W. M. Lee, Drug-Induced Hepatotoxicity, New England Journal of Medicine, vol.349, issue.5, pp.474-48510, 2003.
DOI : 10.1056/NEJMra021844

N. Chalasani, Causes, Clinical Features, and Outcomes From a Prospective Study of Drug-Induced Liver Injury in the United States, Gastroenterology, vol.135, issue.6, pp.1924-1934, 1934.
DOI : 10.1053/j.gastro.2008.09.011

R. J. Andrade, Idiosyncratic drug hepatotoxicity: a 2008 update, Expert Review of Clinical Pharmacology, vol.1, issue.2, pp.261-276, 2008.
DOI : 10.1586/17512433.1.2.261

R. J. Andrade, Drug-Induced Liver Injury: An Analysis of 461 Incidences Submitted to the Spanish Registry Over a 10-Year Period, Gastroenterology, vol.129, issue.2, pp.512-521006, 2005.
DOI : 10.1016/j.gastro.2005.05.006

D. K. George and D. H. Crawford, Antibacterial-Induced Hepatotoxicity, Drug Safety, vol.15, issue.1, pp.79-85, 1996.
DOI : 10.2165/00002018-199615010-00007

E. Bjornsson and R. Olsson, Suspected drug-induced liver fatalities reported to the WHO database, Digestive and Liver Disease, vol.38, issue.1, pp.33-38, 2006.
DOI : 10.1016/j.dld.2005.06.004

R. J. Andrade and P. M. Tulkens, Hepatic safety of antibiotics used in primary care, Journal of Antimicrobial Chemotherapy, vol.66, issue.7, pp.1431-1446, 2011.
DOI : 10.1093/jac/dkr159

J. Polson, Hepatotoxicity Due to Antibiotics, Clinics in Liver Disease, vol.11, issue.3, pp.549-561, 2007.
DOI : 10.1016/j.cld.2007.06.009

M. S. Padda, M. Sanchez, A. J. Akhtar, and J. L. Boyer, Drug-induced cholestasis, Hepatology, vol.9, issue.182, pp.1377-138710, 2011.
DOI : 10.1002/hep.24229

S. Russmann, J. A. Kaye, S. S. Jick, and H. Jick, Risk of cholestatic liver disease associated with flucloxacillin and flucloxacillin prescribing habits in the UK: Cohort study using data from the UK General Practice Research Database, British Journal of Clinical Pharmacology, vol.31, issue.1, pp.76-82, 2005.
DOI : 10.1016/0168-8278(92)90029-O

E. Bjornsson and R. Olsson, Outcome and prognostic markers in severe drug-induced liver disease, Hepatology, vol.77, issue.2, pp.481-48920800, 2005.
DOI : 10.1002/hep.20800

S. H. Hussaini, C. S. O-'brien, E. J. Despott, and H. R. Dalton, Antibiotic therapy: a major cause of drug-induced jaundice in southwest England, European Journal of Gastroenterology & Hepatology, vol.19, issue.1, pp.15-2068, 2007.
DOI : 10.1097/01.meg.0000250581.77865.68

E. Andrews and A. K. Daly, Flucloxacillin-induced liver injury, Toxicology, vol.254, issue.3, pp.158-163, 2008.
DOI : 10.1016/j.tox.2008.08.009

A. K. Daly, HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin, Nature Genetics, vol.320, issue.7, pp.816-81910, 2009.
DOI : 10.1159/000119108

M. A. Carey and F. N. Van-pelt, Immunochemical detection of flucloxacillin adduct formation in livers of treated rats, Toxicology, vol.216, issue.1, pp.41-48015, 2005.
DOI : 10.1016/j.tox.2005.07.015

W. F. Salminen, . Jr, S. M. Roberts, M. Fenna, and R. Voellmy, Heat shock protein induction in murine liver after acute treatment with cocaine, Hepatology, vol.25, issue.5, pp.1147-115310, 1997.
DOI : 10.1002/hep.510250517

W. F. Salminen, . Jr, R. Voellmy, and S. M. Roberts, Differential heat shock protein induction by acetaminophen and a nonhepatotoxic regioisomer, 3?-hydroxyacetanilide, in mouse liver, J Pharmacol Exp Ther, vol.282, pp.1533-1540, 1997.

W. F. Salminen, . Jr, R. Voellmy, and S. M. Roberts, Effect of N-acetylcysteine on heat shock protein induction by acetaminophen in mouse liver, J Pharmacol Exp Ther, vol.286, pp.519-524, 1998.

