M. D. Fox and M. E. Raichle, Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging, Nature Reviews Neuroscience, vol.17, issue.9, pp.700-711, 2007.
DOI : 10.1016/j.neuroimage.2006.02.010

M. E. Raichle, A default mode of brain function, Proceedings of the National Academy of Sciences, vol.9, issue.5, pp.676-82, 2001.
DOI : 10.1162/jocn.1997.9.5.648

URL : http://www.pnas.org/content/98/2/676.full.pdf

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar mri, Magnetic Resonance in Medicine, vol.13, issue.4, pp.537-541, 1995.
DOI : 10.1038/jcbfm.1993.4

O. Sporns, Networks of the Brain: Quantitative Analysis and Modeling, Notes, 2010.

B. B. Biswal, J. Van-kylen, and J. S. Hyde, Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps, NMR in Biomedicine, vol.17, issue.4-5, pp.165-170, 1997.
DOI : 10.1097/00004647-199703000-00007

D. Cordes, Frequencies contributing to functional connectivity in the cerebral cortex in 'resting-state' data. Am, J. Neuroradiol, vol.22, pp.1326-1333, 2001.

D. Cordes, Mapping functionally related regions of brain with functional connectivity MR imaging, Am. J. Neuroradiol, vol.21, pp.1636-1644, 2000.

J. S. Damoiseaux, Consistent resting-state networks across healthy subjects, Proc. Natl. Acad. Sci. USA 103, pp.13848-53, 2006.
DOI : 10.1109/TMI.2003.822821

URL : http://www.pnas.org/content/103/37/13848.full.pdf

D. Luca, M. Smith, S. De-stefano, N. Federico, A. Matthews et al., Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system, Experimental Brain Research, vol.106, issue.Pt 11, pp.587-594, 2005.
DOI : 10.1007/s00221-005-0059-1

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, Functional connectivity in the resting brain: A network analysis of the default mode hypothesis, Proc. Natl. Acad. Sci. USA, pp.253-261, 2003.
DOI : 10.1038/375121a0

M. J. Lowe, B. J. Mock, and J. A. Sorenson, Functional Connectivity in Single and Multislice Echoplanar Imaging Using Resting-State Fluctuations, NeuroImage, vol.7, issue.2, pp.119-132, 1998.
DOI : 10.1006/nimg.1997.0315

J. Xiong, L. M. Parsons, J. H. Gao, and P. Fox, Interregional connectivity to primary motor cortex revealed using MRI resting state images, Human Brain Mapping, vol.3, issue.2-3, pp.151-156, 1999.
DOI : 10.1002/hbm.460030404

M. Van-den-heuvel, R. Mandl, and H. H. Pol, Normalized Cut Group Clustering of Resting-State fMRI Data, PLoS ONE, vol.18, issue.4, 2008.
DOI : 10.1371/journal.pone.0002001.s001

D. Mantini, M. G. Perrucci, D. Gratta, C. Romani, G. L. Corbetta et al., Electrophysiological signatures of resting state networks in the human brain, Proc. Natl. Acad. Sci. USA, pp.13170-13175, 2007.
DOI : 10.1109/72.761722

M. J. Brookes, Measuring functional connectivity using MEG: Methodology and comparison with fcMRI, NeuroImage, vol.56, issue.3, pp.1082-1104, 2011.
DOI : 10.1016/j.neuroimage.2011.02.054

URL : https://doi.org/10.1016/j.neuroimage.2011.02.054

F. De-pasquale, A Cortical Core for Dynamic Integration of Functional Networks in the Resting Human Brain, Neuron, vol.74, issue.4, pp.753-764, 2012.
DOI : 10.1016/j.neuron.2012.03.031

Z. Liu, M. Fukunaga, J. A. De-zwart, and J. H. Duyn, Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography, NeuroImage, vol.51, issue.1, pp.102-111, 2010.
DOI : 10.1016/j.neuroimage.2010.01.092

URL : http://europepmc.org/articles/pmc2847019?pdf=render

G. Gong, Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using In Vivo Diffusion Tensor Imaging Tractography, Cerebral Cortex, vol.252, issue.60, pp.524-536, 2009.
DOI : 10.1098/rspb.1993.0040

