C. Lopez-otin and J. Bond, Proteases: Multifunctional Enzymes in Life and Disease, Journal of Biological Chemistry, vol.283, issue.45, pp.30433-30440, 2008.
DOI : 10.1074/jbc.R800035200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576539

X. Puente, L. Sanchez, C. Overall, and C. Lopez-otin, Human and mouse proteases: a comparative genomic approach, Nature Reviews Genetics, vol.4, issue.7, pp.544-58, 2003.
DOI : 10.1038/nrg1111

A. Khan and M. James, Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes, Protein Science, vol.152, issue.4, pp.815-851, 1998.
DOI : 10.1002/pro.5560070401

L. Hedstrom, Serine Protease Mechanism and Specificity, Chemical Reviews, vol.102, issue.12, pp.4501-4525, 2002.
DOI : 10.1021/cr000033x

R. Szabo and T. Bugge, Membrane-Anchored Serine Proteases in Vertebrate Cell and Developmental Biology, Annual Review of Cell and Developmental Biology, vol.27, issue.1, pp.213-248, 2011.
DOI : 10.1146/annurev-cellbio-092910-154247

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391589

K. List, C. Haudenschild, R. Szabo, W. Chen, S. Wahl et al., Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis, Oncogene, vol.21, issue.23, pp.3765-79, 2002.
DOI : 10.1038/sj.onc.1205502

K. List, R. Szabo, P. Wertz, J. Segre, C. Haudenschild et al., Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1, The Journal of Cell Biology, vol.208, issue.4, pp.901-911, 2003.
DOI : 10.1046/j.1523-1747.2002.00133.x

K. List, P. Kosa, R. Szabo, A. Bey, C. Wang et al., Epithelial Integrity Is Maintained by a Matriptase-Dependent Proteolytic Pathway, The American Journal of Pathology, vol.175, issue.4, pp.1453-63, 2009.
DOI : 10.2353/ajpath.2009.090240

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751542

M. Buzza, S. Netzel-arnett, T. Shea-donohue, A. Zhao, C. Lin et al., Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine, Proceedings of the National Academy of Sciences, vol.215, issue.2-3, pp.4200-4205, 2010.
DOI : 10.1007/s00232-007-9014-3

R. Szabo, D. Peters, P. Kosa, E. Camerer, and T. Bugge, Regulation of Feto-Maternal Barrier by Matriptase- and PAR-2-Mediated Signaling Is Required for Placental Morphogenesis and Mouse Embryonic Survival, PLoS Genetics, vol.169, issue.7, p.1004470, 2014.
DOI : 10.1371/journal.pgen.1004470.s008

H. Yin, P. Kosa, X. Liu, W. Swaim, Z. Lai et al., Matriptase Deletion Initiates a Sj?gren?s Syndrome-Like Disease in Mice, PLoS ONE, vol.80, issue.2, p.82852, 2014.
DOI : 10.1371/journal.pone.0082852.s002

URL : http://doi.org/10.1371/journal.pone.0082852

P. Kosa, R. Szabo, A. Molinolo, and T. Bugge, Suppression of Tumorigenicity-14, encoding matriptase, is a critical suppressor of colitis and colitis-associated colon carcinogenesis, Oncogene, vol.34, issue.32, pp.3679-95, 2012.
DOI : 10.1159/000015125

K. List, R. Szabo, A. Molinolo, V. Sriuranpong, V. Redeye et al., Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation, Genes & Development, vol.19, issue.16, pp.1934-50, 2005.
DOI : 10.1101/gad.1300705

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1186192

K. Owen, D. Qiu, J. Alves, A. Schumacher, L. Kilpatrick et al., Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA, Biochemical Journal, vol.149, issue.2, pp.219-247, 2010.
DOI : 10.1016/S0014-4827(03)00204-0

URL : https://hal.archives-ouvertes.fr/hal-00479257

K. Sales, A. Masedunskas, A. Bey, A. Rasmussen, R. Weigert et al., Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome, Nature Genetics, vol.51, issue.8, pp.676-83, 2010.
DOI : 10.1074/jbc.M801970200

G. Zoratti, L. Tanabe, F. Varela, A. Murray, C. Bergum et al., Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling, Nature Communications, vol.288, p.6776, 2015.
DOI : 10.1038/ncomms7776

K. Sales, S. Friis, J. Konkel, S. Godiksen, M. Hatakeyama et al., Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis, Oncogene, vol.109, issue.3, pp.346-56, 2015.
DOI : 10.1074/jbc.M801970200

R. Szabo, A. Rasmussen, A. Moyer, P. Kosa, J. Schafer et al., c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase, Oncogene, vol.19, issue.17, pp.2003-2019, 2011.
DOI : 10.1038/onc.2010.586

