00302-3

D. Nicola, G. Martin, E. Chaikuad, A. Bassi, R. Clark et al., Mechanism and consequence of the autoactivation of p38? mitogen-activated protein kinase promoted by TAB1, Nature Structural & Molecular Biology, vol.48, issue.10, pp.1182-1190, 2013.
DOI : 10.1016/j.jacc.2006.02.072

Y. Kang, A. Seit-nebi, R. Davis, and J. Han, Multiple Activation Mechanisms of p38?? Mitogen-activated Protein Kinase, Journal of Biological Chemistry, vol.174, issue.36, pp.26225-26234, 2006.
DOI : 10.1074/jbc.M909629199

M. Uhlik, A. Abell, N. Johnson, W. Sun, B. Cuevas et al., Rac???MEKK3???MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock, Nature Cell Biology, vol.15, issue.12, pp.1104-1110, 2003.
DOI : 10.1093/emboj/19.20.5387

C. Pan, M. Sudol, M. Sheetz, and B. Low, Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling, Cellular Signalling, vol.24, issue.11, pp.2143-2165, 2012.
DOI : 10.1016/j.cellsig.2012.06.002

Q. Wang, S. Zhou, J. Wang, J. Cao, X. Zhang et al., RACK1 antagonizes TNF-?-induced cell death by promoting p38 activation, Scientific Reports, vol.21, issue.1, p.14298, 2015.
DOI : 10.1038/mt.2013.90

URL : http://doi.org/10.1038/srep14298

A. Whitmarsh, The JIP family of MAPK scaffold proteins, Biochemical Society Transactions, vol.34, issue.5, pp.828-832, 2006.
DOI : 10.1042/BST0340828

T. Boutros, A. Nantel, A. Emadali, G. Tzimas, S. Conzen et al., The MAP Kinase Phosphatase-1 MKP-1/DUSP1 Is a Regulator of Human Liver Response to Transplantation, American Journal of Transplantation, vol.77, issue.Database issue, pp.2558-2568, 2008.
DOI : 10.1111/j.1600-6143.2008.02420.x

D. Owens and S. Keyse, Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases, Oncogene, vol.176, issue.22, pp.3203-3213, 2007.
DOI : 10.1074/jbc.274.50.35526

A. Barajas-espinosa, A. Basye, M. Angelos, and C. Chen, Modulation of p38 kinase by DUSP4 is important in regulating cardiovascular function under oxidative stress, Free Radical Biology and Medicine, vol.89, pp.170-181, 2015.
DOI : 10.1016/j.freeradbiomed.2015.07.013

M. Takekawa, M. Adachi, A. Nakahata, I. Nakayama, F. Itoh et al., p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation, The EMBO Journal, vol.19, issue.23, pp.6517-6526, 2000.
DOI : 10.1093/emboj/19.23.6517

R. Singh, Model predicts that MKP1 and TAB1 regulate p38alpha nuclear pulse and its basal activity through positive and negative feedback loops in response to IL-1, PLoS One, vol.11, p.157572, 2016.

S. Jonas and E. Izaurralde, Towards a molecular understanding of microRNA-mediated gene silencing, Nature Reviews Genetics, vol.768, issue.7, pp.421-433, 2015.
DOI : 10.1093/nar/gkp173

L. Philippe, G. Alsaleh, S. Bahram, S. Pfeffer, and P. Georgel, The miR-17 approximately 92 cluster: a key player in the control of inflammation during rheumatoid arthritis, Front Immunol, vol.4, p.70, 2013.

A. Pin, F. Houle, M. Guillonneau, E. Paquet, M. Simard et al., miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF, Angiogenesis, vol.68, issue.4, pp.593-608, 2012.
DOI : 10.1158/0008-5472.CAN-07-6460

A. Pin, F. Houle, P. Fournier, M. Guillonneau, E. Paquet et al., Annexin-1-mediated Endothelial Cell Migration and Angiogenesis Are Regulated by Vascular Endothelial Growth Factor (VEGF)-induced Inhibition of miR-196a Expression, Journal of Biological Chemistry, vol.50, issue.36, pp.30541-30551, 2012.
DOI : 10.2337/diabetes.50.3.667

S. Lawson, E. Dobrikova, M. Shveygert, and M. Gromeier, p38? Mitogen-Activated Protein Kinase Depletion and Repression of Signal Transduction to Translation Machinery by miR-124 and -128 in Neurons, Molecular and Cellular Biology, vol.33, issue.1, pp.127-135, 2013.
DOI : 10.1128/MCB.00695-12

G. Carraro, A. El-hashash, D. Guidolin, C. Tiozzo, G. Turcatel et al., miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution, Developmental Biology, vol.333, issue.2, pp.238-250, 2009.
DOI : 10.1016/j.ydbio.2009.06.020

Y. Xiao, Y. W. Lu, L. Wang, Y. Lu, W. Cao et al., p38/p53/miR-200a-3p feedback loop promotes oxidative stress-mediated liver cell death, Cell Cycle, vol.276, issue.10, pp.1548-1558, 2015.
DOI : 10.1038/nprot.2011.431

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615042

R. Ben-levy, S. Hooper, R. Wilson, H. Paterson, and C. Marshall, Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2, Current Biology, vol.8, issue.19, pp.1049-1057, 1998.
DOI : 10.1016/S0960-9822(98)70442-7

A. Plotnikov, E. Zehorai, S. Procaccia, and R. Seger, The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1813, issue.9, pp.1619-1633, 2011.
DOI : 10.1016/j.bbamcr.2010.12.012

P. Pratt, D. Bokemeyer, M. Foschi, A. Sorokin, and M. Dunn, Alterations in Subcellular Localization of p38 MAPK Potentiates Endothelin-stimulated COX-2 Expression in Glomerular Mesangial Cells, Journal of Biological Chemistry, vol.114, issue.51, pp.51928-51936, 2003.
DOI : 10.1016/S0968-0004(98)01241-9

R. Chen, C. Sarnecki, and J. Blenis, Nuclear localization and regulation of erk- and rsk-encoded protein kinases., Molecular and Cellular Biology, vol.12, issue.3, pp.915-927, 1992.
DOI : 10.1128/MCB.12.3.915

R. Pfundt, I. Van-vlijmen-willems, M. Bergers, M. Wingens, W. Cloin et al., In situ demonstration of phosphorylated c-jun and p38 MAP kinase in epidermal keratinocytes following ultraviolet B irradiation of human skin, The Journal of Pathology, vol.83, issue.2, pp.248-255, 2001.
DOI : 10.1038/bjc.1997.511

C. Wood, T. Thornton, G. Sabio, R. Davis, and M. Rincon, Nuclear Localization of p38 MAPK in Response to DNA Damage, International Journal of Biological Sciences, vol.5, pp.428-437, 2009.
DOI : 10.7150/ijbs.5.428

E. Zehorai and R. Seger, Beta-Like Importins Mediate the Nuclear Translocation of Mitogen-Activated Protein Kinases, Molecular and Cellular Biology, vol.34, issue.2, pp.259-270, 2014.
DOI : 10.1128/MCB.00799-13

X. Gong, X. Ming, P. Deng, and Y. Jiang, Mechanisms regulating the nuclear translocation of p38 MAP kinase, Journal of Cellular Biochemistry, vol.77, issue.6, pp.1420-1429, 2010.
DOI : 10.7150/ijbs.5.428

N. Trempolec, N. Dave-coll, and A. Nebreda, SnapShot: p38 MAPK Substrates, Cell, vol.152, issue.4, pp.924-924, 2013.
DOI : 10.1016/j.cell.2013.01.047

URL : http://doi.org/10.1016/j.cell.2013.01.047

N. Trempolec, N. Dave-coll, and A. Nebreda, SnapShot: p38 MAPK Signaling, Cell, vol.152, issue.3, pp.656-656, 2013.
DOI : 10.1016/j.cell.2013.01.029

URL : http://doi.org/10.1016/j.cell.2013.01.029

X. Wang and R. D. , Stress-Induced Phosphorylation and Activation of the Transcription Factor CHOP (GADD153) by p38 MAP Kinase, Science, vol.272, issue.5266, pp.1347-1349, 1996.
DOI : 10.1126/science.272.5266.1347

M. Gozdecka and W. Breitwieser, The roles of ATF2 (activating transcription factor 2) in tumorigenesis, Biochemical Society Transactions, vol.63, issue.1, pp.230-234, 2012.
DOI : 10.1126/science.1164368

C. Huang, W. Ma, A. Maxiner, Y. Sun, and Z. Dong, p38 Kinase Mediates UV-induced Phosphorylation of p53 Protein at Serine 389, Journal of Biological Chemistry, vol.6, issue.18, pp.12229-12235, 1999.
DOI : 10.1016/S0092-8674(00)80416-X

C. Riebe, R. Pries, K. Schroeder, and B. Wollenberg, Phosphorylation of STAT3 in head and neck cancer requires p38 MAPKinase, whereas phosphorylation of STAT1 occurs via a different signaling pathway, Anticancer Res, vol.31, pp.3819-3825, 2011.