Y. Iturria-medina, R. C. Sotero, E. J. Canales-rodriguez, Y. Aleman-gumez, and L. Melie-garcia, Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory, NeuroImage, vol.40, issue.3, pp.1064-1076, 2008.
DOI : 10.1016/j.neuroimage.2007.10.060

N. Jahanshad, Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity, Proc. Natl. Acad. Sci. USA, pp.4768-73, 2013.
DOI : 10.1016/j.neuroimage.2009.10.003

URL : http://www.pnas.org/content/110/12/4768.full.pdf

L. Li, Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography, NeuroImage, vol.80, pp.462-474, 2013.
DOI : 10.1016/j.neuroimage.2013.04.024

URL : http://europepmc.org/articles/pmc3720835?pdf=render

E. H. Nijhuis, A. M. Van-cappellen-van-walsum, and D. G. Norris, Topographic Hub Maps of the Human Structural Neocortical Network, PLoS ONE, vol.8, issue.6, 2013.
DOI : 10.1371/journal.pone.0065511.s004

URL : https://doi.org/10.1371/journal.pone.0065511

M. P. Van-den-heuvel, R. S. Kahn, J. Goñi, and O. Sporns, High-cost, high-capacity backbone for global brain communication, Proc. Natl. Acad. Sci. USA, pp.11372-77, 2012.
DOI : 10.1126/science.298.5594.824

M. P. Van-den-heuvel and O. Sporns, An Anatomical Substrate for Integration among Functional Networks in Human Cortex, Journal of Neuroscience, vol.33, issue.36, pp.14489-500, 2013.
DOI : 10.1523/JNEUROSCI.2128-13.2013

J. D. Van-horn, Mapping Connectivity Damage in the Case of Phineas Gage, PLoS ONE, vol.3, issue.Pt 10, 2012.
DOI : 10.1371/journal.pone.0037454.s007

A. Zalesky, Whole-brain anatomical networks: Does the choice of nodes matter?, NeuroImage, vol.50, issue.3, pp.970-983, 2010.
DOI : 10.1016/j.neuroimage.2009.12.027

P. Hagmann, Mapping the Structural Core of Human Cerebral Cortex, PLoS Biology, vol.87, issue.7, pp.1479-1493, 2008.
DOI : 10.1371/journal.pbio.0060159.sd004

URL : https://doi.org/10.1371/journal.pbio.0060159

M. Bola and B. A. Sabel, Dynamic reorganization of brain functional networks during cognition, NeuroImage, vol.114, pp.398-413, 2015.
DOI : 10.1016/j.neuroimage.2015.03.057

D. Tomasi and N. D. Volkow, Association between Functional Connectivity Hubs and Brain Networks, Cerebral Cortex, vol.49, issue.9, pp.2003-2013, 2011.
DOI : 10.1016/j.neuroimage.2009.09.037

URL : https://academic.oup.com/cercor/article-pdf/21/9/2003/17304982/bhq268.pdf

D. Tomasi and N. D. Volkow, Functional connectivity density mapping, Proc. Natl. Acad. Sci. USA, pp.9885-9890, 2010.
DOI : 10.1016/j.neuroimage.2007.07.037

URL : http://www.pnas.org/content/107/21/9885.full.pdf

X. N. Zuo, Network Centrality in the Human Functional Connectome, Cerebral Cortex, vol.30, issue.8, pp.1862-1875, 2012.
DOI : 10.1523/JNEUROSCI.2612-10.2010

URL : https://academic.oup.com/cercor/article-pdf/22/8/1862/17306507/bhr269.pdf

A. Kabbara, W. Falou, M. Khalil, F. Wendling, and M. Hassan, Graph analysis of spontaneous brain network using EEG source connectivity. arXiv Prepr. arXiv1607, p.952, 2016.

