K. L. Wallace, L. B. Zheng, Y. Kanazawa, and D. Q. Shih, Immunopathology of inflammatory bowel disease, World J Gastroenterol, vol.20, pp.6-21, 2014.

J. L. Round and S. K. Mazmanian, The gut microbiota shapes intestinal immune responses during health and disease, Nat Rev Immunol, vol.9, pp.313-336, 2009.

H. Sokol, B. Pigneur, L. Watterlot, O. Lakhdari, L. G. Bermudez-humaran et al., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients, Proc Natl Acad Sci U S A, vol.105, pp.16731-16737, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00652961

S. Kang, S. E. Denman, M. Morrison, Z. Yu, J. Dore et al., Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray, Inflamm Bowel Dis, vol.16, pp.2034-2076, 2010.

X. C. Morgan, T. L. Tickle, H. Sokol, D. Gevers, K. L. Devaney et al., Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment, Genome Biol, vol.13, p.79, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00736429

V. Eeckhaut, K. Machiels, C. Perrier, C. Romero, S. Maes et al., Butyricicoccus pullicaecorum in inflammatory bowel disease, Gut, vol.62, pp.1745-52, 2013.

O. Kanauchi, A. Andoh, and K. Mitsuyama, Effects of the modulation of microbiota on the gastrointestinal immune system and bowel function, J Agric Food Chem, vol.61, pp.9977-83, 2013.

, Frontiers in Immunology | www.frontiersin.org December, vol.7, p.651, 2016.

K. M. Maslowski and C. R. Mackay, Diet, gut microbiota and immune responses, Nat Immunol, vol.12, pp.5-9, 2011.

A. Koh, D. Vadder, F. Kovatcheva-datchary, P. Backhed, and F. , From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites, Cell, vol.165, pp.1332-1377, 2016.

A. Minocha, Probiotics for preventive health, Nutr Clin Pract, vol.24, pp.227-268, 2009.

R. Martin, S. Miquel, J. Ulmer, N. Kechaou, P. Langella et al., Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease, Microb Cell Fact, vol.12, p.71, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190516

B. Foligne, S. Parayre, R. Cheddani, M. H. Famelart, M. N. Madec et al., Immunomodulation properties of multi-species fermented milks, Food Microbiol, vol.53, pp.60-69, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01209834

K. Tsilingiri, T. Barbosa, G. Penna, F. Caprioli, A. Sonzogni et al., Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model, Gut, vol.61, pp.1007-1022, 2012.

G. L. Garrote, A. G. Abraham, and M. Rumbo, Is lactate an undervalued functional component of fermented food products? Front Microbiol, vol.6, p.629, 2015.

R. Haas, D. Cucchi, J. Smith, V. Pucino, C. E. Macdougall et al., Intermediates of metabolism: from bystanders to signalling molecules, Trends Biochem Sci, vol.41, pp.460-71, 2016.

R. Hoque, A. Farooq, A. Ghani, F. Gorelick, and W. Z. Mehal, Lactate reduces liver and pancreatic injury in Toll-like receptor-and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity, Gastroenterology, vol.146, pp.1763-74, 2014.

T. Okada, S. Fukuda, K. Hase, S. Nishiumi, Y. Izumi et al., Microbiotaderived lactate accelerates colon epithelial cell turnover in starvation-refed mice, Nat Commun, vol.4, p.1654, 2013.

C. Iraporda, D. Romanin, M. Rumbo, G. Garrote, and A. Abraham, The role of lactate in the immunomodulatory properties of kefir non bacterial fraction, Food Res Int, vol.62, pp.247-53, 2014.

C. Iraporda, A. Errea, D. E. Romanin, D. Cayet, E. Pereyra et al., Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells, Immunobiology, vol.220, pp.1161-1170, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01182910

C. Nempont, D. Cayet, M. Rumbo, C. Bompard, V. Villeret et al., Deletion of flagellin's hypervariable region abrogates antibody-mediated neutralization and systemic activation of TLR5-dependent immunity, J Immunol, vol.181, pp.2036-2079, 2008.

