S. R. Paludan, Activation and Regulation of DNA-Driven Immune Responses, Microbiology and Molecular Biology Reviews, vol.79, issue.2, pp.225-241, 2015.
DOI : 10.1128/MMBR.00061-14

H. Ishikawa and G. N. Barber, STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling, Nature, vol.80, issue.7213, pp.674-678, 2008.
DOI : 10.1038/nature07317

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804933

G. N. Barber, STING: infection, inflammation and cancer, Nature Reviews Immunology, vol.900, issue.12, pp.760-770, 2015.
DOI : 10.1371/journal.pone.0077846

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004891

H. Ishikawa, Z. Ma, and G. N. Barber, STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity, Nature, vol.80, issue.7265, pp.788-792, 2009.
DOI : 10.1038/nature08476

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664154

M. Napirei, H. Karsunky, B. Zevnik, H. Stephan, H. G. Mannherz et al., Features of systemic lupus erythematosus in Dnase1-deficient mice, Nat. Genet, vol.25, pp.177-181, 2000.

D. B. Stetson, J. S. Ko, T. Heidmann, and R. Medzhitov, Trex1 Prevents Cell-Intrinsic Initiation of Autoimmunity, Cell, vol.134, issue.4, pp.587-598, 2008.
DOI : 10.1016/j.cell.2008.06.032

H. Yoshida, Y. Okabe, K. Kawane, H. Fukuyama, and S. Nagata, Lethal anemia caused by interferon-?? produced in mouse embryos carrying undigested DNA, Nature Immunology, vol.271, issue.1, pp.49-56, 2005.
DOI : 10.1038/ni1146

O. Demaria, J. D. Domizio, and M. Gilliet, Immune sensing of nucleic acids in inflammatory skin diseases, Seminars in Immunopathology, vol.3, issue.5, pp.519-529, 2014.
DOI : 10.1007/s00281-014-0445-5

K. Kawane, M. Ohtani, K. Miwa, T. Kizawa, Y. Kanbara et al., Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages, Nature, vol.8, issue.7114, pp.998-1002, 2006.
DOI : 10.1038/nature05245

J. Ahn, D. Gutman, S. Saijo, and G. N. Barber, STING manifests self DNA-dependent inflammatory disease, Proc. Natl. Acad. Sci. USA, pp.19386-19391, 2012.
DOI : 10.1111/j.1600-065X.2011.01051.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511090

Y. G. Yang, T. Lindahl, and D. E. Barnes, Trex1 Exonuclease Degrades ssDNA to Prevent Chronic Checkpoint Activation and Autoimmune Disease, Cell, vol.131, issue.5, pp.873-886, 2007.
DOI : 10.1016/j.cell.2007.10.017

G. M. Barton, J. C. Kagan, and R. Medzhitov, Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA, Nature Immunology, vol.99, issue.1, pp.49-56, 2006.
DOI : 10.1038/ni1280

G. Chamilos, J. Gregorio, S. Meller, R. Lande, D. P. Kontoyiannis et al., Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37, Blood, vol.120, issue.18, pp.3699-3707, 2012.
DOI : 10.1182/blood-2012-01-401364

R. Lande, J. Gregorio, V. Facchinetti, B. Chatterjee, Y. H. Wang et al., Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide, Nature, vol.7, issue.7162, pp.564-569, 2007.
DOI : 10.1038/nature06116

K. Yasuda, P. Yu, C. J. Kirschning, B. Schlatter, F. Schmitz et al., Endosomal Translocation of Vertebrate DNA Activates Dendritic Cells via TLR9-Dependent and -Independent Pathways, The Journal of Immunology, vol.174, issue.10, pp.6129-6136, 2005.
DOI : 10.4049/jimmunol.174.10.6129

C. Schauer, C. Janko, L. E. Munoz, Y. Zhao, D. Kienhöfer et al., Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines, Nature Medicine, vol.265, issue.5, pp.511-517, 2014.
DOI : 10.1038/nm.3547