M. P. Van-den-heuvel and O. Sporns, Rich-Club Organization of the Human Connectome, Journal of Neuroscience, vol.31, issue.44, pp.15775-15786, 2011.
DOI : 10.1523/JNEUROSCI.3539-11.2011

. De-reus, &. Ma, and M. P. Van-den-heuvel, Rich Club Organization and Intermodule Communication in the Cat Connectome, Journal of Neuroscience, vol.33, issue.32, pp.12929-12968, 2013.
DOI : 10.1523/JNEUROSCI.1448-13.2013

G. Collin, O. Sporns, R. C. Mandl, and M. P. Van-den-heuvel, Structural and Functional Aspects Relating to Cost and Benefit of Rich Club Organization in the Human Cerebral Cortex, Cerebral Cortex, vol.22, issue.1, pp.2258-2267, 2013.
DOI : 10.1063/1.3089559

C. Chang, Z. Liu, M. C. Chen, X. Liu, and J. H. Duyn, EEG correlates of time-varying BOLD functional connectivity, NeuroImage, vol.72, pp.227-236, 2013.
DOI : 10.1016/j.neuroimage.2013.01.049

URL : http://europepmc.org/articles/pmc3602157?pdf=render

M. J. Brookes, Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity, NeuroImage, vol.91, pp.282-299, 2014.
DOI : 10.1016/j.neuroimage.2013.12.066

URL : http://eprints.nottingham.ac.uk/29304/1/Transient_sync_REVISED3.pdf

R. M. Hutchison, Dynamic functional connectivity: Promise, issues, and interpretations, NeuroImage, vol.80, pp.360-378, 2013.
DOI : 10.1016/j.neuroimage.2013.05.079

URL : http://europepmc.org/articles/pmc3807588?pdf=render

E. A. Allen, Tracking Whole-Brain Connectivity Dynamics in the Resting State, Cerebral Cortex, vol.22, issue.3, pp.663-676, 2014.
DOI : 10.1093/cercor/bhr269

URL : https://academic.oup.com/cercor/article-pdf/24/3/663/14099596/bhs352.pdf

A. P. Baker, Author response image 1. Author response, eLife, vol.60, 2014.
DOI : 10.7554/eLife.01867.014

F. De-pasquale, Temporal dynamics of spontaneous MEG activity in brain networks, Proc. Natl. Acad. Sci. USA, pp.6040-6045, 2010.
DOI : 10.1287/ijoc.7.4.417

F. De-pasquale, A Dynamic Core Network and Global Efficiency in the Resting Human Brain, Cerebral Cortex, vol.7, issue.10, p.185, 2015.
DOI : 10.1093/cercor/bhr269

M. Hassan, Dynamic reorganization of functional brain networks during picture naming, Cortex, vol.73, pp.276-288, 2015.
DOI : 10.1016/j.cortex.2015.08.019

URL : https://hal.archives-ouvertes.fr/hal-01222833

M. Hassan, O. Dufor, I. Merlet, C. Berrou, and F. Wendling, EEG Source Connectivity Analysis: From Dense Array Recordings to Brain Networks, PLoS ONE, vol.45, issue.8, 2014.
DOI : 10.1371/journal.pone.0105041.t002

URL : https://hal.archives-ouvertes.fr/inserm-01082226

J. Lachaux, STUDYING SINGLE-TRIALS OF PHASE SYNCHRONOUS ACTIVITY IN THE BRAIN, International Journal of Bifurcation and Chaos, vol.28, issue.10, pp.2429-2468, 2000.
DOI : 10.1126/science.282.5395.1846

S. Achard, Hubs of brain functional networks are radically reorganized in comatose patients, Proc. Natl. Acad. Sci. USA, pp.20608-20621, 2012.
DOI : 10.1136/jamia.2001.0080443

URL : https://hal.archives-ouvertes.fr/inserm-00769024

S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs, Journal of Neuroscience, vol.26, issue.1, pp.63-72, 2006.
DOI : 10.1523/JNEUROSCI.3874-05.2006

URL : http://www.jneurosci.org/content/jneuro/26/1/63.full.pdf

, Scientific RepoRts | 7: 2936 | DOI:10

J. Alstott, M. Breakspear, P. Hagmann, L. Cammoun, and O. Sporns, Modeling the Impact of Lesions in the Human Brain, PLoS Computational Biology, vol.30, issue.6, 2009.
DOI : 10.1371/journal.pcbi.1000408.s002

M. W. Cole, S. Pathak, and W. Schneider, Identifying the brain's most globally connected regions, NeuroImage, vol.49, issue.4, pp.3132-3148, 2010.
DOI : 10.1016/j.neuroimage.2009.11.001

V. Gol-'dshtein, G. A. Koganov, and G. Surdutovich, Vulnerability and Hierarchy of Complex Networks, Physics (College. Park. Md), vol.16, p.4, 2004.