D. Bulavin, S. Saito, M. Hollander, K. Sakaguchi, C. Anderson et al., Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation, The EMBO Journal, vol.18, issue.23, pp.6845-6854, 1999.
DOI : 10.1093/emboj/18.23.6845

T. Thornton and M. Rincon, Non-Classical P38 Map Kinase Functions: Cell Cycle Checkpoints and Survival, International Journal of Biological Sciences, vol.5, pp.44-51, 2009.
DOI : 10.7150/ijbs.5.44

URL : http://doi.org/10.7150/ijbs.5.44

M. Xiu, J. Kim, E. Sampson, C. Huang, R. Davis et al., The Transcriptional Repressor HBP1 Is a Target of the p38 Mitogen-Activated Protein Kinase Pathway in Cell Cycle Regulation, Molecular and Cellular Biology, vol.23, issue.23, pp.8890-8901, 2003.
DOI : 10.1128/MCB.23.23.8890-8901.2003

C. Olson, M. Hedrick, H. Izadi, T. Bates, E. Olivera et al., p38 Mitogen-Activated Protein Kinase Controls NF-?B Transcriptional Activation and Tumor Necrosis Factor Alpha Production through RelA Phosphorylation Mediated by Mitogen- and Stress-Activated Protein Kinase 1 in Response to Borrelia burgdorferi Antigens, Infection and Immunity, vol.75, issue.1, pp.270-277, 2007.
DOI : 10.1128/IAI.01412-06

L. Zhong, B. Simoneau, J. Huot, and M. Simard, p38 and JNK pathways control E-selectin-dependent extravasation of colon cancer cells by modulating miR-31 transcription, Oncotarget, vol.8, pp.1678-1687, 2017.
DOI : 10.18632/oncotarget.13779

H. Lee and W. Bai, Regulation of Estrogen Receptor Nuclear Export by Ligand-Induced and p38-Mediated Receptor Phosphorylation, Molecular and Cellular Biology, vol.22, issue.16, pp.5835-5845, 2002.
DOI : 10.1128/MCB.22.16.5835-5845.2002

Y. Tan, J. Rouse, A. Zhang, S. Cariati, P. Cohen et al., FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2, EMBO J, vol.15, pp.4629-4642, 1996.

M. Deak, A. Clifton, L. Lucocq, and D. Alessi, Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activationofCREB, The EMBO Journal, vol.17, issue.15, pp.4426-4441, 1998.
DOI : 10.1093/emboj/17.15.4426

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170775

S. Pyronnet, H. Imataka, A. Gingras, R. Fukunaga, T. Hunter et al., Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E, The EMBO Journal, vol.18, issue.1, pp.270-279, 1999.
DOI : 10.1093/emboj/18.1.270

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171121

J. Dean, G. Sully, A. Clark, and J. Saklatvala, The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation, Cellular Signalling, vol.16, issue.10, pp.1113-1121, 2004.
DOI : 10.1016/j.cellsig.2004.04.006

C. Tiedje, N. Ronkina, M. Tehrani, S. Dhamija, K. Laass et al., The p38/MK2-Driven Exchange between Tristetraprolin and HuR Regulates AU?Rich Element?Dependent Translation, PLoS Genetics, vol.8, issue.9, p.1002977, 2012.
DOI : 10.1371/journal.pgen.1002977.s008

URL : http://doi.org/10.1371/journal.pgen.1002977

M. Cargnello and P. Roux, Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases, Microbiology and Molecular Biology Reviews, vol.75, issue.1, pp.50-83, 2011.
DOI : 10.1128/MMBR.00031-10

H. Jia, Q. Cong, J. Chua, H. Liu, X. Xia et al., p57Kip2 is an unrecognized DNA damage response effector molecule that functions in tumor suppression and chemoresistance, Oncogene, vol.128, issue.27, pp.3568-3581, 2015.
DOI : 10.1073/pnas.0604708103

R. Densham, D. Todd, K. Balmanno, and S. Cook, ERK1/2 and p38 cooperate to delay progression through G1 by promoting cyclin D1 protein turnover, Cellular Signalling, vol.20, issue.11, pp.1986-1994, 2008.
DOI : 10.1016/j.cellsig.2008.07.005

S. Widenmaier, Z. Ao, S. Kim, G. Warnock, and C. Mcintosh, Suppression of p38 MAPK and JNK via Akt-mediated Inhibition of Apoptosis Signal-regulating Kinase 1 Constitutes a Core Component of the ?-Cell Pro-survival Effects of Glucose-dependent Insulinotropic Polypeptide, Journal of Biological Chemistry, vol.1780, issue.44, pp.30372-30382, 2009.
DOI : 10.1093/embo-reports/kve046

M. Alvarado-kristensson, F. Melander, K. Leandersson, L. Ronnstrand, C. Wernstedt et al., p38-MAPK Signals Survival by Phosphorylation of Caspase-8 and Caspase-3 in Human Neutrophils, The Journal of Experimental Medicine, vol.162, issue.4, pp.449-458, 2004.
DOI : 10.1016/S0092-8674(01)00544-X

A. Khurana, K. Nakayama, S. Williams, R. Davis, T. Mustelin et al., Regulation of the Ring Finger E3 Ligase Siah2 by p38 MAPK, Journal of Biological Chemistry, vol.4, issue.46, pp.35316-35326, 2006.
DOI : 10.1073/pnas.181181198

S. Lee, Y. Park, S. Yoon, and J. Yoon, Osmotic Stress Inhibits Proteasome by p38 MAPK-dependent Phosphorylation, Journal of Biological Chemistry, vol.1773, issue.53, pp.41280-41289, 2010.
DOI : 10.1006/abbi.2000.2178

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009853

L. Lamalice, L. Boeuf, F. Huot, and J. , Endothelial Cell Migration During Angiogenesis, Circulation Research, vol.100, issue.6, pp.782-794, 2007.
DOI : 10.1161/01.RES.0000259593.07661.1e

M. Cote, J. Lavoie, F. Houle, A. Poirier, S. Rousseau et al., Regulation of Vascular Endothelial Growth Factor-induced Endothelial Cell Migration by LIM Kinase 1-mediated Phosphorylation of Annexin 1, Journal of Biological Chemistry, vol.296, issue.11, pp.8013-8021, 2010.
DOI : 10.1038/nrm1834

E. Birben, U. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci, Oxidative Stress and Antioxidant Defense, World Allergy Organization Journal, vol.5, issue.1, pp.9-19, 2012.
DOI : 10.1097/WOX.0b013e3182439613

URL : http://doi.org/10.1097/wox.0b013e3182439613

R. Mikkelsen and P. Wardman, Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms, Oncogene, vol.22, issue.37, pp.5734-5754, 2003.
DOI : 10.1038/sj.onc.1206663

B. Marengo, M. Nitti, A. Furfaro, R. Colla, C. Ciucis et al., Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy, Oxidative Medicine and Cellular Longevity, vol.1, issue.3, p.6235641, 2016.
DOI : 10.1016/j.semcancer.2006.09.002

URL : http://doi.org/10.1155/2016/6235641

T. Suvorava and G. Kojda, Reactive oxygen species as cardiovascular mediators: Lessons from endothelial-specific protein overexpression mouse models, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1787, issue.7, pp.802-810, 2009.
DOI : 10.1016/j.bbabio.2009.04.005

URL : http://doi.org/10.1016/j.bbabio.2009.04.005

R. Touyz and E. Schiffrin, Reactive oxygen species in vascular biology: implications in hypertension, Histochemistry and Cell Biology, vol.108, issue.4, pp.339-352, 2004.
DOI : 10.1007/s00418-004-0696-7

M. Elahi and B. Matata, Free radicals in blood: Evolving concepts in the mechanism of ischemic heart disease, Archives of Biochemistry and Biophysics, vol.450, issue.1, pp.78-88, 2006.
DOI : 10.1016/j.abb.2006.03.011

K. Birukov, Cyclic Stretch, Reactive Oxygen Species, and Vascular Remodeling, Antioxidants & Redox Signaling, vol.11, issue.7, pp.1651-1667, 2009.
DOI : 10.1089/ars.2008.2390