T. K. Means, E. Latz, F. Hayashi, M. R. Murali, D. T. Golenbock et al., Human lupus autoantibody???DNA complexes activate DCs through cooperation of CD32 and TLR9, Journal of Clinical Investigation, vol.115, issue.2, pp.407-417, 2005.
DOI : 10.1172/JCI23025DS1

G. S. Garcia-romo, S. Caielli, B. Vega, J. Connolly, F. Allantaz et al., Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus, Science Translational Medicine, vol.10, issue.5, pp.73-93, 2011.
DOI : 10.1177/0961203308101019

K. Wolk, S. Kunz, K. Asadullah, and R. Sabat, Cutting Edge: Immune Cells as Sources and Targets of the IL-10 Family Members?, The Journal of Immunology, vol.168, issue.11, pp.5397-5402, 2002.
DOI : 10.4049/jimmunol.168.11.5397

D. B. Trivella, J. R. Ferreira-júnior, L. Dumoutier, J. C. Renauld, and I. Polikarpov, Structure and function of interleukin-22 and other members of the interleukin-10 family, Cellular and Molecular Life Sciences, vol.23, issue.17, pp.2909-2935, 2010.
DOI : 10.1007/s00018-010-0380-0

R. P. Donnelly, F. Sheikh, H. Dickensheets, R. Savan, H. A. Young et al., Interleukin-26: An IL-10-related cytokine produced by Th17 cells, Cytokine & Growth Factor Reviews, vol.21, issue.5, pp.393-401, 2010.
DOI : 10.1016/j.cytogfr.2010.09.001

O. Braum, H. Pirzer, and H. Fickenscher, Interleukin-26, a Highly Cationic T-Cell Cytokine Targeting Epithelial Cells, Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, vol.11, issue.3, pp.221-229, 2012.
DOI : 10.2174/1871523011202030221

M. Corvaisier, Y. Delneste, H. Jeanvoine, L. Preisser, S. Blanchard et al., IL-26 Is Overexpressed in Rheumatoid Arthritis and Induces Proinflammatory Cytokine Production and Th17 Cell Generation, PLoS Biology, vol.10, issue.9, p.1001395, 2012.
DOI : 10.1371/journal.pbio.1001395.s006

J. Dambacher, F. Beigel, K. Zitzmann, E. N. De-toni, B. Göke et al., The role of the novel Th17 cytokine IL-26 in intestinal inflammation, Gut, vol.58, issue.9, pp.1207-1217, 2009.
DOI : 10.1136/gut.2007.130112

C. Miot, E. Beaumont, D. Duluc, H. Le-guillou-guillemette, L. Preisser et al., IL-26 is overexpressed in chronically HCV-infected patients and enhances TRAIL-mediated cytotoxicity and interferon production by human NK cells, Gut, vol.4, issue.Suppl 1, pp.1466-1475, 2015.
DOI : 10.1136/gutjnl-2013-306604

S. Meller, J. Di-domizio, K. S. Voo, H. C. Friedrich, G. Chamilos et al., TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26, Nature Immunology, vol.9, issue.9, pp.970-979, 2015.
DOI : 10.1107/S0021889806004699

S. Hör, H. Pirzer, L. Dumoutier, F. Bauer, S. Wittmann et al., The T-cell Lymphokine Interleukin-26 Targets Epithelial Cells through the Interleukin-20 Receptor 1 and Interleukin-10 Receptor 2 Chains, Journal of Biological Chemistry, vol.279, issue.32, pp.33343-33351, 2004.
DOI : 10.1074/jbc.M405000200

F. Sheikh, V. V. Baurin, A. Lewis-antes, N. K. Shah, S. V. Smirnov et al., Cutting Edge: IL-26 Signals through a Novel Receptor Complex Composed of IL-20 Receptor 1 and IL-10 Receptor 2, The Journal of Immunology, vol.172, issue.4, pp.2006-2010, 2004.
DOI : 10.4049/jimmunol.172.4.2006