L. C. Freeman, A Set of Measures of Centrality Based on Betweenness, Sociometry, vol.40, issue.1, pp.35-41, 1977.
DOI : 10.2307/3033543

L. Harriger, M. P. Van-den-heuvel, and O. Sporns, Rich Club Organization of Macaque Cerebral Cortex and Its Role in Network Communication, PLoS ONE, vol.7, issue.9, 2012.
DOI : 10.1371/journal.pone.0046497.s002

Y. He, Uncovering Intrinsic Modular Organization of Spontaneous Brain Activity in Humans, PLoS ONE, vol.28, issue.6, 2009.
DOI : 10.1371/journal.pone.0005226.s015

O. Sporns, C. J. Honey, and R. Kotter, Identification and Classification of Hubs in Brain Networks, PLoS ONE, vol.31, issue.10, 2007.
DOI : 10.1371/journal.pone.0001049.s001

L. F. Costa, F. A. Rodrigues, G. Travieso, and P. Villas-boas, Characterization of complex networks: A survey of measurements, Advances in Physics, vol.14, issue.1, pp.167-242, 2007.
DOI : 10.1073/pnas.172501399

M. Kaiser and C. C. Hilgetag, Edge vulnerability in neural and metabolic networks, Biological Cybernetics, vol.90, issue.5, pp.311-317, 2004.
DOI : 10.1007/s00422-004-0479-1

URL : http://arxiv.org/pdf/q-bio/0403015

R. Guimerà and L. A. Nunes-amaral, Functional cartography of complex metabolic networks, Nature, vol.411, issue.Suppl., pp.895-900, 2005.
DOI : 10.1038/35075138

M. N. Moussa, Changes in Cognitive State Alter Human Functional Brain Networks, Frontiers in Human Neuroscience, vol.5, pp.1-15, 2011.
DOI : 10.3389/fnhum.2011.00083

URL : http://journal.frontiersin.org/article/10.3389/fnhum.2011.00083/pdf

D. Meunier, S. Achard, A. Morcom, and E. Bullmore, Age-related changes in modular organization of human brain functional networks, NeuroImage, vol.44, issue.3, pp.715-723, 2009.
DOI : 10.1016/j.neuroimage.2008.09.062

URL : https://hal.archives-ouvertes.fr/hal-00350197

J. D. Power, B. L. Schlaggar, C. N. Lessov-schlaggar, and S. E. Petersen, Evidence for Hubs in Human Functional Brain Networks, Neuron, vol.79, issue.4, pp.798-813, 2013.
DOI : 10.1016/j.neuron.2013.07.035

URL : https://doi.org/10.1016/j.neuron.2013.07.035

R. S. Desikan, An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage, vol.31, issue.3, pp.968-980, 2006.
DOI : 10.1016/j.neuroimage.2006.01.021

M. Hassan, Identification of Interictal Epileptic Networks from Dense-EEG. Brain Topography 1?17, doi:10, pp.10548-10564, 1007.
DOI : 10.1007/s10548-016-0517-z

URL : https://hal.archives-ouvertes.fr/hal-01446562

R. L. Buckner, Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease, Journal of Neuroscience, vol.29, issue.6, pp.1860-1873, 2009.
DOI : 10.1523/JNEUROSCI.5062-08.2009

URL : http://www.jneurosci.org/content/jneuro/29/6/1860.full.pdf

M. W. Cole, T. Yarkoni, G. Repov?, A. Anticevic, and T. S. Braver, Global Connectivity of Prefrontal Cortex Predicts Cognitive Control and Intelligence, Journal of Neuroscience, vol.32, issue.26, pp.8988-8999, 2012.
DOI : 10.1523/JNEUROSCI.0536-12.2012