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842585

R. Breton-romero and S. Lamas, Hydrogen Peroxide Signaling Mediator in the Activation of p38 MAPK in Vascular Endothelial Cells, Methods Enzymol, vol.528, pp.49-59, 2013.
DOI : 10.1016/B978-0-12-405881-1.00003-3

M. Duval, L. Boeuf, F. Huot, J. Gratton, and J. , Src-mediated Phosphorylation of Hsp90 in Response to Vascular Endothelial Growth Factor (VEGF) Is Required for VEGF Receptor-2 Signaling to Endothelial NO Synthase, Molecular Biology of the Cell, vol.18, issue.11, pp.4659-4668, 2007.
DOI : 10.1091/mbc.E07-05-0467

F. Lantoine, L. Iouzalen, M. Devynck, E. Millanvoye-van-brussel, and M. David-dufilho, Nitric oxide production in human endothelial cells stimulated by histamine requires Ca2+ influx, Biochemical Journal, vol.330, issue.2, pp.695-699, 1998.
DOI : 10.1042/bj3300695

Q. Hu and R. Ziegelstein, Hypoxia/Reoxygenation Stimulates Intracellular Calcium Oscillations in Human Aortic Endothelial Cells, Circulation, vol.102, issue.20, pp.2541-2547, 2000.
DOI : 10.1161/01.CIR.102.20.2541

T. Millar, V. Phan, and L. Tibbles, ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment, Free Radical Biology and Medicine, vol.42, issue.8, pp.1165-1177, 2007.
DOI : 10.1016/j.freeradbiomed.2007.01.015

J. Holland, K. Pritchard, M. Pappolla, M. Wolin, N. Rogers et al., Bradykinin induces superoxide anion release from human endothelial cells, Journal of Cellular Physiology, vol.959, issue.1, pp.21-25, 1990.
DOI : 10.1016/0005-2760(88)90145-2

T. Milovanova, S. Chatterjee, Y. Manevich, I. Kotelnikova, K. Debolt et al., Lung endothelial cell proliferation with decreased shear stress is mediated by reactive oxygen species, AJP: Cell Physiology, vol.290, issue.1, pp.66-76, 2006.
DOI : 10.1152/ajpcell.00094.2005

S. Jin, F. Zhou, F. Katirai, and P. Li, Lipid Raft Redox Signaling: Molecular Mechanisms in Health and Disease, Antioxidants & Redox Signaling, vol.15, issue.4, pp.1043-1083, 2011.
DOI : 10.1089/ars.2010.3619

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135227

C. Papaharalambus and K. Griendling, Basic Mechanisms of Oxidative Stress and Reactive Oxygen Species in Cardiovascular Injury, Trends in Cardiovascular Medicine, vol.17, issue.2, pp.48-54, 2007.
DOI : 10.1016/j.tcm.2006.11.005

H. Hsieh, C. Liu, B. Huang, A. Tseng, and D. Wang, Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications, Journal of Biomedical Science, vol.21, issue.1, p.3, 2014.
DOI : 10.1016/j.yjmcc.2011.08.021

URL : http://doi.org/10.1186/1423-0127-21-3

A. Lerman, J. Burnett, and . Jr, Intact and altered endothelium in regulation of vasomotion, Circulation, vol.86, pp.12-19, 1992.

H. Hadi, C. Carr, A. Suwaidi, and J. , Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome, Vasc Health Risk Manag, vol.1, pp.183-198, 2005.

J. Huot, F. Houle, D. Spitz, and J. Landry, HSP27 phosphorylationmediated resistance against actin fragmentation and cell death induced by oxidative stress, Cancer Res, vol.56, pp.273-279, 1996.

G. Bellomo and F. Mirabelli, Oxidative Stress and Cytoskeletal Alterations, Annals of the New York Academy of Sciences, vol.277, issue.1 Aging and Cel, pp.97-109, 1992.
DOI : 10.1042/bj2770001

H. Sun, X. Ren, J. Liu, X. Guo, X. Jiang et al., HSP27 phosphorylation protects against endothelial barrier dysfunction under burn serum challenge, Biochemical and Biophysical Research Communications, vol.463, issue.3, pp.377-383, 2015.
DOI : 10.1016/j.bbrc.2015.04.152

G. White and K. Fujiwara, Expression and intracellular distribution of stress fibers in aortic endothelium, The Journal of Cell Biology, vol.103, issue.1, pp.63-70, 1986.
DOI : 10.1083/jcb.103.1.63

S. Tsirmoula, M. Lamprou, M. Hatziapostolou, N. Kieffer, and E. Papadimitriou, Pleiotrophin-induced endothelial cell migration is regulated by xanthine oxidase-mediated generation of reactive oxygen species, Microvascular Research, vol.98, pp.74-81, 2015.
DOI : 10.1016/j.mvr.2015.01.001

M. Bogoyevitch, J. Gillespie-brown, A. Ketterman, S. Fuller, R. Ben-levy et al., Stimulation of the Stress-Activated Mitogen-Activated Protein Kinase Subfamilies in Perfused Heart: p38/RK Mitogen-Activated Protein Kinases and c-Jun N-Terminal Kinases Are Activated by Ischemia/Reperfusion, Circulation Research, vol.79, issue.2, pp.162-173, 1996.
DOI : 10.1161/01.RES.79.2.162

P. Sugden and A. Clerk, "Stress-Responsive" Mitogen-Activated Protein Kinases (c-Jun N-Terminal Kinases and p38 Mitogen-Activated Protein Kinases) in the Myocardium, Circulation Research, vol.83, issue.4, pp.345-352, 1998.
DOI : 10.1161/01.RES.83.4.345

J. Huot, F. Houle, S. Rousseau, R. Deschesnes, G. Shah et al., SAPK2/p38-dependent F-Actin Reorganization Regulates Early Membrane Blebbing during Stress-induced Apoptosis, The Journal of Cell Biology, vol.272, issue.5, pp.1361-1373, 1998.
DOI : 10.1002/(SICI)1097-4652(199803)174:3<370::AID-JCP11>3.0.CO;2-D

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2133090/pdf

F. Houle, A. Poirier, J. Dumaresq, and J. Huot, DAP kinase mediates the phosphorylation of tropomyosin-1 downstream of the ERK pathway, which regulates the formation of stress fibers in response to oxidative stress, Journal of Cell Science, vol.120, issue.20, pp.3666-3677, 2007.
DOI : 10.1242/jcs.003251

F. Houle, S. Rousseau, N. Morrice, M. Luc, S. Mongrain et al., Extracellular Signal-regulated Kinase Mediates Phosphorylation of Tropomyosin-1 to Promote Cytoskeleton Remodeling in Response to Oxidative Stress: Impact on Membrane Blebbing, Molecular Biology of the Cell, vol.14, issue.4, pp.1418-1432, 2003.
DOI : 10.1091/mbc.E02-04-0235

M. Chrzanowska-wodnicka and K. Burridge, Rho-stimulated contractility drives the formation of stress fibers and focal adhesions, The Journal of Cell Biology, vol.133, issue.6, pp.1403-1415, 1996.
DOI : 10.1083/jcb.133.6.1403

K. Sano, K. Maeda, T. Oda, and Y. Maeda, The effect of single residue substitutions of serine-283 on the strength of headto-tail interaction and actin binding properties of rabbit www.impactjournals.com/oncotarget skeletal muscle alpha-tropomyosin, J Biochem, vol.127, pp.1095-1102, 2000.

F. Houle and J. Huot, Dysregulation of the endothelial cellular response to oxidative stress in cancer, Molecular Carcinogenesis, vol.287, issue.6, pp.362-367, 2006.
DOI : 10.1161/01.RES.80.3.383

B. Simoneau, F. Houle, and J. Huot, Regulation of endothelial permeability and transendothelial migration of cancer cells by tropomyosin-1 phosphorylation, Vascular Cell, vol.4, issue.1, p.18, 2012.
DOI : 10.1186/2045-824X-4-18

S. Sukriti, M. Tauseef, P. Yazbeck, and D. Mehta, Mechanisms regulating endothelial permeability, Pulmonary Circulation, vol.209, issue.4, pp.535-551, 2014.
DOI : 10.1038/ncb1714

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278616

D. Mehta and A. Malik, Signaling Mechanisms Regulating Endothelial Permeability, Physiological Reviews, vol.86, issue.1, pp.279-367, 2006.
DOI : 10.1152/physrev.00012.2005

T. Borbiev, A. Birukova, F. Liu, S. Nurmukhambetova, W. Gerthoffer et al., p38 MAP kinase-dependent regulation of endothelial cell permeability, AJP: Lung Cellular and Molecular Physiology, vol.287, issue.5, pp.911-918, 2004.
DOI : 10.1152/ajplung.00372.2003

R. Wysolmerski and D. Lagunoff, Involvement of myosin light-chain kinase in endothelial cell retraction., Proceedings of the National Academy of Sciences, vol.87, issue.1, pp.16-20, 1990.
DOI : 10.1073/pnas.87.1.16

R. Wysolmerski and D. Lagunoff, Regulation of permeabilized endothelial cell retraction by myosin phosphorylation, Am J Physiol, vol.261, pp.32-40, 1991.

