N. A. Maffiuletti, M. Pensini, and A. Martin, Activation of human plantar flexor muscles increases after electromyostimulation training, Journal of Applied Physiology, vol.92, issue.4, pp.1383-92, 2002.
DOI : 10.1152/japplphysiol.00884.2001

J. Gondin, J. Duclay, and A. Martin, Soleus- and Gastrocnemii-Evoked V-Wave Responses Increase After Neuromuscular Electrical Stimulation Training, Journal of Neurophysiology, vol.95, issue.6, pp.3328-3363, 2006.
DOI : 10.1152/jn.01002.2005

J. Chae, Neuromuscular Stimulation for Upper Extremity Motor and Functional Recovery in Acute Hemiplegia, Stroke, vol.29, issue.5, pp.975-979, 1998.
DOI : 10.1161/01.STR.29.5.975

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.578.9758

J. Powell, A. D. Pandyan, M. Granat, M. Cameron, and D. J. Stott, Electrical Stimulation of Wrist Extensors in Poststroke Hemiplegia, Stroke, vol.30, issue.7, pp.1384-1389, 1999.
DOI : 10.1161/01.STR.30.7.1384

T. J. Kimberley, Electrical stimulation driving functional improvements and cortical changes in subjects with stroke, Experimental Brain Research, vol.154, issue.4, pp.450-60, 2004.
DOI : 10.1007/s00221-003-1695-y

M. C. Ridding, B. Brouwer, T. S. Miles, J. B. Pitcher, and P. Thompson, Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects, Experimental Brain Research, vol.131, issue.1, pp.135-143, 2000.
DOI : 10.1007/s002219900269

D. Mckay, R. Brooker, P. Giacomin, M. Ridding, and T. Miles, Time course of induction of increased human motor cortex excitability by nerve stimulation, Neuroreport, vol.13, issue.10, pp.1271-1273, 2002.
DOI : 10.1097/00001756-200207190-00011

S. Khaslavskaia, M. Ladouceur, and T. Sinkjaer, Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve, Experimental Brain Research, vol.145, issue.3, pp.309-315, 2002.
DOI : 10.1007/s00221-002-1094-9

B. S. Han, Functional Magnetic Resonance Image Finding of Cortical Activation by Neuromuscular Electrical Stimulation on Wrist Extensor Muscles, American Journal of Physical Medicine & Rehabilitation, vol.82, issue.1, pp.17-20, 2003.
DOI : 10.1097/00002060-200301000-00003

G. V. Smith, G. Alon, S. R. Roys, and R. P. Gullapalli, Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects, Experimental Brain Research, vol.rehabilitation, issue.1, pp.33-42, 2003.
DOI : 10.1016/S0168-5597(98)00043-4

A. Blickenstorfer, Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI, Human Brain Mapping, vol.120, issue.Part 1, pp.963-75, 2009.
DOI : 10.1002/hbm.20559

S. Francis, fMRI analysis of active, passive and electrically stimulated ankle dorsiflexion, NeuroImage, vol.44, issue.2, pp.469-479, 2009.
DOI : 10.1016/j.neuroimage.2008.09.017

S. D. Iftime-nielsen, Interaction of electrical stimulation and voluntary hand movement in SII and the cerebellum during simulated therapeutic functional electrical stimulation in healthy adults, Human Brain Mapping, vol.27, issue.1, pp.40-49, 2012.
DOI : 10.1002/hbm.21191

W. H. Backes, W. H. Mess, V. Van-kranen-mastenbroek, and J. P. Reulen, Somatosensory cortex responses to median nerve stimulation: fMRI effects of current amplitude and selective attention, Clinical Neurophysiology, vol.111, issue.10, pp.1738-1744, 2000.
DOI : 10.1016/S1388-2457(00)00420-X

K. K. Kampe, R. A. Jones, and D. P. Auer, Frequency dependence of the functional MRI response after electrical median nerve stimulation, Human Brain Mapping, vol.40, issue.2, pp.106-114, 2000.
DOI : 10.1002/(SICI)1097-0193(200002)9:2<106::AID-HBM5>3.0.CO;2-Y

A. J. Bergquist, Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley, European Journal of Applied Physiology, vol.36, issue.Pt 5, pp.2409-2426, 2011.
DOI : 10.1007/s00421-011-2087-9

D. F. Collins, Central Contributions to Contractions Evoked by Tetanic Neuromuscular Electrical Stimulation, Exercise and Sport Sciences Reviews, vol.35, pp.102-111, 2007.
DOI : 10.1097/jes.0b013e3180a0321b

D. F. Collins, D. Burke, and S. C. Gandevia, Large involuntary forces consistent with plateau-like behavior of human motoneurons, J Neurosci, vol.21, pp.4059-65, 2001.

