D. R. Brigstock, The CCN family: a new stimulus package, Journal of Endocrinology, vol.178, issue.2, pp.169-175, 2003.
DOI : 10.1677/joe.0.1780169

D. R. Brigstock, Proposal for a unified CCN nomenclature, Molecular Pathology, vol.56, issue.2, pp.127-128, 2003.
DOI : 10.1136/mp.56.2.127

D. Pennica, WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors, Proceedings of the National Academy of Sciences, vol.1, issue.5307, pp.14717-14722, 1998.
DOI : 10.1126/science.275.5307.1787

C. C. Chen and L. Lau, Functions and mechanisms of action of CCN matricellular proteins, The International Journal of Biochemistry & Cell Biology, vol.41, issue.4, pp.771-783, 2009.
DOI : 10.1016/j.biocel.2008.07.025

D. F. Calvisi, Activation of the canonical Wnt/??-catenin pathway confers growth advantages in c-Myc/E2F1 transgenic mouse model of liver cancer, Journal of Hepatology, vol.42, issue.6, pp.842-849, 2005.
DOI : 10.1016/j.jhep.2005.01.029

O. Margalit, Overexpression of a set of genes, including WISP-1, common to pulmonary metastases of both mouse D122 Lewis lung carcinoma and B16-F10.9 melanoma cell lines, British Journal of Cancer, vol.89, issue.2, pp.314-319, 2003.
DOI : 10.1038/sj.bjc.6600977

D. Xie, Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features, Cancer Res, vol.61, pp.8917-8923, 2001.

S. Tanaka, Human WISP1v, a member of the CCN family, is associated with invasive cholangiocarcinoma, Hepatology, vol.25, issue.5, pp.1122-1129, 2003.
DOI : 10.1053/jhep.2003.50187

S. E. Ross, Inhibition of Adipogenesis by Wnt Signaling, Science, vol.289, issue.5481, pp.950-953, 2000.
DOI : 10.1126/science.289.5481.950

K. A. Longo, Wnt Signaling Protects 3T3-L1 Preadipocytes from Apoptosis through Induction of Insulin-like Growth Factors, Journal of Biological Chemistry, vol.277, issue.41, pp.38239-38244, 2002.
DOI : 10.1074/jbc.M206402200

S. R. Farmer, Transcriptional control of adipocyte formation, Cell Metabolism, vol.4, issue.4, pp.263-273, 2006.
DOI : 10.1016/j.cmet.2006.07.001

E. D. Rosen and O. A. Macdougald, Adipocyte differentiation from the inside out, Nature Reviews Molecular Cell Biology, vol.280, issue.12, pp.885-896, 2006.
DOI : 10.1038/nrm2066

K. L. Spalding, Dynamics of fat cell turnover in humans, Nature, vol.19, issue.7196, pp.783-787, 2008.
DOI : 10.1038/nature06902

URL : https://hal.archives-ouvertes.fr/hal-00372715

F. T. Lin and M. D. Lane, CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program., Proceedings of the National Academy of Sciences, vol.91, issue.19, pp.8757-8761, 1994.
DOI : 10.1073/pnas.91.19.8757

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC44685

E. D. Rosen and B. M. Spiegelman, PPAR??: a Nuclear Regulator of Metabolism, Differentiation, and Cell Growth, Journal of Biological Chemistry, vol.276, issue.41, pp.37731-37734, 2001.
DOI : 10.1074/jbc.R100034200

L. Fajas, J. C. Fruchart, and J. Auwerx, Transcriptional control of adipogenesis, Current Opinion in Cell Biology, vol.10, issue.2, pp.165-173, 1998.
DOI : 10.1016/S0955-0674(98)80138-5

M. Ahmadian, PPARgamma signaling and metabolism: the good, the bad and the future, Nat Med, vol.19, pp.557-566, 2013.

P. Tontonoz and B. M. Spiegelman, Fat and Beyond: The Diverse Biology of PPAR??, Annual Review of Biochemistry, vol.77, issue.1, pp.289-312, 2008.
DOI : 10.1146/annurev.biochem.77.061307.091829

