J. Bernier, E. J. Hall, and A. Giaccia, Timeline: Radiation oncology: a century of achievements, Nature Reviews Cancer, vol.4, issue.9, pp.737-747, 2004.
DOI : 10.1016/0006-2952(86)90566-6

D. A. Jaffray, Image-guided radiotherapy: from current concept to future perspectives, Nature Reviews Clinical Oncology, vol.74, issue.12, pp.688-699194, 2012.
DOI : 10.1016/j.semradonc.2009.11.007

M. Durante and J. S. Loeffler, Charged particles in radiation oncology, Nature Reviews Clinical Oncology, vol.2, issue.1, pp.37-43183, 2009.
DOI : 10.1016/j.ijrobp.2006.10.006

M. K. Boss, R. Bristow, and M. W. Dewhirst, Linking the History of Radiation Biology to the Hallmarks of Cancer, Radiation Research, vol.181, issue.6, pp.561-57710, 2014.
DOI : 10.1667/RR13675.1

V. A. Potiron, Improved Functionality of the Vasculature during Conventionally Fractionated Radiation Therapy of Prostate Cancer, PLoS ONE, vol.106, issue.12, p.84076, 2013.
DOI : 10.1371/journal.pone.0084076.s009

A. C. Heuskin, A. I. Osseiran, J. Tang, and S. Costes, Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata, Radiation Research, vol.186, issue.1, 2016.
DOI : 10.1667/RR14338.1

I. F. Tannock, Oxygen diffusion and the distribution of cellular radiosensitivity in tumours, The British Journal of Radiology, vol.45, issue.535, pp.515-5240007, 1259.
DOI : 10.1259/0007-1285-45-535-515

T. W. Secomb, R. Hsu, M. W. Dewhirst, B. Klitzman, and J. Gross, Analysis of oxygen transport to tumor tissue by microvascular networks, International Journal of Radiation Oncology*Biology*Physics, vol.25, issue.3, pp.481-489, 1993.
DOI : 10.1016/0360-3016(93)90070-C

D. R. Grimes, Estimating oxygen distribution from vasculature in three-dimensional tumour tissue, J R Soc Interface, vol.13, p.70, 2016.
DOI : 10.1098/rsif.2016.0070

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843681

W. H. Gmeiner, F10 Inhibits Growth of PC3 Xenografts and Enhances the Effects of Radiation Therapy, J Clin Oncol Res, vol.2, 2014.

D. C. Saffran, Anti-PSCA mAbs inhibit tumor growth and metastasis formation and prolong the survival of mice bearing human prostate cancer xenografts, Proceedings of the National Academy of Sciences, vol.53, issue.2, pp.2658-2663, 2001.
DOI : 10.1097/00001622-199801000-00011

M. Tandon, SD-208, a Novel Protein Kinase D Inhibitor, Blocks Prostate Cancer Cell Proliferation and Tumor Growth In Vivo by Inducing G2/M Cell Cycle Arrest, PLOS ONE, vol.71, issue.3, 2015.
DOI : 10.1371/journal.pone.0119346.s005

C. D. Wolfgang, M. Essand, B. Lee, and I. Pastan, T-cell receptor gamma chain alternate reading frame protein (TARP) expression in prostate cancer cells leads to an increased growth rate and induction of caveolins and amphiregulin, Cancer Res, vol.61, pp.8122-8126, 2001.

K. Camphausen, Flavopiridol enhances human tumor cell radiosensitivity and prolongs expression of gammaH2AX foci, Mol Cancer Ther, vol.3, pp.409-416, 2004.

V. A. Potiron, Radiosensitization of prostate cancer cells by the dual PI3K/mTOR inhibitor BEZ235 under normoxic and hypoxic conditions, Radiotherapy and Oncology, vol.106, issue.1, pp.138-146, 2013.
DOI : 10.1016/j.radonc.2012.11.014

A. Patsialou, Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors, Intravital, vol.2, pp.10-4161, 2013.

H. Yamaguchi, J. Wyckoff, and J. Condeelis, Cell migration in tumors, Current Opinion in Cell Biology, vol.17, issue.5, pp.559-564002, 2005.
DOI : 10.1016/j.ceb.2005.08.002

D. R. Grimes, The Role of Oxygen in Avascular Tumor Growth, PLoS One, vol.11, 2016.

A. G. Tsai, P. C. Johnson, and M. Intaglietta, Oxygen Gradients in the Microcirculation, Physiological Reviews, vol.83, issue.3, pp.933-963, 2003.
DOI : 10.1152/physrev.00034.2002