D. F. Collins, D. Burke, and S. C. Gandevia, Sustained contractions produced by plateau-like behaviour in human motoneurones, The Journal of Physiology, vol.6, issue.1, pp.289-301, 2002.
DOI : 10.1113/jphysiol.2001.012825

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290016

J. L. Veale, R. F. Mark, and S. Rees, Differential sensitivity of motor and sensory fibres in human ulnar nerve, Journal of Neurology, Neurosurgery & Psychiatry, vol.36, issue.1, pp.75-86, 1973.
DOI : 10.1136/jnnp.36.1.75

M. C. Kiernan, C. S. Lin, -. Burke, and D. , Differences in activity-dependent hyperpolarization in human sensory and motor axons, The Journal of Physiology, vol.507, issue.1, pp.341-349, 2004.
DOI : 10.1113/jphysiol.2004.063966

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664913

A. Martin, The Etiology of Muscle Fatigue Differs between Two Electrical Stimulation Protocols, Medicine & Science in Sports & Exercise, vol.48, issue.8, pp.1474-1484, 2016.
DOI : 10.1249/MSS.0000000000000930

URL : https://hal.archives-ouvertes.fr/hal-01414257

D. Neyroud, Wide-pulse-high-frequency neuromuscular stimulation of triceps surae induces greater muscle fatigue compared with conventional stimulation, Journal of Applied Physiology, vol.116, issue.10, pp.1281-1289, 1985.
DOI : 10.1152/japplphysiol.01015.2013

J. Wegrzyk, Responders to Wide-Pulse, High-Frequency Neuromuscular Electrical Stimulation Show Reduced Metabolic Demand: A 31P-MRS Study in Humans, PLOS ONE, vol.8, issue.Suppl 3, p.143972, 2015.
DOI : 10.1371/journal.pone.0143972.t001

URL : https://hal.archives-ouvertes.fr/hal-01414345

J. Wegrzyk, Extra Forces induced by wide-pulse, high-frequency electrical stimulation: Occurrence, magnitude, variability and underlying mechanisms, Clinical Neurophysiology, vol.126, issue.7, pp.1400-1412, 2015.
DOI : 10.1016/j.clinph.2014.10.001

URL : https://hal.archives-ouvertes.fr/hal-01414344

H. Van-duinen, R. Renken, N. M. Maurits, and I. Zijdewind, Relation between muscle and brain activity during isometric contractions of the first dorsal interosseus muscle, Human Brain Mapping, vol.175, issue.3, pp.281-299, 2008.
DOI : 10.1002/hbm.20388

B. Keisker, M. Hepp-reymond, A. Blickenstorfer, M. Meyer, and S. S. Kollias, Differential force scaling of fine-graded power grip force in the sensorimotor network, Human Brain Mapping, vol.27, issue.part 8, pp.2453-2465, 2009.
DOI : 10.1002/hbm.20676

M. B. Spraker, Specific cerebellar regions are related to force amplitude and rate of force development, NeuroImage, vol.59, issue.2, pp.1647-1656, 2012.
DOI : 10.1016/j.neuroimage.2011.09.019

C. Sahyoun, A. Floyer-lea, H. Johansen-berg, and P. M. Matthews, Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements, NeuroImage, vol.21, issue.2, pp.568-575, 2004.
DOI : 10.1016/j.neuroimage.2003.09.065

E. Kapreli, Lateralization of brain activity during lower limb joints movement. An fMRI study, NeuroImage, vol.32, issue.4, pp.1709-1721, 2006.
DOI : 10.1016/j.neuroimage.2006.05.043

J. M. Newton, Reliable assessment of lower limb motor representations with fMRI: Use of a novel MR compatible device for real-time monitoring of ankle, knee and hip torques, NeuroImage, vol.43, issue.1, pp.136-146, 2008.
DOI : 10.1016/j.neuroimage.2008.07.001

J. P. Trinastic, An fMRI Study of the Differences in Brain Activity During Active Ankle Dorsiflexion and Plantarflexion, Brain Imaging and Behavior, vol.399, issue.3, pp.121-131, 2010.
DOI : 10.1007/s11682-010-9091-2

D. E. Vaillancourt, K. R. Thulborn, and D. M. Corcos, Neural Basis for the Processes That Underlie Visually Guided and Internally Guided Force Control in Humans, Journal of Neurophysiology, vol.90, issue.5, pp.3330-3340, 2003.
DOI : 10.1152/jn.00394.2003

K. A. Neely, S. A. Coombes, P. J. Planetta, and D. E. Vaillancourt, Segregated and overlapping neural circuits exist for the production of static and dynamic precision grip force, Human Brain Mapping, vol.50, pp.698-712, 2013.
DOI : 10.1002/hbm.21467

O. Ciccarelli, Identifying brain regions for integrative sensorimotor processing with ankle movements, Experimental Brain Research, vol.36, issue.Pt 10, pp.31-42, 2005.
DOI : 10.1007/s00221-005-2335-5

B. B. Edin and A. B. Vallbo, Dynamic response of human muscle spindle afferents to stretch, J. Neurophysiol, vol.63, pp.1297-1306, 1990.

