V. Appay and D. Sauce, Naive T cells: The crux of cellular immune aging?, Experimental Gerontology, vol.54, pp.90-93, 2014.
DOI : 10.1016/j.exger.2014.01.003

S. Kohler and A. Thiel, Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets, Blood, vol.113, issue.4, pp.769-74, 2009.
DOI : 10.1182/blood-2008-02-139154

I. Den-braber, T. Mugwagwa, N. Vrisekoop, L. Westera, R. Mogling et al., Maintenance of Peripheral Naive T Cells Is Sustained by Thymus Output in Mice but Not Humans, Immunity, vol.36, issue.2, pp.288-97, 2012.
DOI : 10.1016/j.immuni.2012.02.006

D. Douek, R. Mcfarland, P. Keiser, E. Gage, J. Massey et al., Changes in thymic function with age and during the treatment of HIV infection, Nature, vol.396, issue.6712, pp.690-695, 1998.

M. Dion, R. Sekaly, and R. Cheynier, Estimating Thymic Function Through Quantification of T-Cell Receptor Excision Circles, Methods Mol Biol, vol.380, pp.197-213, 2007.
DOI : 10.1007/978-1-59745-395-0_12

L. Zhang, S. Lewin, M. Markowitz, H. Lin, E. Skulsky et al., Measuring Recent Thymic Emigrants in Blood of Normal and HIV-1???Infected Individuals before and after Effective Therapy, The Journal of Experimental Medicine, vol.72, issue.5, pp.725-757, 1999.
DOI : 10.1038/nm0798-852

M. Utsuyama, K. Hirokawa, C. Kurashima, M. Fukayama, T. Inamatsu et al., Differential age-change in the numbers of CD4+CD45RA+ DC4+CD29+ T cell subsets in human peripheral blood, Mechanisms of Ageing and Development, vol.63, issue.1, pp.57-68, 1992.
DOI : 10.1016/0047-6374(92)90016-7

T. Stulnig, C. Maczek, G. Bock, O. Majdic, and G. Wick, Reference Intervals for Human Peripheral Blood Lymphocyte Subpopulations from ???Healthy??? Young and Aged Subjects, International Archives of Allergy and Immunology, vol.108, issue.3, pp.205-215, 1995.
DOI : 10.1159/000237155

M. Pekalski, R. Ferreira, R. Coulson, A. Cutler, H. Guo et al., Postthymic Expansion in Human CD4 Naive T Cells Defined by Expression of Functional High-Affinity IL-2 Receptors, The Journal of Immunology, vol.190, issue.6, pp.2554-66, 2013.
DOI : 10.4049/jimmunol.1202914

L. Westera, V. Van-hoeven, J. Drylewicz, G. Spierenburg, J. Van-velzen et al., Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover, Aging Cell, vol.11, issue.2, pp.219-246, 2015.
DOI : 10.1111/acel.12311

URL : http://doi.org/10.1111/acel.12311

J. Tan, E. Dudl, E. Leroy, R. Murray, J. Sprent et al., IL-7 is critical for homeostatic proliferation and survival of naive T cells, Proceedings of the National Academy of Sciences, vol.7, issue.3, pp.8732-8739, 2001.
DOI : 10.1093/intimm/7.3.401

S. Kohler, U. Wagner, M. Pierer, S. Kimmig, B. Oppmann et al., Post-thymic in vivo proliferation of naive CD4+ T cells constrains the TCR repertoire in healthy human adults, European Journal of Immunology, vol.15, issue.6, pp.1987-94, 2005.
DOI : 10.1002/eji.200526181

T. Fry and C. Mackall, The Many Faces of IL-7: From Lymphopoiesis to Peripheral T Cell Maintenance, The Journal of Immunology, vol.174, issue.11, pp.6571-6577, 2005.
DOI : 10.4049/jimmunol.174.11.6571

R. Azevedo, M. Soares, J. Barata, R. Tendeiro, A. Serra-caetano et al., IL-7 sustains CD31 expression in human naive CD4+ T cells and preferentially expands the CD31+ subset in a PI3K-dependent manner, Blood, vol.113, issue.13, pp.2999-3007, 2009.
DOI : 10.1182/blood-2008-07-166223

D. Newton-nash and P. Newman, A new role for platelet-endothelial cell adhesion molecule-1 (CD31): inhibition of TCR-mediated signal transduction, J Immunol, vol.163, issue.2, pp.682-690, 1999.

