S. G. Patching, Surface plasmon resonance spectroscopy for characterisation of membrane protein???ligand interactions and its potential for drug discovery, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1838, issue.1, pp.43-55028, 2014.
DOI : 10.1016/j.bbamem.2013.04.028

H. H. Shen, T. Lithgow, and L. Martin, Reconstitution of Membrane Proteins into Model Membranes: Seeking Better Ways to Retain Protein Activities, International Journal of Molecular Sciences, vol.50, issue.1, pp.1589-160710, 2013.
DOI : 10.1371/journal.pone.0034836

H. Im, Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor, Nature Biotechnology, vol.289, issue.5, pp.490-49510, 2014.
DOI : 10.1038/nprot.2006.51

Q. Zhou, Development of an aptasensor for electrochemical detection of exosomes, Methods, vol.97, pp.88-93012, 2016.
DOI : 10.1016/j.ymeth.2015.10.012

L. Alvarez-erviti, Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes, Nature Biotechnology, vol.29, issue.4, pp.341-34510, 2011.
DOI : 10.1016/0022-1759(83)90303-4

N. Yim, Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein???protein interaction module, Nature Communications, vol.24, pp.10-1038, 2016.
DOI : 10.1038/ncomms12277

I. S. Zeelenberg, Targeting Tumor Antigens to Secreted Membrane Vesicles In vivo Induces Efficient Antitumor Immune Responses, Cancer Research, vol.68, issue.4, pp.1228-1235, 2008.
DOI : 10.1158/0008-5472.CAN-07-3163

Z. C. Hartman, Increasing vaccine potency through exosome antigen targeting, Vaccine, vol.29, issue.50, pp.9361-9367, 2011.
DOI : 10.1016/j.vaccine.2011.09.133

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350974

Z. Peng-chen, Emerging Opportunities for Serotypes of Botulinum Neurotoxins, Toxins, vol.274, issue.12, pp.1196-122210, 2012.
DOI : 10.1021/bi200290p

G. Masuyer, J. A. Chaddock, K. A. Foster, and K. R. Acharya, Engineered Botulinum Neurotoxins as New Therapeutics, Annual Review of Pharmacology and Toxicology, vol.54, issue.1, pp.27-5110, 2014.
DOI : 10.1146/annurev-pharmtox-011613-135935

O. Rossetto, A. Megighian, M. Scorzeto, and C. Montecucco, Botulinum neurotoxins, Toxicon, vol.67, pp.31-36017, 2013.
DOI : 10.1016/j.toxicon.2013.01.017

URL : https://hal.archives-ouvertes.fr/hal-00163881

R. S. Williams, C. K. Tse, J. O. Dolly, P. Hambleton, and J. Melling, Radioiodination of Botulinum Neurotoxin Type A with Retention of Biological Activity and Its Binding to Brain Synaptosomes, European Journal of Biochemistry, vol.37, issue.2, pp.437-445, 1983.
DOI : 10.1016/0306-4522(82)90056-2

D. M. Evans, Botulinum neurotoxin type B. Its purification, radioiodination and interaction with rat-brain synaptosomal membranes, European Journal of Biochemistry, vol.295, issue.2, pp.409-416, 1986.
DOI : 10.1016/0003-2697(67)90297-7

S. Kozaki, Y. Kamata, S. Watarai, T. Nishiki, and S. Mochida, Ganglioside GT1b as a complementary receptor component forClostridium botulinumneurotoxins, Microbial Pathogenesis, vol.25, issue.2, pp.91-9910, 1998.
DOI : 10.1006/mpat.1998.0214

G. Ferracci, A label-free biosensor assay for botulinum neurotoxin B in food and human serum, Analytical Biochemistry, vol.410, issue.2, pp.281-288, 2011.
DOI : 10.1016/j.ab.2010.11.045

URL : https://hal.archives-ouvertes.fr/hal-00751523

Y. Y. Liu, P. Rigsby, D. Sesardic, J. D. Marks, and R. G. Jones, A functional dual-coated (FDC) microtiter plate method to replace the botulinum toxin LD50 test, Analytical Biochemistry, vol.425, issue.1, pp.28-35038, 2012.
DOI : 10.1016/j.ab.2012.02.038

C. Leveque, An optical biosensor assay for rapid dual detection of Botulinum neurotoxins A and E, Sci Rep, vol.5, pp.10-1038, 2015.

D. Gassart and A. , Exosomal sorting of the cytoplasmic domain of bovine leukemia virus TM Env protein, Cell Biology International, vol.33, issue.1, pp.36-48, 2009.
DOI : 10.1016/j.cellbi.2008.10.001

URL : https://hal.archives-ouvertes.fr/hal-00338635

V. Sokolova, Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy, Colloids and Surfaces B: Biointerfaces, vol.87, issue.1, pp.146-150, 2011.
DOI : 10.1016/j.colsurfb.2011.05.013

M. Colombo, G. Raposo, and C. Thery, Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles, Annual Review of Cell and Developmental Biology, vol.30, issue.1, pp.255-28910, 2014.
DOI : 10.1146/annurev-cellbio-101512-122326

G. Ferracci, M. Seagar, C. Joel, R. Miquelis, and C. Leveque, Real time analysis of intact organelles using surface plasmon resonance, Analytical Biochemistry, vol.334, issue.2, pp.367-375, 2004.
DOI : 10.1016/j.ab.2004.08.002