S. Adderley, C. Lawrence, E. Madonia, J. Olubadewo, and J. Breslin, Histamine activates p38 MAP kinase and alters local lamellipodia dynamics, reducing endothelial barrier integrity and eliciting central movement of actin fibers, American Journal of Physiology - Cell Physiology, vol.309, issue.1, pp.51-59, 2015.
DOI : 10.1152/ajpcell.00096.2015

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490326

B. Jin, A. Lin, D. Golan, and T. Michel, MARCKS protein mediates hydrogen peroxide regulation of endothelial permeability, Proceedings of the National Academy of Sciences, vol.39, issue.4-5, pp.14864-14869, 2012.
DOI : 10.1016/S1537-1891(03)00008-9

K. Schweitzer, H. Hatoum, M. Brown, M. Gupta, M. Justice et al., Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides, American Journal of Physiology - Lung Cellular and Molecular Physiology, vol.301, issue.6, pp.836-846, 2011.
DOI : 10.1152/ajplung.00385.2010

I. Van-den-oever, H. Raterman, M. Nurmohamed, and S. Simsek, Endothelial Dysfunction, Inflammation, and Apoptosis in Diabetes Mellitus, Mediators of Inflammation, vol.34, issue.7, p.792393, 2010.
DOI : 10.1161/01.ATV.0000155462.24263.e4

E. Wagner and A. Nebreda, Signal integration by JNK and p38 MAPK pathways in cancer development, Nature Reviews Cancer, vol.136, issue.8, pp.537-549, 2009.
DOI : 10.1016/j.bbapap.2007.09.013

H. Reinhardt, P. Hasskamp, I. Schmedding, S. Morandell, M. Van-vugt et al., DNA Damage Activates a Spatially Distinct Late Cytoplasmic Cell-Cycle Checkpoint Network Controlled by MK2-Mediated RNA Stabilization, Molecular Cell, vol.40, issue.1, pp.34-49, 2010.
DOI : 10.1016/j.molcel.2010.09.018

H. Kim, C. Vosseler, P. Weber, and E. W. , Docosahexaenoic acid induces apoptosis in proliferating human endothelial cells, Journal of Cellular Physiology, vol.306, issue.3, pp.881-888, 2005.
DOI : 10.1161/01.CIR.99.13.1726

F. Marampon, G. Gravina, C. Festuccia, V. Popov, E. Colapietro et al., Vitamin D protects endothelial cells from irradiation-induced senescence and apoptosis by modulating MAPK/SirT1 axis, Journal of Endocrinological Investigation, vol.13, issue.1, pp.411-422, 2016.
DOI : 10.2174/156652413804486223

Y. Choi, Y. Jeong, Y. Lee, H. Kwon, and Y. Kang, (-) Epigallocatechin gallate and quercetin enhance survival signaling in response to oxidant-induced human endothelial apoptosis, J Nutr, vol.135, pp.707-713, 2005.

X. Bao, C. Wu, and G. Lu, Atorvastatin inhibits homocysteine-induced oxidative stress and apoptosis in endothelial progenitor cells involving Nox4 and p38MAPK, Atherosclerosis, vol.210, issue.1, pp.114-121, 2010.
DOI : 10.1016/j.atherosclerosis.2009.11.032

Y. Bai, C. Hu, Q. Yuan, J. Peng, R. Shi et al., Role of VPO1, a newly identified heme-containing peroxidase, in ox-LDL induced endothelial cell apoptosis, Free Radical Biology and Medicine, vol.51, issue.8, pp.1492-1500, 2011.
DOI : 10.1016/j.freeradbiomed.2011.07.004

R. Kolesnick and Z. Fuks, Radiation and ceramide-induced apoptosis, Oncogene, vol.22, issue.37, pp.5897-5906, 2003.
DOI : 10.1038/sj.onc.1206702

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Haimovitz-friedman, C. Kan, D. Ehleiter, R. Persaud, M. Mcloughlin et al., Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis, Journal of Experimental Medicine, vol.180, issue.2, pp.525-535, 1994.
DOI : 10.1084/jem.180.2.525

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191598/pdf

F. Paris, Z. Fuks, A. Kang, P. Capodieci, G. Juan et al., Endothelial Apoptosis as the Primary Lesion Initiating Intestinal Radiation Damage in Mice, Science, vol.293, issue.5528, pp.293-297, 2001.
DOI : 10.1126/science.1060191

M. Garcia-barros, F. Paris, C. Cordon-cardo, D. Lyden, S. Rafii et al., Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis, Science, vol.300, issue.5622, pp.1155-1159, 2003.
DOI : 10.1126/science.1082504

S. Willaime, P. Vanhoutte, J. Caboche, Y. Lemaigre-dubreuil, J. Mariani et al., Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation, European Journal of Neuroscience, vol.275, issue.11, pp.2037-2046, 2001.
DOI : 10.1074/jbc.M001185200

H. Shimizu, Y. Banno, N. Sumi, T. Naganawa, Y. Kitajima et al., Activation of p38 Mitogen-Activated Protein Kinase and Caspases in UVB-Induced Apoptosis of Human Keratinocyte HaCaT Cells, Journal of Investigative Dermatology, vol.112, issue.5, pp.769-774, 1999.
DOI : 10.1046/j.1523-1747.1999.00582.x

B. Brenner, U. Koppenhoefer, C. Weinstock, O. Linderkamp, F. Lang et al., Fas- or Ceramide-induced Apoptosis Is Mediated by a Rac1-regulated Activation of Jun N-terminal Kinase/p38 Kinases and GADD153, Journal of Biological Chemistry, vol.157, issue.35, pp.22173-22181, 1997.
DOI : 10.1016/0161-5890(95)00121-2

S. Marathe, S. Schissel, M. Yellin, N. Beatini, R. Mintzer et al., Human Vascular Endothelial Cells Are a Rich and Regulatable Source of Secretory Sphingomyelinase, Journal of Biological Chemistry, vol.10, issue.7, pp.4081-4088, 1998.
DOI : 10.1002/jnr.490100205

H. Qiu, T. Edmunds, J. Baker-malcolm, K. Karey, S. Estes et al., Activation of Human Acid Sphingomyelinase through Modification or Deletion of C-terminal Cysteine, Journal of Biological Chemistry, vol.1533, issue.35, pp.32744-32752, 2003.
DOI : 10.1016/S1388-1981(01)00139-1

C. Dumitru, Y. Zhang, X. Li, and E. Gulbins, Ceramide: A Novel Player in Reactive Oxygen Species-Induced Signaling?, Antioxidants & Redox Signaling, vol.9, issue.9, pp.1535-1540, 2007.
DOI : 10.1089/ars.2007.1692

J. Ohanian, S. Forman, G. Katzenberg, and V. Ohanian, Endothelin-1 Stimulates Small Artery VCAM-1 Expression through p38MAPK-Dependent Neutral Sphingomyelinase, Journal of Vascular Research, vol.49, issue.4, pp.353-362, 2012.
DOI : 10.1159/000336649

C. Camare, N. Auge, M. Pucelle, B. Saint-lebes, M. Grazide et al., The neutral sphingomyelinase-2 is involved in angiogenic signaling triggered by oxidized LDL, Free Radical Biology and Medicine, vol.93, pp.204-216, 2016.
DOI : 10.1016/j.freeradbiomed.2016.02.006

M. Bao, J. Li, Q. Zhou, G. Li, J. Zeng et al., Effects of miR590 on oxLDL-induced endothelial cell apoptosis: roles of p53 and NF-?B, Mol Med Rep, vol.13, pp.867-873, 2016.