D. E. Romanin, S. Llopis, S. Genoves, P. Martorell, V. D. Ramon et al., Probiotic yeast Kluyveromyces marxianus CIDCA 8154 shows anti-inflammatory and anti-oxidative stress properties in in vivo models, Benef Microbes, vol.7, pp.83-93, 2015.

A. Errea, D. Cayet, P. Marchetti, C. Tang, J. Kluza et al., Lactate inhibits the pro-inflammatory response and metabolic reprogramming in murine macrophages in a GPR81-independent manner, PLoS One, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01529298

P. I. Baker, D. R. Love, and L. R. Ferguson, Role of gut microbiota in Crohn's disease, Expert Rev Gastroenterol Hepatol, vol.3, pp.535-581, 2009.

S. M. Bennet, L. Ohman, and M. Simren, Gut microbiota as potential orchestrators of irritable bowel syndrome, Gut Liver, vol.9, pp.318-349, 2015.

J. Breton, C. Ple, L. Guerin-deremaux, B. Pot, C. Lefranc-millot et al., Intrinsic immunomodulatory effects of low-digestible carbohydrates selectively extend their anti-inflammatory prebiotic potentials, Biomed Res Int, p.13, 2015.

P. Van-baarlen, J. M. Wells, and M. Kleerebezem, Regulation of intestinal homeostasis and immunity with probiotic lactobacilli, Trends Immunol, vol.34, pp.208-223, 2013.

C. Ple, J. Breton, R. Richoux, M. Nurdin, S. M. Deutsch et al., Combining selected immunomodulatory Propionibacterium freudenreichii and Lactobacillus delbrueckii strains: reverse engineering development of an anti-inflammatory cheese, Mol Nutr Food Res, vol.60, pp.935-983, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01533860

P. Vernia, A. Marcheggiano, R. Caprilli, G. Frieri, G. Corrao et al., Scheppach W. Treatment of distal ulcerative colitis with short-chain fatty acid enemas. A placebo-controlled trial. German-Austrian SCFA study group, Aliment Pharmacol Ther, vol.9, pp.2254-2263, 1995.

R. I. Breuer, K. H. Soergel, B. A. Lashner, M. L. Christ, S. B. Hanauer et al., Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomised, placebo controlled trial, Gut, vol.40, pp.485-91, 1997.

Y. Komiyama, A. Andoh, D. Fujiwara, H. Ohmae, Y. Araki et al., New prebiotics from rice bran ameliorate inflammation in murine colitis models through the modulation of intestinal homeostasis and the mucosal immune system, Scand J Gastroenterol, vol.46, pp.40-52, 2011.

E. L. Vieira, A. J. Leonel, A. P. Sad, N. R. Beltrao, T. F. Costa et al., Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis, J Nutr Biochem, vol.23, pp.430-436, 2012.

R. F. Assisi, . Gisdi-study, and . Group, Combined butyric acid/mesalazine treatment in ulcerative colitis with mild-moderate activity. Results of a multicentre pilot study, Minerva Gastroenterol Dietol, vol.54, pp.231-239, 2008.

K. Peter, M. Rehli, K. Singer, K. Renner-sattler, and M. Kreutz, Lactic acid delays the inflammatory response of human monocytes, Biochem Biophys Res Commun, vol.457, pp.412-420, 2015.

E. Antoniou, G. A. Margonis, A. Angelou, A. Pikouli, P. Argiri et al., The TNBS-induced colitis animal model: an overview, Ann Med Surg, vol.11, pp.9-15, 2016.

S. Fiorucci, E. Distrutti, A. Mencarelli, M. Barbanti, E. Palazzini et al., Inhibition of intestinal bacterial translocation with rifaximin modulates lamina propria monocytic cells reactivity and protects against inflammation in a rodent model of colitis, Digestion, vol.66, pp.246-56, 2002.

