Detect tissue heterogeneity in gene expression data with BioQC - Inserm - Institut national de la santé et de la recherche médicale Access content directly
Journal Articles BMC Genomics Year : 2017

Detect tissue heterogeneity in gene expression data with BioQC

Klas Hatje
  • Function : Author
  • PersonId : 1005420
Gregor Sturm
  • Function : Author
  • PersonId : 1005421
Clemens Broger
  • Function : Author
  • PersonId : 1005422
Martin Ebeling
  • Function : Author
  • PersonId : 1005423
Martine Burtin
  • Function : Author
  • PersonId : 1005424
Fabiola Terzi
  • Function : Author
  • PersonId : 1005425
Silvia Ines Pomposiello
  • Function : Author
  • PersonId : 1005426
Laura Badi
  • Function : Author
  • PersonId : 1005427

Abstract

Abstract: BackgroundGene expression data can be compromised by cells originating from other tissues than the target tissue of profiling. Failures in detecting such tissue heterogeneity have profound implications on data interpretation and reproducibility. A computational tool explicitly addressing the issue is warranted. Results: We introduce BioQC, a R/Bioconductor software package to detect tissue heterogeneity in gene expression data. To this end BioQC implements a computationally efficient Wilcoxon-Mann-Whitney test and provides more than 150 signatures of tissue-enriched genes derived from large-scale transcriptomics studies.Simulation experiments show that BioQC is both fast and sensitive in detecting tissue heterogeneity. In a case study with whole-organ profiling data, BioQC predicted contamination events that are confirmed by quantitative RT-PCR. Applied to transcriptomics data of the Genotype-Tissue Expression (GTEx) project, BioQC reveals clustering of samples and suggests that some samples likely suffer from tissue heterogeneity. Conclusions: Our experience with gene expression data indicates a prevalence of tissue heterogeneity that often goes unnoticed. BioQC addresses the issue by integrating prior knowledge with a scalable algorithm. We propose BioQC as a first-line tool to ensure quality and reproducibility of gene expression data.
Fichier principal
Vignette du fichier
12864_2017_Article_3661.pdf (1.5 Mo) Télécharger le fichier
12864_2017_3661_MOESM1_ESM.pdf (2.09 Mo) Télécharger le fichier
12864_2017_3661_MOESM2_ESM.zip (98.77 Ko) Télécharger le fichier
12864_2017_3661_MOESM3_ESM.zip (305.53 Ko) Télécharger le fichier
12864_2017_3661_MOESM4_ESM.zip (325.97 Ko) Télécharger le fichier
Origin : Publication funded by an institution
Origin : Publication funded by an institution
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)

Dates and versions

inserm-01501219 , version 1 (04-04-2017)

Identifiers

Cite

Jitao David Zhang, Klas Hatje, Gregor Sturm, Clemens Broger, Martin Ebeling, et al.. Detect tissue heterogeneity in gene expression data with BioQC. BMC Genomics, 2017, 18 (1), pp.277. ⟨10.1186/s12864-017-3661-2⟩. ⟨inserm-01501219⟩
153 View
180 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More