S. Grethe, M. Ares, T. Andersson, and M. Porn-ares, p38 MAPK mediates TNF-induced apoptosis in endothelial cells via phosphorylation and downregulation of Bcl-xL, Experimental Cell Research, vol.298, issue.2, pp.632-642, 2004.
DOI : 10.1016/j.yexcr.2004.05.007

P. Kumar, I. Coltas, B. Kumar, D. Chepeha, C. Bradford et al., Bcl-2 Protects Endothelial Cells against ?-Radiation via a Raf-MEK-ERK-Survivin Signaling Pathway That Is Independent of Cytochrome c Release, Cancer Research, vol.67, issue.3, pp.1193-1202, 2007.
DOI : 10.1158/0008-5472.CAN-06-2265

X. Wang, Y. Wang, H. Kim, A. Choi, and S. Ryter, FLIP inhibits endothelial cell apoptosis during hyperoxia by suppressing Bax, Free Radical Biology and Medicine, vol.42, issue.10, pp.1599-1609, 2007.
DOI : 10.1016/j.freeradbiomed.2007.02.020

I. Pantsulaia, W. Ciszewski, and J. Niewiarowska, Senescent endothelial cells: Potential modulators of immunosenescence and ageing, Ageing Research Reviews, vol.29, pp.13-25, 2016.
DOI : 10.1016/j.arr.2016.05.011

J. Campisi and . Cancer, aging and cellular senescence, In Vivo, vol.14, pp.183-188, 2000.

C. Regina, E. Panatta, C. E. Melino, G. Amelio, I. Balistreri et al., Vascular ageing and endothelial cell senescence: Molecular mechanisms of physiology and diseases, Mechanisms of Ageing and Development, vol.159, pp.14-21, 2016.
DOI : 10.1016/j.mad.2016.05.003

F. Liu, S. Wu, H. Ren, and J. Gu, Klotho suppresses RIG-I-mediated senescence-associated inflammation, Nature Cell Biology, vol.106, issue.3, pp.254-262, 2011.
DOI : 10.1073/pnas.0811029106

K. Korybalska, E. Kawka, A. Kusch, F. Aregger, D. Dragun et al., Recovery of Senescent Endothelial Cells From Injury, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.68, issue.3, pp.250-257, 2013.
DOI : 10.1093/gerona/gls169

A. Freund, C. Patil, and J. Campisi, p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype, The EMBO Journal, vol.7, issue.8, pp.1536-1548, 2011.
DOI : 10.1111/j.1474-9726.2008.00377.x

E. Alspach, K. Flanagan, X. Luo, M. Ruhland, H. Huang et al., p38MAPK Plays a Crucial Role in Stromal-Mediated Tumorigenesis, Cancer Discovery, vol.4, issue.6, pp.716-729, 2014.
DOI : 10.1158/2159-8290.CD-13-0743

X. Shen, S. Xu, C. Jin, F. Ding, Y. Zhou et al., Interleukin-8 prevents oxidative stress-induced human endothelial cell senescence via telomerase activation, International Immunopharmacology, vol.16, issue.2, pp.261-267, 2013.
DOI : 10.1016/j.intimp.2013.04.003

Z. Wu, Y. Yu, C. Liu, Y. Xiong, J. Montani et al., Role of p38 mitogen-activated protein kinase in vascular endothelial aging: Interaction with Arginase-II and S6K1 signaling pathway, Aging, vol.7, issue.1, pp.70-81, 2015.
DOI : 10.18632/aging.100722

Y. Yoshida, Y. Hayashi, M. Suda, K. Tateno, S. Okada et al., Notch Signaling Regulates the Lifespan of Vascular Endothelial Cells via a p16-Dependent Pathway, PLoS ONE, vol.282, issue.6, p.100359, 2014.
DOI : 10.1371/journal.pone.0100359.s003

Y. Zhang, B. Herbert, G. Rajashekhar, D. Ingram, M. Yoder et al., Premature senescence of highly proliferative endothelial progenitor cells is induced by tumor necrosis factor-? via the p38 mitogen-activated protein kinase pathway, The FASEB Journal, vol.23, issue.5, pp.1358-1365, 2009.
DOI : 10.1096/fj.08-110296

J. Dai, X. Zhu, M. Yoder, Y. Wu, and R. Colman, Cleaved High-Molecular-Weight Kininogen Accelerates the Onset of Endothelial Progenitor Cell Senescence by Induction of Reactive Oxygen Species, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.4, pp.883-889, 2011.
DOI : 10.1161/ATVBAHA.110.222430

P. Spallarossa, P. Altieri, C. Barisione, M. Passalacqua, C. Aloi et al., p38 MAPK and JNK Antagonistically Control Senescence and Cytoplasmic p16INK4A Expression in Doxorubicin-Treated Endothelial Progenitor Cells, PLoS ONE, vol.25, issue.2, p.15583, 2010.
DOI : 10.1371/journal.pone.0015583.g007

URL : http://doi.org/10.1371/journal.pone.0015583

J. Chang, Y. Li, Y. Huang, K. Lam, R. Hoo et al., Adiponectin Prevents Diabetic Premature Senescence of Endothelial Progenitor Cells and Promotes Endothelial Repair by Suppressing the p38 MAP Kinase/p16INK4A Signaling Pathway, Diabetes, vol.59, issue.11, pp.2949-2959, 2010.
DOI : 10.2337/db10-0582

E. Bent, L. Gilbert, and M. Hemann, A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses, Genes & Development, vol.30, issue.16, pp.1811-1821, 2016.
DOI : 10.1101/gad.284851.116

F. Klemm and J. Joyce, Microenvironmental regulation of therapeutic response in cancer, Trends in Cell Biology, vol.25, issue.4, pp.198-213, 2015.
DOI : 10.1016/j.tcb.2014.11.006

G. Bergers and L. Benjamin, Angiogenesis: Tumorigenesis and the angiogenic switch, Nature Reviews Cancer, vol.3, issue.6, pp.401-410, 2003.
DOI : 10.1038/nrc1093

J. Brown and W. Wilson, Exploiting tumour hypoxia in cancer treatment, Nature Reviews Cancer, vol.56, issue.6, pp.437-447, 2004.
DOI : 10.1016/0360-3016(96)00132-0

W. Wilson and M. Hay, Targeting hypoxia in cancer therapy, Nature Reviews Cancer, vol.13, issue.6, pp.393-410, 2011.
DOI : 10.1158/1078-0432.CCR-06-2126

B. Emerling, L. Platanias, E. Black, A. Nebreda, R. Davis et al., Mitochondrial Reactive Oxygen Species Activation of p38 Mitogen-Activated Protein Kinase Is Required for Hypoxia Signaling, Molecular and Cellular Biology, vol.25, issue.12, pp.4853-4862, 2005.
DOI : 10.1128/MCB.25.12.4853-4862.2005

N. Gao, B. Jiang, S. Leonard, L. Corum, Z. Zhang et al., p38 Signaling-mediated Hypoxia-inducible Factor 1? and Vascular Endothelial Growth Factor Induction by Cr(VI) in DU145 Human Prostate Carcinoma Cells, Journal of Biological Chemistry, vol.19, issue.47, pp.45041-45048, 2002.
DOI : 10.2307/3433405

B. Shemirani and D. Crowe, Hypoxic induction of HIF-1? and VEGF expression in head and neck squamous cell carcinoma lines is mediated by stress activated protein kinases, Oral Oncology, vol.38, issue.3, pp.251-257, 2002.
DOI : 10.1016/S1368-8375(01)00052-5

U. Kayyali, C. Pennella, C. Trujillo, O. Villa, M. Gaestel et al., Cytoskeletal Changes in Hypoxic Pulmonary Endothelial Cells Are Dependent on MAPK-activated Protein Kinase MK2, Journal of Biological Chemistry, vol.274, issue.45, pp.42596-42602, 2002.
DOI : 10.1016/0021-9290(83)90017-9

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

N. Yoshizuka, R. Chen, Z. Xu, R. Liao, L. Hong et al., A Novel Function of p38-Regulated/Activated Kinase in Endothelial Cell Migration and Tumor Angiogenesis, Molecular and Cellular Biology, vol.32, issue.3, pp.606-618, 2012.
DOI : 10.1128/MCB.06301-11

L. Lamalice, F. Houle, and J. Huot, within VEGFR-2 Triggers the Recruitment of Nck and Activation of Fyn Leading to SAPK2/p38 Activation and Endothelial Cell Migration in Response to VEGF, Journal of Biological Chemistry, vol.62, issue.45, pp.34009-34020, 2006.
DOI : 10.1128/MCB.22.19.6719-6725.2002

C. Gong, K. Stoletov, and B. Terman, VEGF treatment induces signaling pathways that regulate both actin polymerization and depolymerization, Angiogenesis, vol.84, issue.4, pp.313-321, 2004.
DOI : 10.1007/s10456-004-7960-2

K. Stoletov, C. Gong, and B. Terman, Nck and Crk mediate distinct VEGF-induced signaling pathways that serve overlapping functions in focal adhesion turnover and integrin activation?, Experimental Cell Research, vol.295, issue.1, pp.258-268, 2004.
DOI : 10.1016/j.yexcr.2004.01.008