B. Ernst, D. Lee, J. Chang, J. Sprent, and C. Surh, The Peptide Ligands Mediating Positive Selection in the Thymus Control T Cell Survival and Homeostatic Proliferation in the Periphery, Immunity, vol.11, issue.2, pp.173-81, 1999.
DOI : 10.1016/S1074-7613(00)80092-8

Y. Torimoto, D. Rothstein, N. Dang, S. Schlossman, and C. Morimoto, CD31, a novel cell surface marker for CD4 cells of suppressor lineage, unaltered by state of activation, J Immunol, vol.148, issue.2, pp.388-96, 1992.

S. Kimmig, G. Przybylski, C. Schmidt, K. Laurisch, B. Mowes et al., Two Subsets of Naive T Helper Cells with Distinct T Cell Receptor Excision Circle Content in Human Adult Peripheral Blood, The Journal of Experimental Medicine, vol.163, issue.6, pp.789-94, 2002.
DOI : 10.1073/pnas.97.16.9203

C. Demeure, D. Byun, L. Yang, N. Vezzio, and G. Delespesse, CD31 (PECAM-1) is a differentiation antigen lost during human CD4 T-cell maturation into Th1 or Th2 effector cells, Immunology, vol.88, issue.1, pp.110-115, 1996.
DOI : 10.1046/j.1365-2567.1996.d01-652.x

D. Sauce, M. Larsen, S. Fastenackels, A. Roux, G. Gorochov et al., Lymphopenia-Driven Homeostatic Regulation of Naive T Cells in Elderly and Thymectomized Young Adults, The Journal of Immunology, vol.189, issue.12, pp.5541-5549, 2012.
DOI : 10.4049/jimmunol.1201235

D. Sauce, M. Larsen, S. Fastenackels, A. Duperrier, M. Keller et al., Evidence of premature immune aging in patients thymectomized during early childhood, Journal of Clinical Investigation, vol.119, issue.10, pp.3070-3078, 2009.
DOI : 10.1172/JCI39269

URL : https://hal.archives-ouvertes.fr/inserm-00484608

M. Prelog, M. Keller, R. Geiger, A. Brandstatter, R. Wurzner et al., Thymectomy in early childhood: Significant alterations of the CD4+CD45RA+CD62L+ T cell compartment in later life, Clinical Immunology, vol.130, issue.2, pp.123-155, 2009.
DOI : 10.1016/j.clim.2008.08.023

J. Eysteinsdottir, J. Freysdottir, I. Skaftadottir, H. Helgason, A. Haraldsson et al., V?? Usage and T Regulatory Cells in Children Following Partial or Total Thymectomy after Open Heart Surgery in Infancy, Scandinavian Journal of Immunology, vol.176, issue.2, pp.162-8627, 2009.
DOI : 10.1111/j.1365-3083.2008.02203.x

N. Halnon, P. Cooper, D. Chen, M. Boechat, and C. Uittenbogaart, Immune Dysregulation after Cardiothoracic Surgery and Incidental Thymectomy: Maintenance of Regulatory T Cells despite Impaired Thymopoiesis, Clinical and Developmental Immunology, vol.8, issue.4, pp.2011-915864, 2011.
DOI : 10.1017/S1047951103000465

URL : http://doi.org/10.1155/2011/915864

N. Halnon, B. Jamieson, M. Plunkett, C. Kitchen, T. Pham et al., Thymic Function and Impaired Maintenance of Peripheral T Cell Populations in Children with Congenital Heart Disease and Surgical Thymectomy, Pediatric Research, vol.7, issue.1, pp.42-50, 2005.
DOI : 10.1203/01.PDR.0000147735.19342.DE

J. Gudmundsdottir, S. Oskarsdottir, G. Skogberg, S. Lindgren, V. Lundberg et al., Early thymectomy leads to premature immunologic ageing: An 18-year follow-up, Journal of Allergy and Clinical Immunology, vol.138, issue.5, 2016.
DOI : 10.1016/j.jaci.2016.05.014

S. Silva, A. Albuquerque, A. Serra-caetano, R. Foxall, A. Pires et al., Human naive regulatory T-cells feature high steady-state turnover and are maintained by IL-7, Oncotarget, vol.7, issue.11, pp.12163-75, 2016.