C. Daniel, S. Poiret, D. Goudercourt, V. Dennin, G. Leyer et al., Selecting lactic acid bacteria for their safety and functionality by use of a mouse colitis model

, Appl Environ Microbiol, vol.72, pp.5799-805, 2006.

A. Akcan, C. Kucuk, E. Sozuer, D. Esel, H. Akyildiz et al., Melatonin reduces bacterial translocation and apoptosis in trinitrobenzene sulphonic acid-induced colitis of rats, World J Gastroenterol, vol.14, pp.918-942, 2008.

B. Halaclar, A. Ay, A. Akcan, A. C. Ay, A. Oz et al., Effects of glucagon-like peptide-2 on bacterial translocation in rat models of colitis, Turk J Gastroenterol, vol.23, pp.691-699, 2012.

P. Martinez-moya, M. Ortega-gonzalez, R. Gonzalez, A. Anzola, B. Ocon et al., Exogenous alkaline phosphatase treatment complements endogenous enzyme protection in colonic inflammation and reduces bacterial translocation in rats, Pharmacol Res, vol.66, pp.144-53, 2012.

D. Lissner and B. Siegmund, The multifaceted role of the inflammasome in inflammatory bowel diseases, ScientificWorldJournal, vol.11, 2011.

C. Du, P. Wang, Y. Yu, F. Chen, J. Liu et al., Gadolinium chloride improves the course of TNBS and DSS-induced colitis through protecting against colonic mucosal inflammation, Sci Rep, vol.4, p.6096, 2014.

Z. Huang, J. Ma, M. Chen, H. Jiang, Y. Fu et al., Dual TNF-alpha/IL-12p40 interference as a strategy to protect against colitis based on miR-16 precursors with macrophage targeting vectors, Mol Ther, vol.23, pp.1611-1632, 2015.

A. Stancic, K. Jandl, C. Hasenohrl, F. Reichmann, G. Marsche et al., The GPR55 antagonist CID16020046 protects against intestinal inflammation, Neurogastroenterol Motil, vol.27, pp.1432-1477, 2015.

X. Cheng, X. Zhang, J. Su, Y. Zhang, W. Zhou et al., miR-19b downregulates intestinal SOCS3 to reduce intestinal inflammation in Crohn's disease, Sci Rep, vol.5, p.10397, 2015.

A. K. Jha, S. C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova et al., Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization, Immunity, vol.42, pp.419-449, 2015.

, Frontiers in Immunology | www.frontiersin.org December, vol.7, p.651, 2016.

S. Selleri, P. Bifsha, S. Civini, C. Pacelli, M. M. Dieng et al., Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming, Oncotarget, vol.7, pp.30193-210, 2016.

O. R. Colegio, N. Q. Chu, A. L. Szabo, T. Chu, A. M. Rhebergen et al., Functional polarization of tumour-associated macrophages by tumourderived lactic acid, Nature, vol.513, pp.559-63, 2014.

K. Dietl, K. Renner, K. Dettmer, B. Timischl, K. Eberhart et al., Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes, J Immunol, vol.184, pp.1200-1209, 2010.

Z. Tan, N. Xie, S. Banerjee, H. Cui, M. Fu et al., The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages, J Biol Chem, vol.290, pp.46-55, 2015.

L. A. O'neill and E. J. Pearce, Immunometabolism governs dendritic cell and macrophage function, J Exp Med, vol.213, pp.15-23, 2016.

B. Everts, E. Amiel, S. C. Huang, A. M. Smith, C. H. Chang et al., TLRdriven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation, Nat Immunol, vol.15, pp.323-355, 2014.

T. Cordes, M. Wallace, A. Michelucci, A. S. Divakaruni, S. C. Sapcariu et al., Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels, J Biol Chem, vol.291, pp.14274-84, 2016.