K. Stoletov, K. Ratcliffe, S. Spring, and B. Terman, NCK and PAK Participate in the Signaling Pathway by Which Vascular Endothelial Growth Factor Stimulates the Assembly of Focal Adhesions, Journal of Biological Chemistry, vol.17, issue.25, pp.22748-22755, 2001.
DOI : 10.1083/jcb.147.4.831

B. Masson-gadais, F. Houle, J. Laferriere, and J. Huot, Integrin ??v??3 requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF, Cell Stress & Chaperones, vol.58, issue.1, pp.37-52, 2003.
DOI : 10.1379/1466-1268(2003)8<37:IVRFVA>2.0.CO;2

R. Soldi, S. Mitola, M. Strasly, P. Defilippi, G. Tarone et al., Role of ??v??3 integrin in the activation of vascular endothelial growth factor receptor-2, The EMBO Journal, vol.18, issue.4, pp.882-892, 1999.
DOI : 10.1093/emboj/18.4.882

M. Simons, E. Gordon, and L. Claesson-welsh, Mechanisms and regulation of endothelial VEGF receptor signalling, Nature Reviews Molecular Cell Biology, vol.17, issue.10, pp.611-625, 2016.
DOI : 10.1016/j.ajhg.2010.08.008

A. Kim, M. Im, N. Yim, and J. Ma, Reduction of metastatic and angiogenic potency of malignant cancer by Eupatorium fortunei via suppression of MMP-9 activity and VEGF production, Scientific Reports, vol.9, issue.4, p.6994, 2014.
DOI : 10.1371/journal.pone.0098703

M. Chen, Y. Lin, C. Yang, and M. Hu, Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/p38 signaling pathways, Molecular Nutrition & Food Research, vol.90, issue.6, pp.889-899, 2012.
DOI : 10.1161/01.RES.0000022200.71892.9F

D. Triner and Y. Shah, Hypoxia-inducible factors: a central link between inflammation and cancer, Journal of Clinical Investigation, vol.126, issue.10, pp.3689-3698, 2016.
DOI : 10.1172/JCI84430

B. Kaminska, MAPK signalling pathways as molecular targets for anti-inflammatory therapy?from molecular mechanisms to therapeutic benefits, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1754, issue.1-2, pp.253-262, 2005.
DOI : 10.1016/j.bbapap.2005.08.017

H. Ahn and D. Lee, Helicobacter pylori in gastric carcinogenesis, World J Gastrointest Oncol, vol.7, pp.455-465, 2015.

P. Munkholm, Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease, Alimentary Pharmacology and Therapeutics, vol.115, issue.s2, pp.1-5, 2003.
DOI : 10.1016/S0140-6736(00)03612-6

J. Condeelis and J. Pollard, Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis, Cell, vol.124, issue.2, pp.263-266, 2006.
DOI : 10.1016/j.cell.2006.01.007

URL : http://doi.org/10.1016/j.cell.2006.01.007

C. Lewis, D. Palma, M. Naldini, and L. , Tie2-Expressing Monocytes and Tumor Angiogenesis: Regulation by Hypoxia and Angiopoietin-2, Cancer Research, vol.67, issue.18, pp.8429-8432, 2007.
DOI : 10.1158/0008-5472.CAN-07-1684

URL : https://infoscience.epfl.ch/record/178133/files/8429.full.pdf

C. Murdoch, A. Giannoudis, and C. Lewis, Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues, Blood, vol.104, issue.8, pp.2224-2234, 2004.
DOI : 10.1182/blood-2004-03-1109

N. Reymond, B. Agua, and A. Ridley, Crossing the endothelial barrier during metastasis, Nature Reviews Cancer, vol.122, issue.12, pp.858-870, 2013.
DOI : 10.1242/jcs.053157

P. Tremblay, F. Auger, and J. Huot, Regulation of transendothelial migration of colon cancer cells by E-selectin-mediated activation of p38 and ERK MAP kinases, Oncogene, vol.141, issue.50, pp.6563-6573, 2006.
DOI : 10.4049/jimmunol.166.11.6877

S. Gout, P. Tremblay, and J. Huot, Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis, Clinical & Experimental Metastasis, vol.86, issue.Suppl 3, pp.335-344, 2008.
DOI : 10.1016/S0002-9440(10)62048-2

A. Sparmann and D. Bar-sagi, Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis, Cancer Cell, vol.6, issue.5, pp.447-458, 2004.
DOI : 10.1016/j.ccr.2004.09.028

S. Schwitalla, A. Fingerle, P. Cammareri, T. Nebelsiek, S. Goktuna et al., Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties, Cell, vol.152, issue.1-2, pp.25-38, 2013.
DOI : 10.1016/j.cell.2012.12.012

J. Gupta and A. Nebreda, Roles of p38? mitogen-activated protein kinase in mouse models of inflammatory diseases and cancer, FEBS Journal, vol.69, issue.Suppl 3, pp.1841-1857, 2015.
DOI : 10.1158/0008-5472.CAN-08-4455

A. Kotlyarov, A. Neininger, C. Schubert, R. Eckert, C. Birchmeier et al., MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis, Nat Cell Biol, vol.1, pp.94-97, 1999.

A. Khatib, P. Auguste, L. Fallavollita, N. Wang, A. Samani et al., Characterization of the Host Proinflammatory Response to Tumor Cells during the Initial Stages of Liver Metastasis, The American Journal of Pathology, vol.167, issue.3, pp.749-759, 2005.
DOI : 10.1016/S0002-9440(10)62048-2

J. Ross, N. Stagliano, M. Donovan, R. Breitbart, and G. Ginsburg, Atherosclerosis: a cancer of the blood vessels?, Am J Clin Pathol, vol.116, pp.97-107, 2001.

J. Li and R. Gao, Should atherosclerosis be considered a cancer of the vascular wall? Med Hypotheses, pp.694-698, 2005.

H. Klement, S. Croix, B. Milsom, C. May, L. Guo et al., Atherosclerosis and Vascular Aging as Modifiers of Tumor Progression, Angiogenesis, and Responsiveness to Therapy, The American Journal of Pathology, vol.171, issue.4, pp.1342-1351, 2007.
DOI : 10.2353/ajpath.2007.070298

D. Ribatti, G. Mangialardi, and A. Vacca, Stephen Paget and the ?seed and soil? theory of metastatic dissemination, Clinical and Experimental Medicine, vol.6, issue.4, pp.145-149, 2006.
DOI : 10.1007/s10238-006-0117-4

A. Chambers, G. Naumov, H. Varghese, K. Nadkarni, I. Macdonald et al., Critical steps in hematogenous metastasis: an overview, Surg Oncol Clin N Am, vol.10, pp.243-255, 2001.

P. Mehlen and A. Puisieux, Metastasis: a question of life or death, Nature Reviews Cancer, vol.5, issue.6, pp.449-458, 2006.
DOI : 10.1161/01.HYP.32.2.351

L. Weiss and . Metastatic, Metastatic Inefficiency, Adv Cancer Res, vol.54, pp.159-211, 1990.
DOI : 10.1016/S0065-230X(08)60811-8

G. Naumov, I. Macdonald, P. Weinmeister, N. Kerkvliet, K. Nadkarni et al., Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy, Cancer Res, vol.62, pp.2162-2168, 2002.

M. Cameron, E. Schmidt, N. Kerkvliet, K. Nadkarni, V. Morris et al., Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency, Cancer research, vol.60, pp.2541-2546, 2000.

A. Blazejczyk, D. Papiernik, K. Porshneva, J. Sadowska, and J. Wietrzyk, Endothelium and cancer metastasis: Perspectives for antimetastatic therapy, Pharmacological Reports, vol.67, issue.4, pp.711-718, 2015.
DOI : 10.1016/j.pharep.2015.05.014

L. Cisneros and T. Newman, Quantifying metastatic inefficiency: rare genotypes versus rare dynamics, Physical Biology, vol.11, issue.4, p.46003, 2014.
DOI : 10.1088/1478-3975/11/4/046003

URL : https://repository.asu.edu/attachments/142547/content/1478-3975_11_4_046003.pdf

P. Steeg, Targeting metastasis, Nature Reviews Cancer, vol.370, issue.4, pp.201-218, 2016.
DOI : 10.1056/NEJMoa1308573

N. Porquet, S. Gout, and J. Huot, The Metastatic Process: An Overview, 2010.
DOI : 10.1007/978-90-481-8833-8_1

P. Brodt, L. Fallavollita, R. Bresalier, S. Meterissian, C. Norton et al., Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis, International Journal of Cancer, vol.59, issue.4, pp.612-619, 1997.
DOI : 10.4052/tigg.4.405

A. Khatib, M. Kontogiannea, L. Fallavollita, B. Jamison, S. Meterissian et al., Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells, Cancer Res, vol.59, pp.1356-1361, 1999.