URL : http://www.jneurosci.org/content/jneuro/32/26/8988.full.pdf

G. Lohmann, Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain, PLoS ONE, vol.5, issue.4, 2010.
DOI : 10.1371/journal.pone.0010232.s002

K. E. Joyce, P. J. Laurienti, J. H. Burdette, and S. Hayasaka, A New Measure of Centrality for Brain Networks, PLoS ONE, vol.401, issue.8, 2010.
DOI : 10.1371/journal.pone.0012200.s004

URL : https://doi.org/10.1371/journal.pone.0012200

M. E. Raichle and A. Snyder, A default mode of brain function: A brief history of an evolving idea, NeuroImage, vol.37, issue.4, pp.1083-1090, 2007.
DOI : 10.1016/j.neuroimage.2007.02.041

M. F. Mason, Wandering Minds: The Default Network and Stimulus-Independent Thought, Science, vol.315, issue.5810, pp.393-395, 2007.
DOI : 10.1126/science.1131295

URL : http://europepmc.org/articles/pmc1821121?pdf=render

V. D. Calhoun, R. Miller, G. Pearlson, and T. Adali, The Chronnectome: Time-Varying Connectivity Networks as the Next Frontier in fMRI Data Discovery, Neuron, vol.84, issue.2, pp.262-274, 2014.
DOI : 10.1016/j.neuron.2014.10.015

URL : https://doi.org/10.1016/j.neuron.2014.10.015

K. A. Garrison, D. Scheinost, E. S. Finn, X. Shen, and R. T. Constable, The (in)stability of functional brain network measures across thresholds, NeuroImage, vol.118, pp.651-661, 2015.
DOI : 10.1016/j.neuroimage.2015.05.046

M. J. Brookes, Investigating the electrophysiological basis of resting state networks using magnetoencephalography, Proc. Natl. Acad. Sci. USA, pp.16783-16791, 2011.
DOI : 10.1088/0031-9155/32/1/004

J. F. Hipp, D. J. Hawellek, M. Corbetta, M. Siegel, and A. K. Engel, Large-scale cortical correlation structure of spontaneous oscillatory activity, Nature Neuroscience, vol.28, issue.6, pp.884-890, 2012.
DOI : 10.1016/j.neuroimage.2005.06.058

URL : http://europepmc.org/articles/pmc3861400?pdf=render

H. Becker, Brain-Source Imaging: From sparse to tensor models, IEEE Signal Processing Magazine, vol.32, issue.6, pp.100-112, 2015.
DOI : 10.1109/MSP.2015.2413711

URL : https://hal.archives-ouvertes.fr/hal-01190559

M. J. Brookes, M. W. Woolrich, and G. Barnes, Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage, NeuroImage, vol.63, issue.2, pp.910-920, 2012.
DOI : 10.1016/j.neuroimage.2012.03.048

URL : https://doi.org/10.1016/j.neuroimage.2012.03.048

A. Delorme, S. Makeig, and . Eeglab, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, Journal of Neuroscience Methods, vol.134, issue.1, pp.9-21, 2004.
DOI : 10.1016/j.jneumeth.2003.10.009

URL : http://www.sccn.ucsd.edu/eeglab/download/eeglab_jnm03.pdf

F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, and R. M. Leahy, Brainstorm: A User-Friendly Application for MEG/EEG Analysis, Computational Intelligence and Neuroscience, vol.57, issue.1, p.2011, 2011.
DOI : 10.1002/hbm.20781

URL : http://downloads.hindawi.com/journals/cin/2011/879716.pdf

B. Fischl and . Freesurfer, FreeSurfer, NeuroImage, vol.62, issue.2, pp.774-781, 2012.
DOI : 10.1016/j.neuroimage.2012.01.021

A. Gramfort, T. Papadopoulo, E. Olivi, and M. Clerc, OpenMEEG: opensource software for quasistatic bioelectromagnetics, BioMedical Engineering OnLine, vol.9, issue.1, p.45, 2010.
DOI : 10.1186/1475-925X-9-45