M. L. Nagalakshmi, E. Murphy, T. Mcclanahan, R. De-waal, and . Malefyt, Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization, International Immunopharmacology, vol.4, issue.5, pp.577-592, 2004.
DOI : 10.1016/j.intimp.2004.01.007

K. Wolk, K. Witte, E. Witte, S. Proesch, G. Schulze-tanzil et al., Maturing dendritic cells are an important source of IL-29 and IL-20 that may cooperatively increase the innate immunity of keratinocytes, Journal of Leukocyte Biology, vol.83, issue.5, pp.1181-1193, 2008.
DOI : 10.1189/jlb.0807525

C. Shi and E. G. Pamer, Monocyte recruitment during infection and inflammation, Nature Reviews Immunology, vol.182, issue.11, pp.762-774, 2011.
DOI : 10.1038/nri3070

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947780

E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation, Nature Reviews Immunology, vol.121, issue.3, pp.159-175, 2013.
DOI : 10.1038/nri3399

J. H. Stone, G. S. Hoffman, P. A. Merkel, Y. I. Min, M. L. Uhlfelder et al., A disease-specific activity index for Wegener's granulomatosis: Modification of the Birmingham Vasculitis Activity Score, Arthritis & Rheumatism, vol.75, issue.4, pp.912-920
DOI : 10.1002/1529-0131(200104)44:4<912::AID-ANR148>3.0.CO;2-5

C. Mukhtyar, L. Guillevin, M. C. Cid, B. Dasgupta, K. De-groot et al., EULAR recommendations for the management of primary small and medium vessel vasculitis, Annals of the Rheumatic Diseases, vol.68, issue.3, pp.310-317, 2009.
DOI : 10.1136/ard.2008.088096

A. Knappe, S. Hör, S. Wittmann, and H. Fickenscher, Induction of a Novel Cellular Homolog of Interleukin-10, AK155, by Transformation of T Lymphocytes with Herpesvirus Saimiri, Journal of Virology, vol.74, issue.8, pp.3881-3887, 2000.
DOI : 10.1128/JVI.74.8.3881-3887.2000

Q. Zhang, M. Raoof, Y. Chen, Y. Sumi, T. Sursal et al., Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, vol.24, issue.7285, pp.104-107, 2010.
DOI : 10.1038/nature08780

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843437

K. F. Che, S. Tengvall, B. Levänen, E. Silverpil, M. E. Smith et al., Interleukin-26 in Antibacterial Host Defense of Human Lungs. Effects on Neutrophil Mobilization, American Journal of Respiratory and Critical Care Medicine, vol.190, issue.9, pp.1022-1031, 2014.
DOI : 10.1164/rccm.201404-0689OC

N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proc. Natl. Acad. Sci. USA 98, pp.10037-10041, 2001.
DOI : 10.1038/377309a0

J. Si, Z. Zhang, B. Lin, M. Schroeder, and B. Huang, MetaDBSite: a meta approach to improve protein DNA-binding sites prediction, BMC Systems Biology, vol.5, issue.Suppl 1, p.7, 2011.
DOI : 10.1093/bioinformatics/btl158

D. M. Copolovici, K. Langel, E. Eriste, and ?. U. Langel, Cell-Penetrating Peptides: Design, Synthesis, and Applications, ACS Nano, vol.8, issue.3, pp.1972-1994, 2014.
DOI : 10.1021/nn4057269

N. Sapay, Y. Guermeur, and G. Deléage, Prediction of amphipathic inplane membrane anchors in monotopic proteins using a SVM classifier, BMC Bioinformatics, vol.7, issue.1, p.255, 2006.
DOI : 10.1186/1471-2105-7-255

URL : https://hal.archives-ouvertes.fr/hal-00315233

W. R. Coward, A. Marei, A. Yang, M. M. Vasa-nicotera, and S. C. Chow, Statin-Induced Proinflammatory Response in Mitogen-Activated Peripheral Blood Mononuclear Cells through the Activation of Caspase-1 and IL-18 Secretion in Monocytes, The Journal of Immunology, vol.176, issue.9, pp.5284-5292, 2006.
DOI : 10.4049/jimmunol.176.9.5284

