B. Fleury, V. Dupuis, L. Lisnard, and J. Fresnais, Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes, Nat Commun, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01390543

P. Boer, J. P. Hoogenboom, and B. N. Giepmans, Correlated Light and Electron Microscopy: Ultrastructure Lights Up! Nat, pp.503-513, 2015.

A. Feld, J. Merkl, H. Kloust, S. Flessau, C. Schmidtke et al., A Universal Approach to Ultrasmall Magneto-Fluorescent Nanohybrids, Angewandte Chemie International Edition, vol.7, issue.42, pp.12468-12471, 2015.
DOI : 10.1002/anie.201503017

K. Bawendi and M. G. , Magneto-Fluorescent Core-Shell Supernanoparticles, Nat. Commun, vol.5, p.5093, 2014.

L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications, Chemical Reviews, vol.112, issue.11, pp.5818-5878, 2012.
DOI : 10.1021/cr300068p

F. Mazuel, A. Espinosa, N. Luciani, M. Reffay, R. Le-borgne et al., Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels, ACS Nano, vol.10, issue.8, pp.7627-7638, 2016.
DOI : 10.1021/acsnano.6b02876

URL : https://hal.archives-ouvertes.fr/hal-01518784

C. Péchoux, T. Pellegrino, C. Wilhelm, and F. Gazeau, Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring, ACS Nano, vol.7, pp.3939-3952, 2013.

A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol.26, issue.18, pp.3995-4021, 2005.
DOI : 10.1016/j.biomaterials.2004.10.012

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chemical Reviews, vol.108, issue.6, pp.2064-2110, 2008.
DOI : 10.1021/cr068445e

B. Simard, Clusters of Superparamagnetic Iron Oxide Nanoparticles Encapsulated in a Hydrogel: A Particle Architecture Generating a Synergistic

R. J. Hickey, J. Koski, X. Meng, R. A. Riggleman, P. J. Zhang et al., Size-Controlled Self-Assembly of Superparamagnetic Polymersomes, ACS Nano, vol.8, issue.1, pp.495-502, 2014.
DOI : 10.1021/nn405012h

C. Wilhelm and C. Ménager, Ultra Magnetic Liposomes for MR Imaging, Targeting, and Hyperthermia, Langmuir, vol.2012, issue.28, pp.11834-11842

M. F. Casula, P. Floris, C. Innocenti, A. Lascialfari, M. Marinone et al., Magnetic Resonance Imaging Contrast Agents Based on Iron Oxide Superparamagnetic Ferrofluids, Chemistry of Materials, vol.22, issue.5, pp.1739-1748, 2010.
DOI : 10.1021/cm9031557

C. Ménager and C. Wilhelm, Combining Magnetic Hyperthermia and Photodynamic Therapy for Tumor Ablation with Photoresponsive Magnetic Liposomes, ACS Nano, vol.9, pp.2904-2916, 2015.

T. Doussineau, R. Antoine, T. Orlando, A. Lascialfari, J. Fresnais et al., Tuning the Architectural Integrity of High-Performance Magnetofluorescent Core-Shell Nanoassemblies in Cancer Cells, J. Colloid Interface Sci, vol.479, pp.139-149, 2016.

J. Fresnais, J. Berret, B. Frka-petesic, O. Sandre, and R. Perzynski, Electrostatic Co-Assembly of Iron Oxide Nanoparticles and Polymers: Towards the Generation of Highly Persistent Superparamagnetic Nanorods, Advanced Materials, vol.21, issue.20, pp.1-5, 2008.
DOI : 10.1002/adma.200800846

URL : https://hal.archives-ouvertes.fr/hal-00319291

B. Chanteau, J. Fresnais, and J. Berret, Electrosteric Enhanced Stability of Functional Sub-10 nm Cerium and Iron Oxide Particles in Cell Culture Medium, Langmuir, vol.25, issue.16, pp.9064-9070, 2009.
DOI : 10.1021/la900833v

URL : https://hal.archives-ouvertes.fr/hal-00417661

V. G. Kadajji and G. Betageri, Water Soluble Polymers for Pharmaceutical Applications, Polymers, vol.385, issue.4, pp.1972-2009, 2011.
DOI : 10.3390/polym3041972

URL : http://doi.org/10.3390/polym3041972

J. Fresnais and E. Ishow, Highly Cohesive Dual Nanoassemblies for Complementary Multiscale Bioimaging, J. Mater. Chem. B, vol.2, pp.7747-7755, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01376834

V. Torrisi, A. Graillot, L. Vitorazi, Q. Crouzet, G. Marletta et al., Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles, Biomacromolecules, vol.15, issue.8, pp.3171-3179, 2014.
DOI : 10.1021/bm500832q