URL : https://hal.archives-ouvertes.fr/inria-00467061

M. S. Hamalainen and R. J. Ilmoniemi, Interpreting magnetic fields of the brain: minimum norm estimates, Medical & Biological Engineering & Computing, vol.22, issue.1, pp.35-42, 1994.
DOI : 10.1109/T-ED.1984.21877

M. Hassan, M. Shamas, M. Khalil, W. Falou, and F. Wendling, EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome, PLOS ONE, vol.8, issue.2, 2015.
DOI : 10.1371/journal.pone.0138297.g006

URL : https://hal.archives-ouvertes.fr/hal-01326301

A. Barrat, M. Barthélemy, R. Pastor-satorras, and A. Vespignani, The architecture of complex weighted networks, Proc. Natl. Acad. Sci. USA 101, pp.3747-3752, 2004.
DOI : 10.1103/PhysRevLett.89.208701

URL : https://hal.archives-ouvertes.fr/hal-00013475

D. J. Watts and S. H. Strogatz, Collective dynamics of ???small-world??? networks, Nature, vol.338, issue.2, pp.440-442, 1998.
DOI : 10.1038/338334a0

M. Rubinov and O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, NeuroImage, vol.52, issue.3, pp.1059-1069, 2010.
DOI : 10.1016/j.neuroimage.2009.10.003

M. Xia, J. Wang, and Y. He, BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics, PLoS ONE, vol.32, issue.7, 2013.
DOI : 10.1371/journal.pone.0068910.t001

URL : https://doi.org/10.1371/journal.pone.0068910

B. H. Good, Y. A. De-montjoye, and A. Clauset, Performance of modularity maximization in practical contexts, Physical Review E, vol.49, issue.4, p.81, 2010.
DOI : 10.1007/BF02291465

URL : http://dial.uclouvain.be/downloader/downloader.php?pid=boreal:33898&datastream=PDF_01&disclaimer=21059b3e586bd945880c061a2566059997bd0c8c20bd5ee45559efbb0ed23dde

M. Girvan and M. E. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA 99, pp.7821-7827, 2002.
DOI : 10.1086/285382

URL : http://www.pnas.org/content/99/12/7821.full.pdf

V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, vol.2008, issue.10, p.6, 2008.
DOI : 10.1088/1742-5468/2008/10/P10008

URL : https://hal.archives-ouvertes.fr/hal-01146070

M. Rosvall, D. Axelsson, and C. Bergstrom, The map equation, The European Physical Journal Special Topics, vol.178, issue.1, pp.13-23, 2009.
DOI : 10.1140/epjst/e2010-01179-1

A. Lancichinetti and S. Fortunato, Consensus clustering in complex networks, Scientific Reports, vol.37, issue.1, p.336, 2012.
DOI : 10.1038/30918

URL : http://www.nature.com/articles/srep00336.pdf

M. Rubinov and O. Sporns, Weight-conserving characterization of complex functional brain networks, NeuroImage, vol.56, issue.4, pp.2068-2079, 2011.
DOI : 10.1016/j.neuroimage.2011.03.069

M. Sales-pardo, R. Guimerà, A. A. Moreira, L. A. Amaral, . Correction et al., Extracting the hierarchical organization of complex systems, Proc. Natl. Acad. Sci. USA, p.18874, 2007.
DOI : 10.1126/science.1118439

URL : http://www.pnas.org/content/104/39/15224.full.pdf

D. S. Bassett, Robust detection of dynamic community structure in networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.5, issue.1, 2013.
DOI : 10.1103/PhysRevD.86.083005

URL : http://europepmc.org/articles/pmc3618100?pdf=render

W. R. Shirer, S. Ryali, E. Rykhlevskaia, V. Menon, and M. D. Greicius, Decoding Subject-Driven Cognitive States with Whole-Brain Connectivity Patterns, Cerebral Cortex, vol.50, issue.1, pp.158-165, 2012.
DOI : 10.1016/j.neuroimage.2009.12.027

URL : https://academic.oup.com/cercor/article-pdf/22/1/158/14096754/bhr099.pdf