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084339

A. Bhatt, A. Welm, C. Farady, M. Vasquez, K. Wilson et al., Coordinate expression and functional profiling identify an extracellular proteolytic signaling pathway, Proceedings of the National Academy of Sciences, vol.42, issue.4, pp.5771-5777, 2007.
DOI : 10.1021/bi026878f

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838401

T. Takeuchi, J. Harris, W. Huang, K. Yan, S. Coughlin et al., Cellular Localization of Membrane-type Serine Protease 1 and Identification of Protease-activated Receptor-2 and Single-chain Urokinase-type Plasminogen Activator as Substrates, Journal of Biological Chemistry, vol.275, issue.34, pp.26333-26375, 2000.
DOI : 10.1074/jbc.M002941200

J. Kang, M. Dolled-filhart, I. Ocal, B. Singh, C. Lin et al., Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer, Cancer Res, vol.63, issue.5, pp.1101-1106, 2003.

O. Bardou, A. Menou, C. Francois, J. Duitman, V. Der-thusen et al., Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis, American Journal of Respiratory and Critical Care Medicine, vol.193, issue.8, pp.847-60, 2016.
DOI : 10.1164/rccm.201502-0299OC

L. Gall, S. Szabo, R. Lee, M. Kirchhofer, D. Craik et al., Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling, Blood, vol.127, issue.25, pp.3260-3269, 2016.
DOI : 10.1182/blood-2015-11-683110

C. Ustach, W. Huang, M. Conley-lacomb, C. Lin, C. M. Abrams et al., A Novel Signaling Axis of Matriptase/PDGF-D/?-PDGFR in Human Prostate Cancer, Cancer Research, vol.70, issue.23, pp.9631-9671, 2010.
DOI : 10.1158/0008-5472.CAN-10-0511

J. Milner, A. Patel, R. Davidson, T. Swingler, A. Desilets et al., Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis, Arthritis & Rheumatism, vol.62, issue.7, pp.1955-66, 2010.
DOI : 10.1002/art.27476

C. Lin, J. Anders, M. Johnson, Q. Sang, and R. Dickson, Molecular Cloning of cDNA for Matriptase, a Matrix-degrading Serine Protease with Trypsin-like Activity, Journal of Biological Chemistry, vol.274, issue.26, pp.18231-18237, 1999.
DOI : 10.1074/jbc.274.26.18231

M. Kim, C. Chen, M. Lyu, E. Cho, D. Park et al., Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains, Immunogenetics, vol.49, issue.5, pp.420-428, 1999.
DOI : 10.1007/s002510050515

B. Macao, D. Johansson, G. Hansson, and T. Hard, Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin, Nature Structural & Molecular Biology, vol.22, issue.1, pp.71-77, 2006.
DOI : 10.1038/nsmb1035

M. Oberst, C. Williams, R. Dickson, M. Johnson, and C. Lin, The Activation of Matriptase Requires Its Noncatalytic Domains, Serine Protease Domain, and Its Cognate Inhibitor, Journal of Biological Chemistry, vol.278, issue.29, pp.26773-26782, 2003.
DOI : 10.1074/jbc.M304282200

E. Cho, M. Kim, C. Kim, S. Kim, I. Seong et al., N-terminal Processing Is Essential for Release of Epithin, a Mouse Type II Membrane Serine Protease, Journal of Biological Chemistry, vol.276, issue.48, pp.44581-44590, 2001.
DOI : 10.1074/jbc.M107059200

J. Wang, M. Lee, I. Tseng, F. Chou, Y. Chen et al., Polarized epithelial cells secrete matriptase as a consequence of zymogen activation and HAI-1-mediated inhibition, AJP: Cell Physiology, vol.297, issue.2, pp.459-70, 2009.
DOI : 10.1152/ajpcell.00201.2009

S. Friis, S. Godiksen, J. Bornholdt, J. Selzer-plon, H. Rasmussen et al., Transport via the Transcytotic Pathway Makes Prostasin Available as a Substrate for Matriptase, Journal of Biological Chemistry, vol.286, issue.7, pp.5793-802, 2011.
DOI : 10.1074/jbc.M110.186874

T. Takeuchi, M. Shuman, and C. Craik, Reverse biochemistry: Use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue, Proceedings of the National Academy of Sciences, vol.25, issue.17, pp.11054-61, 1999.
DOI : 10.1021/bi00365a020

M. Oberst, L. Chen, K. Kiyomiya, C. Williams, M. Lee et al., HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease, AJP: Cell Physiology, vol.289, issue.2, pp.462-70, 2005.
DOI : 10.1152/ajpcell.00076.2005

K. Inouye, M. Yasumoto, S. Tsuzuki, S. Mochida, and T. Fushiki, The optimal activity of a pseudozymogen form of recombinant matriptase under the mildly acidic pH and low ionic strength conditions, The Journal of Biochemistry, vol.147, issue.4, pp.485-92, 2010.
DOI : 10.1093/jb/mvp190