P. Chattopadhyay, J. Yu, and M. Roederer, A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles, Nature Medicine, vol.173, issue.10, pp.1113-1120, 1293.
DOI : 10.1016/S0022-1759(03)00186-8

M. Dion, J. Poulin, R. Bordi, M. Sylvestre, R. Corsini et al., HIV Infection Rapidly Induces and Maintains a Substantial Suppression of Thymocyte Proliferation, Immunity, vol.21, issue.6, pp.757-68, 2004.
DOI : 10.1016/j.immuni.2004.10.013

A. Albuquerque, J. Marques, S. Silva, D. Ligeiro, B. Devlin et al., Human FOXN1-deficiency is associated with alphabeta doublenegative and FoxP3+ T-cell expansions that are distinctly modulated upon thymic transplantation, PLoS One, vol.7, issue.5, 2012.
DOI : 10.1371/journal.pone.0037042

URL : http://doi.org/10.1371/journal.pone.0037042

T. Van-den-broek, E. Delemarre, W. Janssen, R. Nievelstein, J. Broen et al., Neonatal thymectomy reveals differentiation and plasticity within human naive T cells, Journal of Clinical Investigation, vol.126, issue.3, pp.1126-1162, 2016.
DOI : 10.1172/JCI84997DS1

C. Pannetier, J. Even, and P. Kourilsky, T-cell repertoire diversity and clonal expansions in normal and clinical samples, Immunology Today, vol.16, issue.4, pp.176-81, 1995.
DOI : 10.1016/0167-5699(95)80117-0

C. Kuo, M. Veselits, and J. Leiden, LKLF: A Transcriptional Regulator of Single-Positive T Cell Quiescence and Survival, Science, vol.277, issue.5334, 1986.
DOI : 10.1126/science.277.5334.1986

X. Feng, H. Wang, H. Takata, T. Day, J. Willen et al., Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells, Nature Immunology, vol.181, issue.6, pp.544-50, 2011.
DOI : 10.1084/JEM.20020066

A. Khanna, M. Plummer, V. Nilakantan, and G. Pieper, Recombinant p21 Protein Inhibits Lymphocyte Proliferation and Transcription Factors, The Journal of Immunology, vol.174, issue.12, pp.7610-7617, 2005.
DOI : 10.4049/jimmunol.174.12.7610

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.326.9646

H. Tsukamoto, G. Huston, J. Dibble, D. Duso, and S. Swain, Bim Dictates Naive CD4 T Cell Lifespan and the Development of Age-Associated Functional Defects, The Journal of Immunology, vol.185, issue.8, pp.4535-4579, 2010.
DOI : 10.4049/jimmunol.1001668

C. Huang and T. Tan, DUSPs, to MAP kinases and beyond, Cell & Bioscience, vol.2, issue.1, pp.2045-3701, 2012.
DOI : 10.1074/jbc.M200453200

URL : http://doi.org/10.1186/2045-3701-2-24

G. Li, M. Yu, W. Lee, M. Tsang, E. Krishnan et al., Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity, Nature Medicine, vol.168, issue.10, pp.1518-1542, 2012.
DOI : 10.1056/NEJMoa051016

R. Kilpatrick, T. Rickabaugh, L. Hultin, P. Hultin, M. Hausner et al., Homeostasis of the Naive CD4+ T Cell Compartment during Aging, The Journal of Immunology, vol.180, issue.3, pp.1499-507, 2008.
DOI : 10.4049/jimmunol.180.3.1499

J. Park, Q. Yu, B. Erman, J. Appelbaum, D. Montoya-durango et al., Suppression of IL7R?? Transcription by IL-7 and Other Prosurvival Cytokines, Immunity, vol.21, issue.2, pp.289-302, 2004.
DOI : 10.1016/j.immuni.2004.07.016

A. Kinter, E. Godbout, J. Mcnally, I. Sereti, G. Roby et al., The Common ??-Chain Cytokines IL-2, IL-7, IL-15, and IL-21 Induce the Expression of Programmed Death-1 and Its Ligands, The Journal of Immunology, vol.181, issue.10, pp.6738-6784, 2008.
DOI : 10.4049/jimmunol.181.10.6738

J. Hassan and D. Reen, IL-7 promotes the survival and maturation but not differentiation of human post-thymic CD4(+) T cells, 10<3057:: AID-IMMU3057>3.3.CO, pp.3057-65, 1998.