M. S. Shin, Y. Kang, N. Lee, E. R. Wahl, S. H. Kim et al., Self Double-Stranded (ds)DNA Induces IL-1?? Production from Human Monocytes by Activating NLRP3 Inflammasome in the Presence of Anti-dsDNA Antibodies, The Journal of Immunology, vol.190, issue.4, pp.1407-1415, 2013.
DOI : 10.4049/jimmunol.1201195

G. Tosato and K. D. Jones, Interleukin-1 induces interleukin-6 production in peripheral blood monocytes, Blood, vol.75, pp.1305-1310, 1990.

V. Hornung, A. Ablasser, M. Charrel-dennis, F. Bauernfeind, G. Horvath et al., AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC, Nature, vol.326, issue.7237, pp.514-518, 2009.
DOI : 10.1038/nature07725

V. Hornung, S. Rothenfusser, S. Britsch, A. Krug, B. Jahrsdörfer et al., Quantitative Expression of Toll-Like Receptor 1-10 mRNA in Cellular Subsets of Human Peripheral Blood Mononuclear Cells and Sensitivity to CpG Oligodeoxynucleotides, The Journal of Immunology, vol.168, issue.9, pp.4531-4537, 2002.
DOI : 10.4049/jimmunol.168.9.4531

J. Lund, A. Sato, S. Akira, R. Medzhitov, and A. Iwasaki, Toll-like Receptor 9???mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells, The Journal of Experimental Medicine, vol.83, issue.3, pp.513-520, 2003.
DOI : 10.1038/ni0901-835

J. Ahn, P. Ruiz, and G. N. Barber, Intrinsic Self-DNA Triggers Inflammatory Disease Dependent on STING, The Journal of Immunology, vol.193, issue.9, pp.4634-4642, 2014.
DOI : 10.4049/jimmunol.1401337

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003413

Y. Liu, A. A. Jesus, B. Marrero, D. Yang, S. E. Ramsey et al., Activated STING in a Vascular and Pulmonary Syndrome, New England Journal of Medicine, vol.371, issue.6, pp.507-518, 2014.
DOI : 10.1056/NEJMoa1312625

S. Ohlsson, J. Wieslander, and M. Segelmark, Circulating cytokine profile in anti-neutrophilic cytoplasmatic autoantibody-associated vasculitis: prediction of outcome?, Mediators of Inflammation, vol.13, issue.4, pp.275-283, 2004.
DOI : 10.1080/09629350400003100

S. Holdenrieder, P. Eichhorn, U. Beuers, W. Samtleben, U. Schoenermarck et al., Nucleosomal DNA Fragments in Autoimmune Diseases, Annals of the New York Academy of Sciences, vol.37, issue.1, pp.318-327, 2006.
DOI : 10.1093/rheumatology/keh024

K. Kessenbrock, M. Krumbholz, U. Schönermarck, W. Back, W. L. Gross et al., Netting neutrophils in autoimmune small-vessel vasculitis, Nature Medicine, vol.416, issue.6, pp.623-625, 2009.
DOI : 10.1038/nm.1959

J. C. Jennette and R. J. Falk, Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease, Nature Reviews Rheumatology, vol.27, issue.8, pp.463-473, 2014.
DOI : 10.1002/art.37715

K. Ohnuma, R. Hatano, T. M. Aune, H. Otsuka, S. Iwata et al., CD4 T Lymphocytes, The Journal of Immunology, vol.194, issue.8, pp.3697-3712, 2015.
DOI : 10.4049/jimmunol.1402785

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, issue.6870, pp.389-395, 2002.
DOI : 10.1038/415389a