S. Friis, U. Sales, K. Godiksen, S. Peters, D. Lin et al., A Matriptase-Prostasin Reciprocal Zymogen Activation Complex with Unique Features: PROSTASIN AS A NON-ENZYMATIC CO-FACTOR FOR MATRIPTASE ACTIVATION, Journal of Biological Chemistry, vol.288, issue.26, pp.19028-19067, 2013.
DOI : 10.1074/jbc.M113.469932

S. Friis, K. Sales, J. Schafer, L. Vogel, H. Kataoka et al., The Protease Inhibitor HAI-2, but Not HAI-1, Regulates Matriptase Activation and Shedding through Prostasin, Journal of Biological Chemistry, vol.289, issue.32, pp.22319-22351, 2014.
DOI : 10.1074/jbc.M114.574400

J. Yu, L. Chao, and J. Chao, Molecular Cloning, Tissue-specific Expression, and Cellular Localization of Human Prostasin mRNA, Journal of Biological Chemistry, vol.270, issue.22, pp.13483-13492, 1995.
DOI : 10.1074/jbc.270.22.13483

V. Harris, Protein Detection by Simple Western??? Analysis, Methods Mol Biol, vol.1312, pp.465-473, 2015.
DOI : 10.1007/978-1-4939-2694-7_47

S. Friis, D. Madsen, and T. Bugge, Distinct Developmental Functions of Prostasin (CAP1/PRSS8) Zymogen and Activated Prostasin, Journal of Biological Chemistry, vol.291, issue.6, pp.2577-82, 2016.
DOI : 10.1074/jbc.C115.706721

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742728

S. Netzel-arnett, B. Currie, R. Szabo, C. Lin, L. Chen et al., Evidence for a Matriptase-Prostasin Proteolytic Cascade Regulating Terminal Epidermal Differentiation, Journal of Biological Chemistry, vol.281, issue.44, pp.32941-32946, 2006.
DOI : 10.1074/jbc.C600208200

R. Szabo, T. Lantsman, D. Peters, and T. Bugge, Delineation of proteolytic and non-proteolytic functions of the membrane-anchored serine protease prostasin, Development, vol.143, issue.15, pp.2818-2846, 2016.
DOI : 10.1242/dev.137968

K. List, R. Szabo, A. Molinolo, B. Nielsen, and T. Bugge, Delineation of Matriptase Protein Expression by Enzymatic Gene Trapping Suggests Diverging Roles in Barrier Function, Hair Formation, and Squamous Cell Carcinogenesis, The American Journal of Pathology, vol.168, issue.5, pp.1513-1538, 2006.
DOI : 10.2353/ajpath.2006.051071

D. Peters, R. Szabo, S. Friis, N. Shylo, U. Sales et al., The Membrane-anchored Serine Protease Prostasin (CAP1/PRSS8) Supports Epidermal Development and Postnatal Homeostasis Independent of Its Enzymatic Activity, Journal of Biological Chemistry, vol.289, issue.21, pp.14740-14749, 2014.
DOI : 10.1074/jbc.M113.541318

E. Camerer, A. Barker, D. Duong, R. Ganesan, H. Kataoka et al., Local Protease Signaling Contributes to Neural Tube Closure in the Mouse Embryo, Developmental Cell, vol.18, issue.1, pp.25-38, 2010.
DOI : 10.1016/j.devcel.2009.11.014

R. Szabo, U. Sales, K. Kosa, P. Shylo, N. Godiksen et al., Reduced Prostasin (CAP1/PRSS8) Activity Eliminates HAI-1 and HAI-2 Deficiency?Associated Developmental Defects by Preventing Matriptase Activation, PLoS Genetics, vol.8, issue.8, p.1002937, 2012.
DOI : 10.1371/journal.pgen.1002937.s002

URL : http://doi.org/10.1371/journal.pgen.1002937

K. List, B. Currie, T. Scharschmidt, R. Szabo, J. Shireman et al., Autosomal Ichthyosis with Hypotrichosis Syndrome Displays Low Matriptase Proteolytic Activity and Is Phenocopied in ST14 Hypomorphic Mice, Journal of Biological Chemistry, vol.282, issue.50, pp.36714-36737, 2007.
DOI : 10.1074/jbc.M705521200

D. Spacek, A. Perez, K. Ferranti, L. Wu, D. Moy et al., The mouse frizzy (fr) and rat ?hairless? (frCR) mutations are natural variants of protease serine S1 family member 8 (Prss8), Experimental Dermatology, vol.129, issue.6, pp.527-559, 2010.
DOI : 10.1111/j.1600-0625.2009.01054.x

S. Gardell, L. Duong, R. Diehl, J. York, T. Hare et al., Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator, J Biol Chem, vol.264, issue.30, pp.17947-52, 1989.