W. Deng, Heat shock protein 27 downstream of P38-PI3K/Akt signaling antagonizes melatonin-induced apoptosis of SGC-7901 gastric cancer cells, Cancer Cell International, vol.7, issue.11, pp.10-1186, 2016.
DOI : 10.1186/s12935-016-0283-8

B. M. Doshi, L. E. Hightower, and J. Lee, The role of Hsp27 and actin in the regulation of movement in human cancer cells responding to heat shock, Cell Stress and Chaperones, vol.279, issue.Pt 3, pp.445-45710, 2009.
DOI : 10.1007/s12192-008-0098-1

S. B. Patil and K. N. Bitar, RhoA- and PKC-??-mediated phosphorylation of MYPT and its association with HSP27 in colonic smooth muscle cells., AJP: Gastrointestinal and Liver Physiology, vol.290, issue.1, pp.83-95, 2006.
DOI : 10.1152/ajpgi.00178.2005

S. B. Patil, M. D. Pawar, and K. N. Bitar, Phosphorylated HSP27 essential for acetylcholine-induced association of RhoA with PKC??, AJP: Gastrointestinal and Liver Physiology, vol.286, issue.4, pp.635-644, 2004.
DOI : 10.1152/ajpgi.00261.2003

J. Huot, F. Houle, D. R. Spitz, and J. Landry, HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress, Cancer Res, vol.56, pp.273-279, 1996.

A. Sharanek, Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of bile canaliculi dynamics induced by cholestatic drugs, Scientific Reports, vol.305, issue.1, pp.10-1038, 2016.
DOI : 10.1152/ajpgi.00082.2013

URL : https://hal.archives-ouvertes.fr/hal-01326368

C. Zheng, MAPK-activated Protein Kinase-2 (MK2)-mediated Formation and Phosphorylation-regulated Dissociation of the Signal Complex Consisting of p38, MK2, Akt, and Hsp27, Journal of Biological Chemistry, vol.281, issue.48, pp.37215-3722610, 2006.
DOI : 10.1074/jbc.M603622200

R. Wu, 1815 | DOI:10.1038/s41598-017-01171-y 26 Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex, J Biol Chem, vol.7, issue.282, pp.21598-2160810, 2007.

M. J. Rane, Heat Shock Protein 27 Controls Apoptosis by Regulating Akt Activation, Journal of Biological Chemistry, vol.278, issue.30, pp.27828-2783510, 2003.
DOI : 10.1074/jbc.M303417200

A. F. El-yazbi, K. S. Abd-elrahman, and A. Moreno-dominguez, PKC-mediated cerebral vasoconstriction: Role of myosin light chain phosphorylation versus actin cytoskeleton reorganization, Biochemical Pharmacology, vol.95, issue.4, pp.263-278, 2015.
DOI : 10.1016/j.bcp.2015.04.011

L. Chang and M. Karin, Mammalian MAP kinase signalling cascades, Nature, vol.410, issue.6824, pp.37-4035065000, 2001.
DOI : 10.1038/35065000

C. Widmann, S. Gibson, M. B. Jarpe, and G. L. Johnson, Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human, Physiol Rev, vol.79, pp.143-180, 1999.

A. Sharanek, Different Dose-Dependent Mechanisms Are Involved in Early Cyclosporine A-Induced Cholestatic Effects in HepaRG Cells, Toxicological Sciences, vol.141, issue.1, pp.244-25310, 2014.
DOI : 10.1093/toxsci/kfu122

URL : https://hal.archives-ouvertes.fr/hal-01016342

A. Sharanek, Cellular Accumulation and Toxic Effects of Bile Acids in Cyclosporine A-Treated HepaRG Hepatocytes, Toxicological Sciences, vol.147, issue.2, pp.573-587, 2015.
DOI : 10.1093/toxsci/kfv155

URL : https://hal.archives-ouvertes.fr/hal-01187306

S. Antherieu, Oxidative stress plays a major role in chlorpromazine-induced cholestasis in human HepaRG cells, Hepatology, vol.35, issue.4, pp.1518-152926160, 2013.
DOI : 10.1002/hep.26160

URL : https://hal.archives-ouvertes.fr/hal-00865999

M. G. Burbank, Early Alterations of Bile Canaliculi Dynamics and the Rho Kinase/Myosin Light Chain Kinase Pathway Are Characteristics of Drug-Induced Intrahepatic Cholestasis, Drug Metabolism and Disposition, vol.44, issue.11, pp.1780-1793, 2016.
DOI : 10.1124/dmd.116.071373

URL : https://hal.archives-ouvertes.fr/hal-01398437

K. W. Chung, Increased Microfilaments in Hepatocytes and Biliary Ductular Cells in Cholestatic Liver Diseases, Journal of Korean Medical Science, vol.17, issue.6, pp.795-800795, 2002.
DOI : 10.3346/jkms.2002.17.6.795

H. Imanari, H. Kuroda, and K. Tamura, Microfilaments around the bile canaliculi in patients with intrahepatic cholestasis, Gastroenterol Jpn, vol.16, pp.168-173, 1981.