E. E. Gray, D. Winship, J. M. Snyder, S. J. Child, A. P. Geballe et al., The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA, Immunity, vol.45, issue.2, pp.255-266
DOI : 10.1016/j.immuni.2016.06.015

S. R. Paludan and A. G. Bowie, Immune Sensing of DNA, Immunity, vol.38, issue.5, pp.870-880, 2013.
DOI : 10.1016/j.immuni.2013.05.004

M. J. White, K. Mcarthur, D. Metcalf, R. M. Lane, J. C. Cambier et al., Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production, Cell, vol.159, issue.7, pp.1549-1562, 2014.
DOI : 10.1016/j.cell.2014.11.036

URL : http://doi.org/10.1016/j.cell.2014.11.036

A. Rongvaux, R. Jackson, C. C. Harman, T. Li, A. P. West et al., Apoptotic Caspases Prevent the Induction of Type I Interferons by Mitochondrial DNA, Cell, vol.159, issue.7, pp.1563-1577, 2014.
DOI : 10.1016/j.cell.2014.11.037

R. Lande, D. Ganguly, V. Facchinetti, L. Frasca, C. Conrad et al., Neutrophils Activate Plasmacytoid Dendritic Cells by Releasing Self-DNA-Peptide Complexes in Systemic Lupus Erythematosus, Science Translational Medicine, vol.206, issue.9, pp.73-92, 2011.
DOI : 10.1084/jem.20090480

J. S. Knight, W. Zhao, W. Luo, V. Subramanian, A. A. O-'dell et al., Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus, Journal of Clinical Investigation, vol.123, issue.7, pp.2981-2993, 2013.
DOI : 10.1172/JCI67390DS1

A. Härtlova, S. F. Erttmann, F. A. Raffi, A. M. Schmalz, U. Resch et al., DNA Damage Primes the Type I Interferon System via the Cytosolic DNA Sensor STING to Promote Anti-Microbial Innate Immunity, Immunity, vol.42, issue.2, pp.332-343, 2015.
DOI : 10.1016/j.immuni.2015.01.012

H. E. Volkman and D. B. Stetson, The enemy within: endogenous retroelements and autoimmune disease, Nature Immunology, vol.244, issue.5, pp.415-422, 2014.
DOI : 10.1186/1742-4690-8-91

P. Hurtado and C. A. Peh, LL-37 Promotes Rapid Sensing of CpG Oligodeoxynucleotides by B Lymphocytes and Plasmacytoid Dendritic Cells, The Journal of Immunology, vol.184, issue.3, pp.1425-1435, 2010.
DOI : 10.4049/jimmunol.0902305

M. Hasan, C. Ruksznis, Y. Wang, and C. A. Leifer, Antimicrobial Peptides Inhibit Polyinosinic-Polycytidylic Acid-Induced Immune Responses, The Journal of Immunology, vol.187, issue.11, pp.5653-5659, 2011.
DOI : 10.4049/jimmunol.1102144

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233200

M. Merkle, J. Pircher, H. Mannell, F. Krötz, P. Bl?-um et al., LL37 inhibits the inflammatory endothelial response induced by viral or endogenous DNA, Journal of Autoimmunity, vol.65, pp.19-29, 2015.
DOI : 10.1016/j.jaut.2015.07.015

Y. Nakagawa and R. L. Gallo, Endogenous Intracellular Cathelicidin Enhances TLR9 Activation in Dendritic Cells and Macrophages, The Journal of Immunology, vol.194, issue.3, pp.1274-1284, 2015.
DOI : 10.4049/jimmunol.1402388

E. Nogueira, S. Hamour, D. Sawant, S. Henderson, N. Mansfield et al., Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis, Nephrology Dialysis Transplantation, vol.25, issue.7, pp.2209-2217, 2010.
DOI : 10.1093/ndt/gfp783

P. Lacolley, V. Regnault, A. Nicoletti, Z. Li, and J. B. Michel, The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles, Cardiovascular Research, vol.95, issue.2, pp.194-204, 2012.
DOI : 10.1093/cvr/cvs135