H. Xu, J. K. Sethi, and G. S. Hotamisligil, Transmembrane Tumor Necrosis Factor (TNF)-?? Inhibits Adipocyte Differentiation by Selectively Activating TNF Receptor 1, Journal of Biological Chemistry, vol.274, issue.37, pp.26287-26295, 1999.
DOI : 10.1074/jbc.274.37.26287

V. Stambolic, L. Ruel, and J. R. Woodgett, Lithium inhibits glycogen synthase kinase-3 activity and mimics Wingless signalling in intact cells, Current Biology, vol.6, issue.12, pp.1664-1668, 1996.
DOI : 10.1016/S0960-9822(02)70790-2

P. Isakson, A. Hammarstedt, B. Gustafson, and U. Smith, Impaired Preadipocyte Differentiation in Human Abdominal Obesity: Role of Wnt, Tumor Necrosis Factor-??, and Inflammation, Diabetes, vol.58, issue.7, pp.1550-1557, 2009.
DOI : 10.2337/db08-1770

M. Moldes, Peroxisome-proliferator-activated receptor ?? suppresses Wnt/??-catenin signalling during adipogenesis, Biochemical Journal, vol.376, issue.3, pp.607-613, 2003.
DOI : 10.1042/bj20030426

S. T. Nadler, The expression of adipogenic genes is decreased in obesity and diabetes mellitus, Proceedings of the National Academy of Sciences, vol.215, issue.3, pp.11371-11376, 2000.
DOI : 10.1006/jmbi.1990.9999

J. I. Jun and L. Lau, Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets, Nature Reviews Drug Discovery, vol.52, issue.12, pp.945-963, 2011.
DOI : 10.1038/nrd3599

B. Berschneider and M. Konigshoff, WNT1 inducible signaling pathway protein 1 (WISP1): A novel mediator linking development and disease, The International Journal of Biochemistry & Cell Biology, vol.43, issue.3, pp.306-309, 2011.
DOI : 10.1016/j.biocel.2010.11.013

A. Hammarstedt, WISP2 regulates preadipocyte commitment and PPAR?? activation by BMP4, Proceedings of the National Academy of Sciences, vol.31, issue.7, pp.2563-2568, 2013.
DOI : 10.1128/MCB.01316-10

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574913

J. T. Tan, Connective tissue growth factor inhibits adipocyte differentiation, AJP: Cell Physiology, vol.295, issue.3, pp.740-751, 2008.
DOI : 10.1152/ajpcell.00333.2007

I. Dahlman, Functional annotation of the human fat cell secretome, Archives of Physiology and Biochemistry, vol.118, issue.3, pp.84-91, 2012.
DOI : 10.1021/pr100521c

J. Pakradouni, Plasma NOV/CCN3 Levels Are Closely Associated with Obesity in Patients with Metabolic Disorders, PLoS ONE, vol.12, issue.6, p.66788, 2013.
DOI : 10.1371/journal.pone.0066788.t005

V. Murahovschi, WISP1 Is a Novel Adipokine Linked to Inflammation in Obesity, Diabetes, vol.64, issue.3, pp.856-866, 2015.
DOI : 10.2337/db14-0444

C. A. Ihunnah, Estrogen Sulfotransferase/SULT1E1 Promotes Human Adipogenesis, Molecular and Cellular Biology, vol.34, issue.9, pp.1682-1694, 2014.
DOI : 10.1128/MCB.01147-13

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993609

T. Wada, Estrogen Sulfotransferase Inhibits Adipocyte Differentiation, Molecular Endocrinology, vol.25, issue.9, pp.1612-1623, 2011.
DOI : 10.1210/me.2011-1089

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165918

M. Karbiener, Mesoderm-specific transcript (MEST) is a negative regulator of human adipocyte differentiation, International Journal of Obesity, vol.14, issue.12, 2015.
DOI : 10.1016/j.tins.2005.06.005