H. Kurobe, T. Tominaga, M. Sugano, Y. Hayabuchi, Y. Egawa et al., Complete but not partial thymectomy in early infancy reduces T-cellmediated immune response: three-year tracing study after pediatric cardiac surgery, J Thorac Cardiovasc Surg, vol.145, issue.3, pp.1-2, 2013.
DOI : 10.1016/j.jtcvs.2012.12.015

URL : http://dx.doi.org/10.1016/j.jtcvs.2012.12.015

M. Prelog, C. Wilk, M. Keller, T. Karall, D. Orth et al., Diminished response to tick-borne encephalitis vaccination in thymectomized children, Vaccine, vol.26, issue.5, pp.595-600, 2008.
DOI : 10.1016/j.vaccine.2007.11.074

E. Mancebo, C. J. Sanchez, J. Ruiz-contreras, J. , D. Pablos et al., Longitudinal analysis of immune function in the first 3 years of life in thymectomized neonates during cardiac surgery, Clinical & Experimental Immunology, vol.17, issue.3, pp.375-83, 2008.
DOI : 10.1111/j.1365-2249.2008.03771.x

J. Eysteinsdottir, J. Freysdottir, A. Haraldsson, J. Stefansdottir, I. Skaftadottir et al., The influence of partial or total thymectomy during open heart surgery in infants on the immune function later in life, Clinical and Experimental Immunology, vol.778, issue.2, pp.349-55, 2004.
DOI : 10.1016/S0955-0674(00)00132-0

K. Kamali, M. Ghahartars, and A. Amirghofran, Evaluation of thymic changes after median sternotomy in children, Iran J Med Sci, vol.39, issue.3, pp.289-92, 2014.

B. Sanei, S. Tabatabie, H. Bigdelian, S. Hashemi, A. Davarpanah et al., Distribution of mediastinal ectopic thymic tissue in patients without thymic disease, Advanced Biomedical Research, vol.4, issue.1, pp.18-28, 2015.
DOI : 10.4103/2277-9175.149849

D. Sauce and V. Appay, Altered thymic activity in early life: how does it affect the immune system in young adults?, Current Opinion in Immunology, vol.23, issue.4, 2011.
DOI : 10.1016/j.coi.2011.05.001

A. Carpenter and R. Bosselut, Decision checkpoints in the thymus, Nature Immunology, vol.20, issue.8, pp.666-73, 2010.
DOI : 10.1038/ni.1887

M. Attaf, E. Huseby, and A. Sewell, ???? T cell receptors as predictors of health and disease, Cellular and Molecular Immunology, vol.152, issue.4, pp.391-400, 2015.
DOI : 10.4049/jimmunol.176.10.5707

K. Naylor, G. Li, A. Vallejo, W. Lee, K. Koetz et al., The Influence of Age on T Cell Generation and TCR Diversity, The Journal of Immunology, vol.174, issue.11, pp.7446-52, 2005.
DOI : 10.4049/jimmunol.174.11.7446

J. Goronzy, W. Lee, and C. Weyand, Aging and T-cell diversity???, Experimental Gerontology, vol.42, issue.5, pp.400-406, 2007.
DOI : 10.1016/j.exger.2006.11.016

Q. Qi, Y. Liu, Y. Cheng, J. Glanville, D. Zhang et al., Diversity and clonal selection in the human T-cell repertoire, Proceedings of the National Academy of Sciences, vol.4, issue.2, pp.13139-13183, 2014.
DOI : 10.1038/nri1292

R. Parker, J. Dutrieux, S. Beq, B. Lemercier, S. Rozlan et al., Interleukin-7 treatment counteracts IFN-?? therapy-induced lymphopenia and stimulates SIV-specific cytotoxic T lymphocyte responses in SIV-infected rhesus macaques, Blood, vol.116, issue.25, pp.5589-99, 2010.
DOI : 10.1182/blood-2010-03-276261