D. Fukumura and R. K. Jain, Tumor microvasculature and microenvironment: Targets for anti-angiogenesis and normalization, Microvascular Research, vol.74, issue.2-3, pp.72-84, 2007.
DOI : 10.1016/j.mvr.2007.05.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2100036

S. R. Mckeown, Defining normoxia, physoxia and hypoxia in tumours???implications for treatment response, The British Journal of Radiology, vol.87, issue.1035, pp.10-1259, 2014.
DOI : 10.1259/bjr.20130676

M. Garcia-barros, Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis, Science, vol.300, issue.5622, pp.1155-115910, 2003.
DOI : 10.1126/science.1082504

C. Ruegg, Y. Monnier, F. Kuonen, and N. Imaizumi, Radiation-induced modifications of the tumor microenvironment promote metastasis, Bull Cancer, vol.98, pp.47-57, 2011.

H. Riquier, Comparison of X-ray and alpha particle effects on a human cancer and endothelial cells: Survival curves and gene expression profiles, Radiotherapy and Oncology, vol.106, issue.3, pp.397-403, 2013.
DOI : 10.1016/j.radonc.2013.02.017

J. F. Fowler, The linear-quadratic formula and progress in fractionated radiotherapy, The British Journal of Radiology, vol.62, issue.740, pp.679-694, 1989.
DOI : 10.1259/0007-1285-62-740-679

R. K. Sachs, P. Hahnfeld, and D. J. Brenner, The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair, Int J Radiat Biol, vol.72, pp.351-374, 1997.

D. J. Carlson, R. D. Stewart, and V. A. Semenenko, Effects of oxygen on intrinsic radiation sensitivity: A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parametersa), Medical Physics, vol.54, issue.9, pp.3105-3115, 2006.
DOI : 10.1016/S0360-3016(02)03007-9

D. J. Carlson, P. J. Keall, B. W. Loo, . Jr, Z. J. Chen et al., Hypofractionation Results in Reduced Tumor Cell Kill Compared to Conventional Fractionation for Tumors With Regions of Hypoxia, International Journal of Radiation Oncology*Biology*Physics, vol.79, issue.4, pp.1188-1195007, 2011.
DOI : 10.1016/j.ijrobp.2010.10.007

P. Howard-flanders and T. Alper, The Sensitivity of Microorganisms to Irradiation under Controlled Gas Conditions, Radiation Research, vol.7, issue.5, pp.518-540, 1957.
DOI : 10.2307/3570400

T. T. Puck and P. Marcus, ACTION OF X-RAYS ON MAMMALIAN CELLS, Journal of Experimental Medicine, vol.103, issue.5, pp.653-666, 1956.
DOI : 10.1084/jem.103.5.653

T. T. Puck, P. I. Marcus, and S. J. Cieciura, CLONAL GROWTH OF MAMMALIAN CELLS IN VITRO: GROWTH CHARACTERISTICS OF COLONIES FROM SINGLE HELA CELLS WITH AND WITHOUT A "FEEDER" LAYER, Journal of Experimental Medicine, vol.103, issue.2, pp.273-283, 1956.
DOI : 10.1084/jem.103.2.273

A. C. Wera, A. C. Heuskin, H. Riquier, C. Michiels, and S. Lucas, Low-LET Proton Irradiation of A549 Non-small Cell Lung Adenocarcinoma Cells: Dose Response and RBE Determination, Radiation Research, vol.179, issue.3, pp.273-28110, 2013.
DOI : 10.1667/RR3008.1

W. Georgescu, Characterizing the DNA Damage Response by Cell Tracking Algorithms and Cell Features Classification Using High-Content Time-Lapse Analysis, PLOS ONE, vol.5, issue.3, 2015.
DOI : 10.1371/journal.pone.0129438.s008

M. Castedo, Cell death by mitotic catastrophe: a molecular definition, Oncogene, vol.23, issue.16, pp.2825-2837, 2004.
DOI : 10.1038/sj.onc.1207528

H. A. Gay, J. Y. Jin, A. J. Chang, and R. K. Ten-haken, Utility of Normal Tissue-to-Tumor ?/? Ratio When Evaluating Isodoses of Isoeffective Radiation Therapy Treatment Plans, International Journal of Radiation Oncology*Biology*Physics, vol.85, issue.1, pp.81-87021, 2013.
DOI : 10.1016/j.ijrobp.2012.09.021

J. M. Brown, D. J. Carlson, and D. J. Brenner, The Tumor Radiobiology of SRS and SBRT: Are More Than the 5 Rs Involved?, International Journal of Radiation Oncology*Biology*Physics, vol.88, issue.2, pp.254-262, 2014.
DOI : 10.1016/j.ijrobp.2013.07.022