F. Lakehal, Indirect Cytotoxicity of Flucloxacillin toward Human Biliary Epithelium via Metabolite Formation in Hepatocytes, Chemical Research in Toxicology, vol.14, issue.6, pp.694-70110, 2001.
DOI : 10.1021/tx0002435

R. Nattrass, Activation of Flucloxacillin-Specific CD8+ T-Cells With the Potential to Promote Hepatocyte Cytotoxicity in a Mouse Model, Toxicological Sciences, vol.146, issue.1, pp.146-156, 2015.
DOI : 10.1093/toxsci/kfv077

K. Allen, H. Jaeschke, and B. L. Copple, Bile Acids Induce Inflammatory Genes in Hepatocytes, The American Journal of Pathology, vol.178, issue.1, pp.175-186, 2011.
DOI : 10.1016/j.ajpath.2010.11.026

URL : http://doi.org/10.1016/j.ajpath.2010.11.026

M. Yang, Osteopontin is an initial mediator of inflammation and liver injury during obstructive cholestasis after bile duct ligation in mice, Toxicology Letters, vol.224, issue.2, pp.186-195030, 2014.
DOI : 10.1016/j.toxlet.2013.10.030

B. M. Devereaux, D. H. Crawford, P. Purcell, L. W. Powell, and H. P. Roeser, Flucloxacillin associated cholestatic hepatitis. An Australian and Swedish epidemic?, Eur J Clin Pharmacol, vol.49, pp.81-85, 1995.

D. Adam, P. Koeppe, and H. Heilmann, Pharmakokinetik von Amoxicillin und Flucloxacillin nach intraven??ser Gabe von 4 g bzw. 1 g, einzeln und in Kombination, Infection, vol.29, issue.3, pp.150-15410, 1983.
DOI : 10.1007/BF01641294

X. Q. Bao and G. Liu, Bicyclol: a novel antihepatitis drug with hepatic heat shock protein 27/70-inducing activity and cytoprotective effects in mice, Cell Stress and Chaperones, vol.81, issue.3, pp.347-35510, 2008.
DOI : 10.1007/s12192-008-0034-4

A. P. Arrigo and B. Gibert, HspB1 Dynamic Phospho-Oligomeric Structure Dependent Interactome as Cancer Therapeutic Target, Current Molecular Medicine, vol.12, issue.9, pp.1151-1163, 2012.
DOI : 10.2174/156652412803306693

A. Vidyasagar, N. A. Wilson, and A. Djamali, Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target, Fibrogenesis & Tissue Repair, vol.5, issue.1, pp.10-1186, 2012.
DOI : 10.1016/j.cca.2008.04.026

E. Butt, Heat Shock Protein 27 Is a Substrate of cGMP-dependent Protein Kinase in Intact Human Platelets: PHOSPHORYLATION-INDUCED ACTIN POLYMERIZATION CAUSED BY HSP27 MUTANTS, Journal of Biological Chemistry, vol.276, issue.10, pp.7108-7113, 2001.
DOI : 10.1074/jbc.M009234200

J. Landry, Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II, J Biol Chem, vol.267, pp.794-803, 1992.

E. T. Maizels, Heat-shock protein-25/27 phosphorylation by the ?? isoform of protein kinase C, Biochemical Journal, vol.332, issue.3, pp.703-71210, 1998.
DOI : 10.1042/bj3320703

A. C. Boaglio, Phosphoinositide 3-kinase/protein kinase B signaling pathway is involved in estradiol 17??-d-glucuronide-induced cholestasis: Complementarity with classical protein kinase c, Hepatology, vol.38, issue.Suppl 1, pp.1465-147610, 2010.
DOI : 10.1002/hep.23846

R. Olsson, Liver damage from flucloxacillin, cloxacillin and dicloxacillin, Journal of Hepatology, vol.15, issue.1-2, pp.154-16190029, 1992.
DOI : 10.1016/0168-8278(92)90029-O

M. F. Parry, The Penicillins, Medical Clinics of North America, vol.71, issue.6, pp.1093-111230799, 1987.
DOI : 10.1016/S0025-7125(16)30799-4

F. J. De-abajo, D. Montero, M. Madurga, and L. A. Garcia-rodriguez, Acute and clinically relevant drug-induced liver injury: a population based case-control study, British Journal of Clinical Pharmacology, vol.19, issue.1, pp.71-80, 2004.
DOI : 10.1111/j.1572-0241.2002.05505.x

E. V. Warbrick, A. L. Thomas, V. Stejskal, and J. W. Coleman, An analysis of ?-lactam-derived antigens on spleen cell and serum proteins by ELISA and Western blotting, Allergy, vol.32, issue.11, pp.910-917, 1995.
DOI : 10.1073/pnas.76.9.4350

P. Gripon, Nonlinear partial differential equations and applications: Infection of a human hepatoma cell line by hepatitis B virus, Proceedings of the National Academy of Sciences, vol.20, issue.16, pp.15655-15660232137699, 2002.
DOI : 10.1093/emboj/20.16.4443

R. Wang, Defective canalicular transport and toxicity of dietary ursodeoxycholic acid in the abcb11-/- mouse: transport and gene expression studies, AJP: Gastrointestinal and Liver Physiology, vol.305, issue.4, pp.286-294, 2013.
DOI : 10.1152/ajpgi.00082.2013