P. Bringmann, D. Gruber, A. Liese, L. Toschi, J. Kratzchmar et al., Structural Features Mediating Fibrin Selectivity of Vampire Bat Plasminogen Activators, Journal of Biological Chemistry, vol.270, issue.43, pp.25596-603, 1995.
DOI : 10.1074/jbc.270.43.25596

M. Lee, K. Kiyomiya, C. Benaud, R. Dickson, and C. Lin, Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells, AJP: Cell Physiology, vol.288, issue.4
DOI : 10.1152/ajpcell.00497.2004

M. Darragh, E. Schneider, J. Lou, P. Phojanakong, C. Farady et al., Tumor Detection by Imaging Proteolytic Activity, Cancer Research, vol.70, issue.4, pp.1505-1517, 2010.
DOI : 10.1158/0008-5472.CAN-09-1640

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823079

S. Godiksen, C. Soendergaard, S. Friis, J. Jensen, J. Bornholdt et al., Detection of Active Matriptase Using a Biotinylated Chloromethyl Ketone Peptide, PLoS ONE, vol.8, issue.10, p.77146, 2013.
DOI : 10.1371/journal.pone.0077146.g006

K. List, J. Hobson, A. Molinolo, and T. Bugge, Co-localization of the channel activating protease prostasin/(CAP1/PRSS8) with its candidate activator, matriptase, Journal of Cellular Physiology, vol.270, issue.1, pp.237-282, 2007.
DOI : 10.1002/jcp.21115

S. Tsuzuki, N. Murai, Y. Miyake, K. Inouye, H. Hirayasu et al., Evidence for the occurrence of membrane-type serine protease 1/matriptase on the basolateral sides of enterocytes, Biochemical Journal, vol.388, issue.2, pp.679-87, 2005.
DOI : 10.1042/BJ20041639

M. Steensgaard, P. Svenningsen, A. Tinning, T. Nielsen, F. Jorgensen et al., Apical serine protease activity is necessary for assembly of a high-resistance renal collecting duct epithelium, Acta Physiologica, vol.18, issue.4, pp.347-59, 2010.
DOI : 10.1111/j.1748-1716.2010.02170.x

M. Buzza, E. Martin, K. Driesbaugh, A. Desilets, R. Leduc et al., Prostasin Is Required for Matriptase Activation in Intestinal Epithelial Cells to Regulate Closure of the Paracellular Pathway, Journal of Biological Chemistry, vol.288, issue.15, pp.10328-10365, 2013.
DOI : 10.1074/jbc.M112.443432

S. Netzel-arnett, M. Buzza, T. Shea-donohue, A. Desilets, R. Leduc et al., Matriptase Protects Against Experimental Colitis and Promotes Intestinal Barrier Recovery, Inflammatory Bowel Diseases, vol.18, issue.7, pp.1303-1317, 2012.
DOI : 10.1002/ibd.21930

S. Frateschi, A. Keppner, S. Malsure, J. Iwaszkiewicz, C. Sergi et al., Mutations of the Serine Protease CAP1/Prss8 Lead to Reduced Embryonic Viability, Skin Defects, and Decreased ENaC Activity, The American Journal of Pathology, vol.181, issue.2, pp.605-620, 2012.
DOI : 10.1016/j.ajpath.2012.05.007

C. Planes, N. Randrianarison, R. Charles, S. Frateschi, D. Cluzeeaud et al., ENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1, EMBO Molecular Medicine, vol.163, issue.1, pp.26-37, 2009.
DOI : 10.1002/emmm.200900050

S. Malsure, Q. Wang, R. Charles, C. Sergi, R. Perrier et al., Colon-Specific Deletion of Epithelial Sodium Channel Causes Sodium Loss and Aldosterone Resistance, Journal of the American Society of Nephrology, vol.25, issue.7, pp.1453-64, 2014.
DOI : 10.1681/ASN.2013090936

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073440

S. Friis, S. Godiksen, J. Bornholdt, J. Selzer-plon, H. Rasmussen et al., Transport via the Transcytotic Pathway Makes Prostasin Available as a Substrate for Matriptase, Journal of Biological Chemistry, vol.286, issue.7, pp.5793-802, 2010.
DOI : 10.1074/jbc.M110.186874

J. Romer, T. Bugge, C. Pyke, L. Lund, M. Flick et al., Impaired wound healing in mice with a disrupted plasminogen gene, Nature Medicine, vol.10, issue.3, pp.287-92, 1996.
DOI : 10.1038/368419a0

J. Trejo, A. Connolly, and S. Coughlin, The cloned thrombin receptor is necessary and sufficient for activation of mitogen-activated protein kinase and mitogenesis in mouse lung fibroblasts. Loss of responses in fibroblasts from receptor knockout mice, J Biol Chem, vol.271, issue.35, pp.21536-21577, 1996.