B. B. Edin and A. B. Vallbo, Muscle afferent responses to isometric contractions and relaxations in humans, J. Neurophysiol, vol.63, pp.1307-1313, 1990.

B. Keisker, M. Hepp-reymond, A. Blickenstorfer, and S. S. Kollias, Differential representation of dynamic and static power grip force in the sensorimotor network, European Journal of Neuroscience, vol.65, issue.Suppl. 2, pp.1483-1491, 2010.
DOI : 10.1111/j.1460-9568.2010.07172.x

R. Goswami, M. F. Frances, and J. K. Shoemaker, Representation of somatosensory inputs within the cortical autonomic network, NeuroImage, vol.54, issue.2, pp.1211-1220, 2011.
DOI : 10.1016/j.neuroimage.2010.09.050

A. Canedo, PRIMARY MOTOR CORTEX INFLUENCES ON THE DESCENDING AND ASCENDING SYSTEMS, Progress in Neurobiology, vol.51, issue.3, pp.287-335, 1997.
DOI : 10.1016/S0301-0082(96)00058-5

S. T. Francis, fMRI of the Responses to Vibratory Stimulation of Digit Tips, NeuroImage, vol.11, issue.3, pp.188-202, 2000.
DOI : 10.1006/nimg.2000.0541

D. Gratta and C. , Topographic organization of the human primary and secondary somatosensory areas, NeuroReport, vol.11, issue.9, pp.2035-2043, 2000.
DOI : 10.1097/00001756-200006260-00046

D. Arienzo, Somatotopy of anterior cingulate cortex (ACC) and supplementary motor area (SMA) for electric stimulation of the median and tibial nerves: An fMRI study, NeuroImage, vol.33, issue.2, pp.700-705, 2006.
DOI : 10.1016/j.neuroimage.2006.06.030

A. Ferretti, Functional topography of the secondary somatosensory cortex for nonpainful and painful stimulation of median and tibial nerve: an fMRI study, NeuroImage, vol.23, issue.3, pp.1217-1225, 2004.
DOI : 10.1016/j.neuroimage.2004.08.003

A. Ferretti, Cortical brain responses during passive nonpainful median nerve stimulation at low frequencies (0.5???4 Hz): An fMRI study, Human Brain Mapping, vol.120, issue.7, pp.645-653, 2007.
DOI : 10.1002/hbm.20292

M. Frot and F. Mauguière, Timing and Spatial Distribution of Somatosensory Responses Recorded in the Upper Bank of the Sylvian Fissure (SII Area) in Humans, Cerebral Cortex, vol.9, issue.8, pp.854-863, 1991.
DOI : 10.1093/cercor/9.8.854

N. Forss, M. Hietanen, O. Salonen, and R. Hari, Modified activation of somatosensory cortical network in patients with right-hemisphere stroke, Brain, vol.122, issue.10, pp.1889-1899, 1999.
DOI : 10.1093/brain/122.10.1889

B. Taskin, Preserved Responsiveness of Secondary Somatosensory Cortex in Patients with Thalamic Stroke, Cerebral Cortex, vol.16, issue.10, pp.1431-1439, 1991.
DOI : 10.1093/cercor/bhj080

V. Martin, G. Y. Millet, A. Martin, G. Deley, and G. Lattier, Assessment of low-frequency fatigue with two methods of electrical stimulation, Journal of Applied Physiology, vol.97, issue.5, pp.1923-1929, 1985.
DOI : 10.1152/japplphysiol.00376.2004

T. L. Chen, Human secondary somatosensory cortex is involved in the processing of somatosensory rare stimuli: An fMRI study, NeuroImage, vol.40, issue.4, pp.1765-1771, 2008.
DOI : 10.1016/j.neuroimage.2008.01.020

D. M. Niddam, Event-Related Functional MRI Study on Central Representation of Acute Muscle Pain Induced by Electrical Stimulation, NeuroImage, vol.17, issue.3, pp.1437-1450, 2002.
DOI : 10.1006/nimg.2002.1270

N. A. Maffiuletti, Physiological and methodological considerations for the use of neuromuscular electrical stimulation, European Journal of Applied Physiology, vol.26, issue.Suppl 4, pp.223-257, 2010.
DOI : 10.1007/s00421-010-1502-y