J. P. Kirkpatrick, D. J. Brenner, C. G. Orton, /. Point, and . Counterpoint, The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery, Medical Physics, vol.52, issue.8, pp.3381-3384, 2009.
DOI : 10.1088/0031-9155/52/18/013

R. D. Timmerman, J. Herman, and L. C. Cho, Emergence of Stereotactic Body Radiation Therapy and Its Impact on Current and Future Clinical Practice, Journal of Clinical Oncology, vol.32, issue.26, pp.2847-28544675, 2014.
DOI : 10.1200/JCO.2014.55.4675

M. Guerrero and X. A. Li, Extending the linear?quadratic model for large fraction doses pertinent to stereotactic radiotherapy, Physics in Medicine and Biology, vol.49, issue.20, pp.4825-4835, 2004.
DOI : 10.1088/0031-9155/49/20/012

M. Astrahan, Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation, Medical Physics, vol.57, issue.9, pp.4161-4172, 2008.
DOI : 10.1016/S0360-3016(03)01456-1

J. Z. Wang, Z. Huang, S. S. Lo, W. T. Yuh, and N. A. Mayr, A Generalized Linear-Quadratic Model for Radiosurgery, Stereotactic Body Radiation Therapy, and High-Dose Rate Brachytherapy, Science Translational Medicine, vol.103, issue.5, pp.10-11263000864, 2010.
DOI : 10.1084/jem.103.5.653

B. Wennberg and I. Lax, The impact of fractionation in SBRT: Analysis with the linear quadratic model and the universal survival curve model, Acta Oncologica, vol.34, issue.5, pp.902-909728292, 2013.
DOI : 10.1118/1.2969065

L. G. Marcu and W. M. Harriss-phillips, In silico modelling of treatment-induced tumour cell kill: developments and advances, Comput Math Methods Med, vol.960256, p.960256, 2012.

H. Enderling, A. R. Anderson, M. A. Chaplain, A. J. Munro, and J. S. Vaidya, Mathematical modelling of radiotherapy strategies for early breast cancer, Journal of Theoretical Biology, vol.241, issue.1, pp.158-171, 2006.
DOI : 10.1016/j.jtbi.2005.11.015

H. Enderling, M. A. Chaplain, and P. Hahnfeldt, Quantitative Modeling of Tumor Dynamics and Radiotherapy, Acta Biotheoretica, vol.27, issue.2, pp.341-35310, 2010.
DOI : 10.1016/B978-0-12-035405-4.50012-8

T. Alarcon, H. M. Byrne, and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, Journal of Theoretical Biology, vol.225, issue.2, pp.257-274, 2003.
DOI : 10.1016/S0022-5193(03)00244-3

D. R. Grimes, A. G. Fletcher, and M. Partridge, Oxygen consumption dynamics in steady-state tumour models, Royal Society Open Science, vol.72, issue.4, p.140080, 2014.
DOI : 10.1038/bjc.1995.426

URL : http://doi.org/10.1098/rsos.140080

S. Demaria and S. C. Formenti, Can abscopal effects of local radiotherapy be predicted by modeling T cell trafficking?, Journal for ImmunoTherapy of Cancer, vol.31, issue.2, 2016.
DOI : 10.3109/07357907.2012.762780

S. Demaria, Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated, International Journal of Radiation Oncology*Biology*Physics, vol.58, issue.3, pp.862-870012, 2004.
DOI : 10.1016/j.ijrobp.2003.09.012

R. E. Vatner, B. T. Cooper, C. Vanpouille-box, S. Demaria, and S. C. Formenti, Combinations of Immunotherapy and Radiation in Cancer Therapy, Frontiers in Oncology, vol.39, issue.Suppl D, p.325, 2014.
DOI : 10.1016/j.immuni.2013.07.012

D. R. Grimes and M. Partridge, A mechanistic investigation of the oxygen fixation hypothesis and oxygen enhancement ratio. Biomed Phys Eng Express 1, 045209, doi:10, pp.2057-1976045209, 1088.

T. Wenzl and J. J. Wilkens, Modelling of the oxygen enhancement ratio for ion beam radiation therapy, Physics in Medicine and Biology, vol.56, issue.11, pp.3251-3268006, 2011.
DOI : 10.1088/0031-9155/56/11/006

K. L. Andarawewa, Lack of Radiation Dose or Quality Dependence of Epithelial-to-Mesenchymal Transition (EMT) Mediated by Transforming Growth Factor ?, International Journal of Radiation Oncology*Biology*Physics, vol.79, issue.5, pp.1523-1531, 2011.
DOI : 10.1016/j.ijrobp.2010.11.058