URL : https://hal.archives-ouvertes.fr/hal-01378192

K. H. Markiewicz, L. Seiler, I. Misztalewska, K. Winkler, S. Harrisson et al., Advantages of poly(vinyl phosphonic acid)-based double hydrophilic block copolymers for the stabilization of iron oxide nanoparticles, Polym. Chem., vol.131, issue.41, pp.6391-6399, 2016.
DOI : 10.1039/C6PY01558A

A. Verma and F. Stellacci, Effect of surface properties on nanoparticle-cell interactions, pp.12-21, 2010.

J. Ashby, S. Q. Pan, and W. W. Zhong, Size and Surface Functionalization of Iron Oxide Nanoparticles Influence the Composition and Dynamic Nature of Their Protein Corona, ACS Applied Materials & Interfaces, vol.6, issue.17
DOI : 10.1021/am503909q

F. Rezaee, M. Mahmoudi, and V. M. Rotello, Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona, ACS Nano, vol.10, pp.4421-4430, 2016.

R. Huang, R. P. Carney, K. Ikuma, F. Stellacci, and B. L. Lau, Effects of Surface Compositional and Structural Heterogeneity on Nanoparticle???Protein Interactions: Different Protein Configurations, Effects of Surface Compositional and Structural Heterogeneity on Nanoparticle?Protein Interactions: Different Protein Configurations, pp.5402-5412, 2014.
DOI : 10.1021/nn501203k

N. Nasongkla, B. Chen, N. Macaraeg, M. E. Fox, J. M. Fréchet et al., Dependence of Pharmacokinetics and Biodistribution on Polymer Architecture: Effect of Cyclic versus Linear Polymers, Journal of the American Chemical Society, vol.131, issue.11, pp.3842-3843, 2009.
DOI : 10.1021/ja900062u

M. I. Setyawati, C. Y. Tay, D. Docter, R. H. Stauber, and D. Leong, Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood, Chem. Soc. Rev., vol.8, issue.135, p.44, 2015.
DOI : 10.1002/tox.22015

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1028.9766

C. Ménager, O. Sandre, J. Mangili, and V. Cabuil, Preparation and swelling of hydrophilic magnetic microgels, Polymer, vol.45, issue.8, pp.2475-2481, 2004.
DOI : 10.1016/j.polymer.2004.02.018

I. Fischer, K. Petkau-milroy, Y. L. Dorland, A. Schenning, and L. Brunsveld, Self-Assembled Fluorescent Organic Nanoparticles for Live-Cell Imaging, Chemistry - A European Journal, vol.21, issue.49, pp.49-55
DOI : 10.1002/chem.201302647

URL : http://repository.tue.nl/766150

H. Bouhamed, S. Boufi, and A. Magnin, Alumina interaction with AMPS???MPEG copolymers produced by RAFT polymerization: Stability and rheological behavior, Journal of Colloid and Interface Science, vol.333, issue.1, pp.209-220, 2009.
DOI : 10.1016/j.jcis.2009.01.030

C. L. Mccormick and A. B. Lowe, Aqueous RAFT Polymerization: Recent Developments in Synthesis of Functional Water-Soluble (Co)polymers with Controlled Structures, Acc

J. Tian, F. Zheng, and H. Zhao, ???Nanoparticle Cores and Gold-Nanoparticle Coronae Prepared by Self-Assembly Approach, The Journal of Physical Chemistry C, vol.115, issue.8, pp.3304-3312, 2011.
DOI : 10.1021/jp111355c

B. S. Sumerlin and K. Matyjaszewski, Molecular Brushes - Densely Grafted Copolymers, Macromolecular Engineering, pp.1103-1135, 2007.
DOI : 10.1002/9783527631421.ch26

S. Roux, O. Tillement, and P. Perriat, A Top-Down Synthesis Route to Ultrasmall Multifunctional Gd-Based Silica Nanoparticles for Theranostic Applications, Chem. Eur. J. 2013, vol.19, pp.6122-6136

E. Ishow and A. Faucon, Magnetic and Fluorescent Reverse Nanoassemblies, p.368, 2015.

H. K. Willcock and R. O-'reilly, End group removal and modification of RAFT polymers, Polym. Chem., vol.30, issue.2, pp.149-157, 2010.
DOI : 10.1039/B9PY00340A

A. Brosseau and E. Ishow, Fluorescent Carboxylic and Phosphonic Acids: Comparative Photophysics from Solution to Organic Nanoparticles, Phys. Chem. Chem. Phys, vol.15, pp.12748-12756, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00972598

M. Breton, G. Prevel, J. F. Audibert, R. Pansu, P. Tauc et al., Solvatochromic dissociation of non-covalent fluorescent organic nanoparticles upon cell internalization, Physical Chemistry Chemical Physics, vol.6, issue.29, pp.13268-13276, 2011.
DOI : 10.1039/c1cp20877b