I. Navratilova, J. Sodroski, and D. G. Myszka, Solubilization, stabilization, and purification of chemokine receptors using biosensor technology, Analytical Biochemistry, vol.339, issue.2, pp.271-281017, 2004.
DOI : 10.1016/j.ab.2004.12.017

R. P. Berntsson, L. Peng, M. Dong, and P. Stenmark, Structure of dual receptor binding to botulinum neurotoxin B, Nature Communications, vol.269, pp.10-3058, 1038.
DOI : 10.1016/j.febslet.2011.12.037

G. Yao, N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A, Nature Structural & Molecular Biology, vol.364, issue.7, pp.656-6623245, 2016.
DOI : 10.1002/(SICI)1099-1352(199909/10)12:5<279::AID-JMR473>3.0.CO;2-3

R. Jin, A. Rummel, T. Binz, and A. Brunger, Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity, Nature, vol.54, issue.7122, pp.1092-109510, 2006.
DOI : 10.1038/nature05387

Q. Chai, Structural basis of cell surface receptor recognition by botulinum neurotoxin B, Nature, vol.147, issue.7122, pp.1096-1100, 2006.
DOI : 10.1038/nature05411

A. Estelles, Exosome nanovesicles displaying G protein-coupled receptors for drug discovery, Int J Nanomedicine, vol.2, pp.751-760, 2007.

C. Rasetti-escargueil, Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B, mAbs, vol.295, issue.6, pp.1161-1177, 1080.
DOI : 10.1002/mds.20021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966489

D. Dressler, M. Lange, and H. Bigalke, Mouse diaphragm assay for detection of antibodies against botulinum toxin type B, Movement Disorders, vol.15, issue.12, pp.1617-161910, 2005.
DOI : 10.1002/mds.20625

E. R. Evans, P. J. Skipper, and C. C. Shone, An assay for botulinum toxin types A, B and F that requires both functional binding and catalytic activities within the neurotoxin, Journal of Applied Microbiology, vol.65, issue.4, pp.1384-1391, 2009.
DOI : 10.1111/j.1365-2672.2009.04325.x

O. Rosen, E. Ozeri, A. Barnea, A. B. David, and R. Zichel, Development of an Innovative in Vitro Potency Assay for Anti-Botulinum Antitoxins, Toxins, vol.1, issue.10, p.8100276, 2016.
DOI : 10.1021/ac502948v

E. Wild, In vitro potency determination of botulinum neurotoxin B based on its receptor-binding and proteolytic characteristics, Toxicology in Vitro, vol.34, pp.97-104011, 2016.
DOI : 10.1016/j.tiv.2016.03.011

G. Ferracci, R. Miquelis, S. Kozaki, M. Seagar, and C. Leveque, Synaptic vesicle chips to assay botulinum neurotoxins, Biochemical Journal, vol.391, issue.3, pp.659-66610, 2005.
DOI : 10.1042/BJ20050855

URL : https://hal.archives-ouvertes.fr/hal-00018454

B. David, A. Torgeman, A. Barnea, A. Zichel, and R. , Expression, purification and characterization of the receptor-binding domain of botulinum neurotoxin serotype B as a vaccine candidate, Protein Expression and Purification, vol.110, pp.122-129, 2015.
DOI : 10.1016/j.pep.2015.02.008

D. B. Drachman, R. N. Adams, U. Balasubramanian, and Y. Lu, Strategy for Treating Motor Neuron Diseases Using a Fusion Protein of Botulinum Toxin Binding Domain and Streptavidin for Viral Vector Access: Work in Progress, Toxins, vol.14, issue.12, pp.2872-288910, 2010.
DOI : 10.1385/MN:33:2:113

G. Sakaguchi, Clostridium botulinum toxins, Pharmacology & Therapeutics, vol.19, issue.2, pp.165-19410, 1982.
DOI : 10.1016/0163-7258(82)90061-4

A. Couesnon, J. Molgo, C. Connan, and M. R. Popoff, Preferential Entry of Botulinum Neurotoxin A Hc Domain through Intestinal Crypt Cells and Targeting to Cholinergic Neurons of the Mouse Intestine, PLoS Pathogens, vol.156, issue.3, 2012.
DOI : 10.1371/journal.ppat.1002583.s003

URL : https://hal.archives-ouvertes.fr/pasteur-00681779

Y. Shoji-kasai, Neurotransmitter release from synaptotagmin-deficient clonal variants of PC12 cells, Science, vol.256, pp.1821-1823, 1992.
DOI : 10.1126/science.256.5065.1820

S. Mathupala and A. A. Sloan, An agarose-based cloning-ring anchoring method for isolation of viable cell clones, Biotechniques, vol.46, pp.305-307, 2009.

D. D. Taylor and S. Shah, Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes, Methods, vol.87, pp.3-10019, 2015.
DOI : 10.1016/j.ymeth.2015.02.019

S. Takamori, Molecular Anatomy of a Trafficking Organelle, Cell, vol.127, issue.4, pp.831-846030, 2006.
DOI : 10.1016/j.cell.2006.10.030

S. Marconi, A protein chip membrane-capture assay for botulinum neurotoxin activity, Toxicology and Applied Pharmacology, vol.233, issue.3, pp.439-446005, 2008.
DOI : 10.1016/j.taap.2008.09.005

URL : https://hal.archives-ouvertes.fr/hal-00396764