M. Gulubova, Expression of cell adhesion molecules, their ligands and tumour necrosis factor alpha in the liver of patients with metastatic gastrointestinal carcinomas, The Histochemical Journal, vol.34, issue.1/2, pp.67-77, 2002.
DOI : 10.1023/A:1021304227369

C. Dimitroff, M. Lechpammer, D. Long-woodward, and J. Kutok, Rolling of Human Bone-Metastatic Prostate Tumor Cells on Human Bone Marrow Endothelium under Shear Flow Is Mediated by E-Selectin, Cancer Research, vol.64, issue.15, pp.5261-5269, 2004.
DOI : 10.1158/0008-5472.CAN-04-0691

A. Zipin, M. Israeli-amit, T. Meshel, O. Sagi-assif, I. Yron et al., Tumor-Microenvironment Interactions: The Fucose-Generating FX Enzyme Controls Adhesive Properties of Colorectal Cancer Cells, Cancer Research, vol.64, issue.18, pp.6571-6578, 2004.
DOI : 10.1158/0008-5472.CAN-03-4038

S. Kohler, S. Ullrich, U. Richter, and U. Schumacher, E-/P-selectins and colon carcinoma metastasis: first in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung, British Journal of Cancer, vol.516, issue.3, pp.602-609
DOI : 10.1016/j.canlet.2004.07.046

S. Hill and C. , Interactions between endothelial selectins and cancer cells regulate metastasis, Frontiers in Bioscience, vol.16, issue.1, pp.3233-3251, 2011.
DOI : 10.2741/3909

R. Sawada, S. Tsuboi, and M. Fukuda, Differential E-selectindependent adhesion efficiency in sublines of a human colon cancer exhibiting distinct metastatic potentials, Journal Biol Chem, vol.269, pp.1425-1431, 1994.

I. Witz, The selectin?selectin ligand axis in tumor progression, Cancer and Metastasis Reviews, vol.8, issue.6, pp.19-30, 2008.
DOI : 10.4049/jimmunol.174.3.1424

K. Murata, E. Miyoshi, S. Ihara, S. Noura, M. Kameyama et al., Attachment of Human Colon Cancer Cells to Vascular Endothelium Is Enhanced by N-Acetylglucosaminyltransferase V, Oncology, vol.66, issue.6, pp.492-501, 2004.
DOI : 10.1159/000079504

S. Hill, C. Bullard, K. Walcheck, and B. , Expression of the high-affinity selectin glycan ligand C2???O???sLeX by colon carcinoma cells, Cancer Letters, vol.217, issue.1, pp.105-113, 2005.
DOI : 10.1016/j.canlet.2004.06.038

S. Nakamori, M. Kameyama, S. Imaoka, H. Furukawa, O. Ishikawa et al., Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study, Cancer Res, vol.53, pp.3632-3637, 1993.

M. Lenter, A. Levinovitz, S. Isenmann, and D. Vestweber, Monospecific and common glycoprotein ligands for E- and P-selectin on myeloid cells, The Journal of Cell Biology, vol.125, issue.2, pp.471-481, 1994.
DOI : 10.1083/jcb.125.2.471

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120038/pdf

M. Steegmaier, A. Levinovitz, S. Isenmann, E. Borges, M. Lenter et al., The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor, Nature, vol.373, issue.6515, pp.615-620, 1995.
DOI : 10.1038/373615a0

S. Soltesz, E. Powers, J. Geng, and C. Fisher, Adhesion of HT-29 colon carcinoma cells to E-selectin results in increased tyrosine phosphorylation and decreased activity of c-src, International Journal of Cancer, vol.88, issue.4, pp.645-653, 1997.
DOI : 10.1128/MCB.15.5.2374

O. Ohana-malka, D. Benharroch, N. Isakov, I. Prinsloo, G. Shubinsky et al., Selectins and anti-CD15 (Lewis x/a) antibodies transmit activation signals in Hodgkin's lymphoma???derived cell lines, Experimental Hematology, vol.31, issue.11, pp.1057-1065, 2003.
DOI : 10.1016/S0301-472X(03)00237-6

D. Bella, M. Flugy, A. Russo, D. , D. Amato et al., Different phenotypes of colon carcinoma cells interacting with endothelial cells: role of E-selectin and ultrastructural data, Cell Tissue Res, vol.312, pp.55-64, 2003.

J. Laferriere, F. Houle, M. Taher, K. Valerie, and J. Huot, Transendothelial Migration of Colon Carcinoma Cells Requires Expression of E-selectin by Endothelial Cells and Activation of Stress-activated Protein Kinase-2 (SAPK2/p38) in the Tumor Cells, Journal of Biological Chemistry, vol.4, issue.36, pp.33762-33772, 2001.
DOI : 10.1083/jcb.147.2.401

T. Aychek, K. Miller, O. Sagi-assif, O. Levy-nissenbaum, M. Israeli-amit et al., E-selectin regulates gene expression in metastatic colorectal carcinoma cells and enhances HMGB1 release, International Journal of Cancer, vol.7, issue.Part 23, pp.1741-1750, 2008.
DOI : 10.1016/S0002-9440(10)62344-9

J. Tomlinson, J. Wang, S. Barsky, M. Lee, J. Bischoff et al., Human colon cancer cells express multiple glycoprotein ligands for E-selectin., International Journal of Oncology, vol.16, pp.347-353, 2000.
DOI : 10.3892/ijo.16.2.347

W. Hanley, M. Burdick, K. Konstantopoulos, and R. Sackstein, CD44 on LS174T Colon Carcinoma Cells Possesses E-Selectin Ligand Activity, Cancer Research, vol.65, issue.13, pp.5812-5817, 2005.
DOI : 10.1158/0008-5472.CAN-04-4557

S. Thomas, F. Zhu, R. Schnaar, C. Alves, and K. Konstantopoulos, Carcinoembryonic Antigen and CD44 Variant Isoforms Cooperate to Mediate Colon Carcinoma Cell Adhesion to E- and L-selectin in Shear Flow, Journal of Biological Chemistry, vol.284, issue.Suppl. 11, pp.15647-15655, 2008.
DOI : 10.1152/ajpcell.00423.2002

K. Zen, D. Liu, Y. Guo, C. Wang, J. Shan et al., CD44v4 Is a Major E-Selectin Ligand that Mediates Breast Cancer Cell Transendothelial Migration, PLoS ONE, vol.153, issue.2, p.1826, 2008.
DOI : 10.1371/journal.pone.0001826.g006

URL : http://doi.org/10.1371/journal.pone.0001826

S. Thomas, R. Schnaar, and K. Konstantopoulos, Podocalyxin-like protein is an E-/L-selectin ligand on colon carcinoma cells: comparative biochemical properties of selectin ligands in host and tumor cells, AJP: Cell Physiology, vol.296, issue.3, pp.505-513, 2009.
DOI : 10.1152/ajpcell.00472.2008

S. Gout, C. Morin, F. Houle, and J. Huot, Death Receptor-3, a New E-Selectin Counter-Receptor that Confers Migration and Survival Advantages to Colon Carcinoma Cells by Triggering p38 and ERK MAPK Activation, Cancer Research, vol.66, issue.18, pp.9117-9124, 2006.
DOI : 10.1158/0008-5472.CAN-05-4605

N. Porquet, A. Poirier, F. Houle, A. Pin, S. Gout et al., Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NF?B survival axis downstream of Death receptor-3, BMC Cancer, vol.2, issue.25, p.285, 2011.
DOI : 10.1074/jbc.M101260200

M. Reyes-reyes, M. George, J. Roberts, and S. Akiyama, P-selectin activates integrin-mediated colon carcinoma cell adhesion to fibronectin, Experimental Cell Research, vol.312, issue.20, pp.4056-4069, 2006.
DOI : 10.1016/j.yexcr.2006.09.008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1853301

P. Tremblay, J. Huot, and F. Auger, Mechanisms by which E-Selectin Regulates Diapedesis of Colon Cancer Cells under Flow Conditions, Cancer Research, vol.68, issue.13, pp.5167-5176, 2008.
DOI : 10.1158/0008-5472.CAN-08-1229