URL : https://hal.archives-ouvertes.fr/hal-00739217

J. P. Farinha, P. Relógio, M. Charreyre, T. J. Prazeres, and J. M. Martinho, Understanding Fluorescence Quenching in Polymers Obtained by RAFT, Page 51 of 55 ACS Paragon Plus Environment ACS Applied Materials & Interfaces (47), pp.4680-4690, 2007.
DOI : 10.1021/ma070444g

E. Poselt, H. Kloust, U. Tromsdorf, M. Janschel, C. Hahn et al., -Weighted Spin???Echo Imaging, ACS Nano, vol.6, issue.2, pp.1619-1624, 2012.
DOI : 10.1021/nn204591r

A. Roch, R. N. Muller, and P. Gillis, Theory of proton relaxation induced by superparamagnetic particles, The Journal of Chemical Physics, vol.5, issue.11, pp.5403-5411, 1999.
DOI : 10.1103/PhysRevB.54.9237

L. Ternent, D. A. Mayoh, M. R. Lees, and G. L. Davies, Heparin-stabilised iron oxide for MR applications: a relaxometric study, J. Mater. Chem. B, vol.4, issue.18, pp.3065-3074, 2016.
DOI : 10.1039/C6TB00832A

C. J. Meledandri, T. Ninjbadgar, and D. F. Brougham, Size-controlled magnetoliposomes with tunable magnetic resonance relaxation enhancements, J. Mater. Chem., vol.6, issue.1, pp.214-222, 2011.
DOI : 10.1039/c0cp00989j

Y. Gossuin, P. Gillis, A. Hocq, Q. L. Vuong, and A. Roch, Magnetic resonance relaxation properties of superparamagnetic particles, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.48, issue.6, pp.299-310, 2009.
DOI : 10.1002/wnan.36

Q. L. Vuong, J. Berret, J. Fresnais, Y. Gossuin, and O. Sandre, A Universal Scaling Law to Predict the Efficiency of Magnetic Nanoparticles as MRI T2-Contrast Agents, Advanced Healthcare Materials, vol.110, issue.4, pp.502-512, 2012.
DOI : 10.1002/adhm.201200078

URL : https://hal.archives-ouvertes.fr/hal-00817231

H. Meng, T. Xia, S. George, and A. E. Nel, A Predictive Toxicological Paradigm for the Safety Assessment of Nanomaterials, ACS Nano, vol.3, issue.7, pp.1620-1627, 2009.
DOI : 10.1021/nn9005973

D. F. Brougham, C. Wilhelm, and F. Gazeau, Cooperative Organization in Iron Oxide Multi- Core Nanoparticles Potentiates Their Efficiency as Heating Mediators and MRI Contrast Agents, ACS Nano, vol.6, pp.10935-10949, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00820693

T. Xia, M. Kovochich, M. Liong, J. I. Zink, and A. Nel, Cationic Polystyrene Nanosphere Toxicity Depends on Cell-Specific Endocytic and Mitochondrial Injury Pathways, ACS Nano, vol.2, issue.1, pp.85-96, 2008.
DOI : 10.1021/nn700256c

J. S. Weinstein, C. G. Varallyay, E. Dosa, S. Gahramanov, B. Hamilton et al., Superparamagnetic Iron Oxide Nanoparticles: Diagnostic Magnetic Resonance Imaging and Potential Therapeutic Applications in Neurooncology and Central Nervous System Inflammatory Pathologies, a Review, Journal of Cerebral Blood Flow & Metabolism, vol.12, issue.1, pp.15-35, 2010.
DOI : 10.1152/ajpcell.00215.2007

S. Herlidou, B. E. Leonard, J. Gandon, and J. D. De-certaines, An In-Vivo Magnetic Resonance Imaging Study of The Olfactory Bulbectomized Rat Model of Depression

A. T. Tanimoto, D. Pouliquen, B. P. Kreft, and D. D. Stark, Effects of spatial distribution on proton relaxation enhancement by particulate iron oxide, Page 53 of 55 ACS Paragon Plus Environment ACS Applied Materials & Interfaces (61), pp.653-657, 1994.
DOI : 10.1002/jmri.1880040506

L. Weiswald and D. Bellet, Spherical Cancer Models in Tumor Biology, Neoplasia, vol.17, issue.1, pp.1-15, 2015.
DOI : 10.1016/j.neo.2014.12.004

E. Fennema, N. Rivron, J. Rouwkema, C. Van-blitterswijk, and J. De-boer, Spheroid culture as a tool for creating 3D complex tissues, Trends in Biotechnology, vol.31, issue.2, pp.108-115, 2012.
DOI : 10.1016/j.tibtech.2012.12.003

M. L. Levy, F. Maraloiu, V. A. Blanchin, M. G. Gendron, F. Wilhelm et al., Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties, Nanotechnology, vol.21, issue.39, pp.395103-395200, 2010.
DOI : 10.1088/0957-4484/21/39/395103

URL : https://hal.archives-ouvertes.fr/hal-01236823