J. Lindroos, Human but Not Mouse Adipogenesis Is Critically Dependent on LMO3, Cell Metabolism, vol.18, issue.1, pp.62-74, 2013.
DOI : 10.1016/j.cmet.2013.05.020

URL : http://doi.org/10.1016/j.cmet.2013.05.020

A. Divoux and K. Clement, Architecture and the extracellular matrix: the still unappreciated components of the adipose tissue, Obesity Reviews, vol.124, issue.5, pp.494-503, 2011.
DOI : 10.1111/j.1467-789X.2010.00811.x

P. Tontonoz, E. Hu, and B. M. Spiegelman, Stimulation of adipogenesis in fibroblasts by PPAR??2, a lipid-activated transcription factor, Cell, vol.79, issue.7, pp.1147-1156, 1994.
DOI : 10.1016/0092-8674(94)90006-X

A. G. Cristancho and M. A. Lazar, Forming functional fat: a growing understanding of adipocyte differentiation, Nature Reviews Molecular Cell Biology, vol.466, issue.11, pp.722-734, 2011.
DOI : 10.1038/nrm3198

M. Lehrke and M. A. Lazar, The Many Faces of PPAR??, Cell, vol.123, issue.6, pp.993-999, 2005.
DOI : 10.1016/j.cell.2005.11.026

S. Hauser, Degradation of the Peroxisome Proliferator-activated Receptor gamma Is Linked to Ligand-dependent Activation, Journal of Biological Chemistry, vol.275, issue.24, pp.18527-18533, 2000.
DOI : 10.1074/jbc.M001297200

J. Liu, H. Wang, Y. Zuo, and S. R. Farmer, Functional Interaction between Peroxisome Proliferator-Activated Receptor ?? and ??-Catenin, Molecular and Cellular Biology, vol.26, issue.15, pp.5827-5837, 2006.
DOI : 10.1128/MCB.00441-06

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592783

J. R. Grunberg, A. Hammarstedt, S. Hedjazifar, and U. Smith, The Novel Secreted Adipokine WNT1-inducible Signaling Pathway Protein 2 (WISP2) Is a Mesenchymal Cell Activator of Canonical WNT, Journal of Biological Chemistry, vol.289, issue.10, pp.6899-6907, 2014.
DOI : 10.1074/jbc.M113.511964

A. Fritah, Role of WISP-2/CCN5 in the Maintenance of a Differentiated and Noninvasive Phenotype in Human Breast Cancer Cells, Molecular and Cellular Biology, vol.28, issue.3, pp.1114-1123, 2008.
DOI : 10.1128/MCB.01335-07

V. Aguilar, Cyclin G2 Regulates Adipogenesis through PPAR?? Coactivation, Endocrinology, vol.151, issue.11, pp.5247-5254, 2010.
DOI : 10.1210/en.2010-0461

URL : https://hal.archives-ouvertes.fr/inserm-00519587

N. Ferrand, Loss of WISP2/CCN5 in Estrogen-Dependent MCF7 Human Breast Cancer Cells Promotes a Stem-Like Cell Phenotype, PLoS ONE, vol.69, issue.2, p.87878, 2014.
DOI : 10.1371/journal.pone.0087878.g007

URL : https://hal.archives-ouvertes.fr/hal-01358278

M. Ayadi, Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors, Oncotarget, vol.6, issue.21, pp.18518-18533, 2015.
DOI : 10.18632/oncotarget.3934

S. Shibamoto, Cytoskeletal reorganization by soluble Wnt-3a protein signalling, Genes Cells, vol.3, pp.659-670, 1998.

A. Fritah, G. Redeuilh, and M. Sabbah, Molecular cloning and characterization of the human WISP-2/CCN5 gene promoter reveal its upregulation by oestrogens, Journal of Endocrinology, vol.191, issue.3, pp.613-624, 2006.
DOI : 10.1677/joe.1.07009