P. Zhang, C. Goodrich, C. Fu, and C. Dong, Melanoma upregulates ICAM-1 expression on endothelial cells through engagement of tumor CD44 with endothelial E-selectin and activation of a PKC?-p38-SP-1 pathway, The FASEB Journal, vol.28, issue.11, pp.4591-4609, 2014.
DOI : 10.1096/fj.11-202747

B. Strilic, L. Yang, J. Albarran-juarez, L. Wachsmuth, K. Han et al., Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis, Nature, vol.25, issue.7615, pp.215-218, 2016.
DOI : 10.1016/j.devcel.2013.04.008

X. Yang, B. Shi, L. Li, Z. Xu, Y. Ge et al., Death receptor 6 (DR6) is required for mouse B16 tumor angiogenesis via the NF-?B, P38 MAPK and STAT3 pathways, Oncogenesis, vol.5, issue.3, p.206, 2016.
DOI : 10.1038/ncprheum0338

M. Tichet, V. Prod-'homme, N. Fenouille, D. Ambrosetti, A. Mallavialle et al., Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis, Nature Communications, vol.10, p.6993, 2015.
DOI : 10.1038/ncb1675

URL : https://hal.archives-ouvertes.fr/hal-01295443

M. Pang, A. Georgoudaki, L. Lambut, J. Johansson, V. Tabor et al., TGF-?1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis, Oncogene, vol.94, issue.6, pp.748-760, 2016.
DOI : 10.1016/j.imbio.2012.07.003

E. Puujalka, M. Heinz, B. Hoesel, P. Friedl, B. Schweighofer et al., Opposing Roles of JNK and p38 in Lymphangiogenesis in Melanoma, Journal of Investigative Dermatology, vol.136, issue.5, pp.967-977, 2016.
DOI : 10.1016/j.jid.2016.01.020

S. Lamouille, J. Xu, and R. Derynck, Molecular mechanisms of epithelial?mesenchymal transition, Nature Reviews Molecular Cell Biology, vol.22, issue.3, pp.178-196, 2014.
DOI : 10.1016/j.ccr.2012.10.012

P. Santana, L. Pena, A. Haimovitz-friedman, S. Martin, D. Green et al., Acid Sphingomyelinase?Deficient Human Lymphoblasts and Mice Are Defective in Radiation-Induced Apoptosis, Cell, vol.86, issue.2, pp.189-199, 1996.
DOI : 10.1016/S0092-8674(00)80091-4

URL : http://doi.org/10.1016/s0092-8674(00)80091-4

I. Corre, M. Guillonneau, and F. Paris, Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment

C. Oh, E. Bump, J. Kim, D. Janigro, and M. Mayberg, Induction of a Senescence-Like Phenotype in Bovine Aortic Endothelial Cells by Ionizing Radiation, Radiation Research, vol.156, issue.3, pp.232-240, 2001.
DOI : 10.1667/0033-7587(2001)156[0232:IOASLP]2.0.CO;2

P. Kumar, A. Miller, and P. Polverini, p38 MAPK Mediates ?-Irradiation-induced Endothelial Cell Apoptosis, and Vascular Endothelial Growth Factor Protects Endothelial Cells through the Phosphoinositide 3-Kinase-Akt-Bcl-2 Pathway, Journal of Biological Chemistry, vol.58, issue.41, pp.43352-43360, 2004.
DOI : 10.1093/jnci/93.14.1040

C. Chou, S. Chen, and J. Cheng, Radiation-Induced Interleukin-6 Expression Through MAPK/p38/NF-??B Signaling Pathway and the Resultant Antiapoptotic Effect on Endothelial Cells Through Mcl-1 Expression With sIL6-R??, International Journal of Radiation Oncology*Biology*Physics, vol.75, issue.5, pp.1553-1561, 2009.
DOI : 10.1016/j.ijrobp.2009.08.034

K. Blirando, M. Hneino, I. Martelly, M. Benderitter, F. Milliat et al., Mast Cells and Ionizing Radiation Induce a Synergistic Expression of Inflammatory Genes in Endothelial Cells by a Mechanism Involving p38?? MAP Kinase and (p65) NF-??B Activation, Radiation Research, vol.178, issue.6, pp.556-567, 2012.
DOI : 10.1667/rr3058.1.s1

N. Imaizumi, Y. Monnier, M. Hegi, R. Mirimanoff, and C. Ruegg, Radiotherapy Suppresses Angiogenesis in Mice through TGF-?RI/ALK5-Dependent Inhibition of Endothelial Cell Sprouting, PLoS ONE, vol.15, issue.6, p.11084, 2010.
DOI : 10.1371/journal.pone.0011084.s005

Y. Wang, M. Boerma, and D. Zhou, Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases, Radiation Research, vol.186, issue.2, pp.153-161, 2016.
DOI : 10.1667/RR14445.1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997805

J. Garcia-cano, O. Roche, F. Cimas, R. Pascual-serra, M. Ortega-muelas et al., p38MAPK and Chemotherapy: We Always Need to Hear Both Sides of the Story, Frontiers in Cell and Developmental Biology, vol.6, p.69, 2016.
DOI : 10.18632/oncotarget.4320

F. Liu, A. Gore, J. Wilson, and M. Korc, DUSP1 Is a Novel Target for Enhancing Pancreatic Cancer Cell Sensitivity to Gemcitabine, PLoS ONE, vol.141, issue.1, p.84982, 2014.
DOI : 10.1371/journal.pone.0084982.g008

H. Reinhardt, A. Aslanian, J. Lees, and M. Yaffe, p53-Deficient Cells Rely on ATM- and ATR-Mediated Checkpoint Signaling through the p38MAPK/MK2 Pathway for Survival after DNA Damage, Cancer Cell, vol.11, issue.2, pp.175-189, 2007.
DOI : 10.1016/j.ccr.2006.11.024

A. Igea and A. Nebreda, The Stress Kinase p38? as a Target for Cancer Therapy, Cancer Research, vol.75, issue.19, pp.3997-4002, 2015.
DOI : 10.1158/0008-5472.CAN-15-0173

R. Rudalska, D. Dauch, T. Longerich, K. Mcjunkin, T. Wuestefeld et al., In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer, Nature Medicine, vol.7, issue.10, pp.1138-1146, 2014.
DOI : 10.1038/nprot.2011.446

G. Rajashekhar, M. Kamocka, A. Marin, M. Suckow, W. Wolter et al., Pro-inflammatory angiogenesis is mediated by p38 MAP kinase, Journal of Cellular Physiology, vol.103, issue.5, pp.800-808, 2011.
DOI : 10.1007/s00395-008-0733-0

K. Leelahavanichkul, P. Amornphimoltham, A. Molinolo, J. Basile, S. Koontongkaew et al., A role for p38 MAPK in head and neck cancer cell growth and tumor-induced angiogenesis and lymphangiogenesis, Molecular Oncology, vol.32, issue.1, pp.105-118, 2014.
DOI : 10.1128/MCB.06301-11

L. Gilbert and M. Hemann, DNA Damage-Mediated Induction of a Chemoresistant Niche, Cell, vol.143, issue.3, pp.355-366, 2010.
DOI : 10.1016/j.cell.2010.09.043

T. Yokota and Y. Wang, p38 MAP kinases in the heart, Gene, vol.575, issue.2, pp.369-376, 2016.
DOI : 10.1016/j.gene.2015.09.030

L. Newby, M. Marber, C. Melloni, L. Sarov-blat, L. Aberle et al., Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial, The Lancet, vol.384, issue.9949, pp.1187-1195, 2014.
DOI : 10.1016/S0140-6736(14)60417-7

E. Martin, R. Bassi, and M. Marber, p38 MAPK in cardioprotection - are we there yet?, British Journal of Pharmacology, vol.99, issue.Pt 1, pp.2101-2113, 2015.
DOI : 10.1111/j.1471-4159.2006.04052.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386984

A. Patnaik, P. Haluska, A. Tolcher, C. Erlichman, K. Papadopoulos et al., A First-in-Human Phase I Study of the Oral p38 MAPK Inhibitor, Ralimetinib (LY2228820 Dimesylate), in Patients with Advanced Cancer, Clinical Cancer Research, vol.22, issue.5, pp.1095-1102, 2016.
DOI : 10.1158/1078-0432.CCR-15-1718

S. Paillas, F. Boissiere, F. Bibeau, A. Denouel, C. Mollevi et al., Targeting the p38 MAPK Pathway Inhibits Irinotecan Resistance in Colon Adenocarcinoma, Cancer Research, vol.71, issue.3, pp.1041-1049, 2011.
DOI : 10.1158/0008-5472.CAN-10-2726

URL : https://hal.archives-ouvertes.fr/inserm-00555572