M. E. Raichle, A default mode of brain function, Proc. Natl. Acad. Sci. USA. 98, pp.676-682, 2001.
DOI : 10.1002/cne.903630408

A. Kavounoudias, Proprio-tactile integration for kinesthetic perception: An fMRI study, Neuropsychologia, vol.46, issue.2, pp.567-575, 2008.
DOI : 10.1016/j.neuropsychologia.2007.10.002

URL : https://hal.archives-ouvertes.fr/hal-01437968

E. Naito, T. Morita, and K. Amemiya, Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness, Neuroscience Research, vol.104, pp.16-30, 2016.
DOI : 10.1016/j.neures.2015.10.013

N. Fujiwara, Second somatosensory area (SII) plays a significant role in selective somatosensory attention, Cognitive Brain Research, vol.14, issue.3, pp.389-397, 2002.
DOI : 10.1016/S0926-6410(02)00141-6

H. Hämäläinen, J. Hiltunen, and I. Titievskaja, Activation of somatosensory cortical areas varies with attentional state: an fMRI study, Behavioural Brain Research, vol.135, issue.1-2, pp.159-165, 2002.
DOI : 10.1016/S0166-4328(02)00145-6

S. M. Golaszewski, Human brain structures related to plantar vibrotactile stimulation: A functional magnetic resonance imaging study, NeuroImage, vol.29, issue.3, pp.923-929, 2006.
DOI : 10.1016/j.neuroimage.2005.08.052

M. Gandolla, Re-thinking the role of motor cortex: Context-sensitive motor outputs?, NeuroImage, vol.91, pp.366-374, 2014.
DOI : 10.1016/j.neuroimage.2014.01.011

D. Neyroud, Wide-pulse-high-frequency neuromuscular electrical stimulation in cerebral palsy, Clinical Neurophysiology, vol.127, issue.2, pp.1530-1539, 2016.
DOI : 10.1016/j.clinph.2015.07.009

URL : https://hal.archives-ouvertes.fr/hal-01425527

Y. Oshiro, A. S. Quevedo, J. G. Mchaffie, R. A. Kraft, and R. C. Coghill, Brain Mechanisms Supporting Spatial Discrimination of Pain, Journal of Neuroscience, vol.27, issue.13, pp.3388-3394, 2007.
DOI : 10.1523/JNEUROSCI.5128-06.2007

D. J. Goble, The neural basis of central proprioceptive processing in older versus younger adults: An important sensory role for right putamen, Human Brain Mapping, vol.15, issue.Part 3, pp.895-908, 2012.
DOI : 10.1002/hbm.21257

M. P. Veldman, N. A. Maffiuletti, M. Hallett, I. Zijdewind, and T. Hortobágyi, Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans, Neuroscience & Biobehavioral Reviews, vol.47, pp.22-35, 2014.
DOI : 10.1016/j.neubiorev.2014.07.013

H. Boecker, Sensory processing in Parkinson's and Huntington's disease: Investigations with 3D H215O-PET, Brain, vol.122, issue.9, pp.1651-1665, 1999.
DOI : 10.1093/brain/122.9.1651

A. M. Graybiel, Network-level neuroplasticity in cortico-basal ganglia pathways, Parkinsonism & Related Disorders, vol.10, issue.5, pp.293-296, 2004.
DOI : 10.1016/j.parkreldis.2004.03.007

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.597.5823

O. Ciccarelli, Functional response to active and passive ankle movements with clinical correlations in patients with primary progressive multiple sclerosis, Journal of Neurology, vol.4, issue.7, pp.882-891, 2006.
DOI : 10.1007/s00415-006-0125-z

M. Gandolla, The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke, Neural Plasticity, vol.23, issue.9, p.4192718, 2016.
DOI : 10.1097/00001756-200107030-00023

K. G. Sharp, R. Gramer, S. J. Page, and S. Cramer, Increased Brain Sensorimotor Network Activation after Incomplete Spinal Cord Injury, Journal of Neurotrauma, vol.34, issue.3, pp.623-631, 2017.
DOI : 10.1089/neu.2016.4503

N. Evans, Exercise Recommendations and Considerations for Persons With Spinal Cord Injury, Archives of Physical Medicine and Rehabilitation, vol.96, issue.9, pp.1749-1750, 2015.
DOI : 10.1016/j.apmr.2015.02.005

J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain. 3-D Proportional System: An Approach to Cerebral Imaging, 1988.

N. Tzourio-mazoyer, Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain, NeuroImage, vol.15, issue.1, pp.273-289, 2002.
DOI : 10.1006/nimg.2001.0978