T. Arstila, A. Casrouge, V. Baron, J. Even, J. Kanellopoulos et al., A Direct Estimate of the Human T Cell Receptor Diversity, Science, vol.286, issue.5441, pp.958-61, 1999.
DOI : 10.1126/science.286.5441.958

M. Zlamy and M. Prelog, Thymectomy in Early Childhood: A Model for Premature T Cell Immunosenscence?, Rejuvenation Research, vol.12, issue.4, pp.249-58, 2009.
DOI : 10.1089/rej.2009.0864

S. Brearley, T. Gentle, M. Baynham, K. Roberts, L. Abrams et al., Immunodeficiency following neonatal thymectomy in man, Clin Exp Immunol, vol.70, issue.2, pp.322-329, 1987.

D. Duszczyszyn, J. Williams, H. Mason, Y. Lapierre, J. Antel et al., Thymic involution and proliferative T-cell responses in multiple sclerosis, Journal of Neuroimmunology, vol.221, issue.1-2, pp.73-80, 2010.
DOI : 10.1016/j.jneuroim.2010.02.005

A. Van-lent, W. Dontje, M. Nagasawa, R. Siamari, A. Bakker et al., IL-7 Enhances Thymic Human T Cell Development in "Human Immune System" Rag2-/-IL-2R??c-/- Mice without Affecting Peripheral T Cell Homeostasis, The Journal of Immunology, vol.183, issue.12, pp.7645-55, 2009.
DOI : 10.4049/jimmunol.0902019

Y. Okamoto, D. Douek, R. Mcfarland, and R. Koup, Effects of exogenous inter- leukin-7 on human thymus function, Blood, vol.99, issue.8, 2002.

J. Barata, A. Silva, J. Brandao, L. Nadler, A. Cardoso et al., Activation of PI3K Is Indispensable for Interleukin 7???mediated Viability, Proliferation, Glucose Use, and Growth of T Cell Acute Lymphoblastic Leukemia Cells, The Journal of Experimental Medicine, vol.17, issue.5, pp.659-69, 2004.
DOI : 10.1084/jem.177.2.305

D. Gibbons, P. Fleming, A. Virasami, M. Michel, N. Sebire et al., Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants, Nature Medicine, vol.16, issue.10, pp.1206-1216, 2014.
DOI : 10.1038/nm.3670

D. Lewis, C. Haines, and D. Ross, Protein tyrosine kinase 7: a novel surface marker for human recent thymic emigrants with potential clinical utility, Journal of Perinatology, vol.1579, pp.72-81, 2011.
DOI : 10.1007/s001090100271

H. Okazaki, M. Ito, T. Sudo, M. Hattori, S. Kano et al., IL-7 promotes thymocyte proliferation and maintains immunocompetent thymocytes bearing alpha beta or gamma delta T-cell receptors in vitro: synergism with IL-2, J Immunol, vol.143, issue.9, pp.2917-2939, 1989.

Y. Levy, C. Lacabaratz, L. Weiss, J. Viard, C. Goujard et al., Enhanced T cell recovery in HIV-1???infected adults through IL-7 treatment, Journal of Clinical Investigation, vol.119, issue.4, pp.997-100710, 1172.
DOI : 10.1172/JCI38052

URL : https://hal.archives-ouvertes.fr/inserm-00484803

I. Sereti, R. Dunham, J. Spritzler, E. Aga, M. Proschan et al., IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection, Blood, vol.113, issue.25, pp.6304-6318, 2008.
DOI : 10.1182/blood-2008-10-186601

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710926

S. Rosenberg, C. Sportes, M. Ahmadzadeh, T. Fry, L. Ngo et al., IL-7 Administration to Humans Leads to Expansion of CD8+ and CD4+ Cells but a Relative Decrease of CD4+ T-Regulatory Cells, Journal of Immunotherapy, vol.29, issue.3, pp.313-322, 2006.
DOI : 10.1097/01.cji.0000210386.55951.c2

©. Copyright, . Silva, . Albuquerque, . Matoso, . Charmeteau-de-muylder et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited