F. Toledo and G. Wahl, Regulating the p53 pathway: in vitro hypotheses, in vivo veritas, Nature Reviews Cancer, vol.55, issue.12, pp.909-932, 2006.
DOI : 10.1002/gcc.20310

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-74, 2011.
DOI : 10.1016/j.cell.2011.02.013

F. Zindy, C. Eischen, D. Randle, T. Kamijo, J. Cleveland et al., Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and??immortalization, Genes & Development, vol.12, issue.15, pp.2424-2457, 1998.
DOI : 10.1101/gad.12.15.2424

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC317045

S. Lowe, E. Cepero, and G. Evan, Intrinsic tumour suppression, Nature, vol.35, issue.7015, pp.307-322, 2004.
DOI : 10.1038/nature03098

URL : http://www.nature.com/nature/journal/v432/n7015/pdf/nature03098.pdf

F. Pichiorri, S. Suh, A. Rocci, D. Luca, L. Taccioli et al., Downregulation of p53-inducible microRNAs 192, 194, and 215 Impairs the p53/MDM2 Autoregulatory Loop in Multiple Myeloma Development, Cancer Cell, vol.30, issue.2, pp.367-81, 2010.
DOI : 10.1016/j.ccell.2016.07.007

H. Hermeking, MicroRNAs in the p53 network: micromanagement of tumour suppression, Nature Reviews Cancer, vol.205, issue.9, pp.613-639, 2012.
DOI : 10.1038/nrc3318

J. Yuan, K. Luo, L. Zhang, J. Cheville, and Z. Lou, USP10 Regulates p53 Localization and Stability by Deubiquitinating p53, Cell, vol.140, issue.3, pp.384-96, 2010.
DOI : 10.1016/j.cell.2009.12.032

URL : http://doi.org/10.1016/j.cell.2009.12.032

S. Khoronenkova, I. Dianova, N. Ternette, B. Kessler, J. Parsons et al., ATM-Dependent Downregulation of USP7/HAUSP by PPM1G Activates p53 Response to DNA Damage, Molecular Cell, vol.45, issue.6, pp.801-814, 2012.
DOI : 10.1016/j.molcel.2012.01.021

D. Chen, N. Kon, M. Li, W. Zhang, J. Qin et al., ARF-BP1/Mule Is a Critical Mediator of the ARF Tumor Suppressor, Cell, vol.121, issue.7, pp.1071-83, 2005.
DOI : 10.1016/j.cell.2005.03.037

S. Swerdlow, International Agency for Research on Cancer, World Health Organization . WHO classification of tumours of haematopoietic and lymphoid tissues, International Agency for Research on Cancer, 2008.

E. Tiacci, V. Trifonov, G. Schiavoni, A. Holmes, W. Kern et al., Mutations in Hairy-Cell Leukemia, New England Journal of Medicine, vol.364, issue.24, pp.2305-2320, 2011.
DOI : 10.1056/NEJMoa1014209

H. Horn, M. Ziepert, C. Becher, T. Barth, H. Bernd et al., MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma, Blood, vol.121, issue.12, pp.2253-63, 2013.
DOI : 10.1182/blood-2012-06-435842

C. Copie-bergman, P. Cuillière-dartigues, M. Baia, J. Briere, R. Delarue et al., MYC-IG rearrangements are negative predictors of survival in DLBCL patients treated with immunochemotherapy: a GELA/LYSA study, Blood, vol.126, issue.22, pp.2466-74, 2015.
DOI : 10.1182/blood-2015-05-647602

G. Lenz, G. Wright, N. Emre, H. Kohlhammer, S. Dave et al., Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways, Proceedings of the National Academy of Sciences, vol.319, issue.5870, p.13520, 2008.
DOI : 10.1126/science.1153629

L. Pasqualucci and R. Dalla-favera, The Genetic Landscape of Diffuse Large B-Cell Lymphoma, Seminars in Hematology, vol.52, issue.2, pp.67-76, 2015.
DOI : 10.1053/j.seminhematol.2015.01.005

A. Davies, A. Rosenwald, G. Wright, A. Lee, K. Last et al., Transformation of follicular lymphoma to diffuse large B-cell lymphoma proceeds by distinct oncogenic mechanisms, British Journal of Haematology, vol.80, issue.2, pp.286-93, 2007.
DOI : 10.1073/pnas.1732008100

B. Escofier and J. Pagès, Multiple factor analysis (AFMULT package) Comput Statist Data Anal, pp.121-161, 1994.
DOI : 10.1016/0167-9473(94)90135-x

M. Valgañón, P. Giraldo, X. Agirre, M. Larráyoz, A. Rubio-martinez et al., p53 Aberrations do not predict individual response to fludarabine in patients with B-cell chronic lymphocytic leukaemia in advanced stages Rai III/IV, British Journal of Haematology, vol.95, issue.1, pp.53-62, 2005.
DOI : 10.1093/emboj/17.16.4657

P. Ulz, E. Heitzer, and M. Speicher, Co-occurrence of MYC amplification and TP53 mutations in human cancer, Nature Genetics, vol.149, issue.2, pp.104-110, 2016.
DOI : 10.1038/ng.3468

C. Eischen, J. Weber, M. Roussel, C. Sherr, and J. Cleveland, Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis, Genes & Development, vol.13, issue.20, pp.2658-69, 1999.
DOI : 10.1101/gad.13.20.2658

D. Dauch, R. Rudalska, G. Cossa, J. Nault, T. Kang et al., A MYC???aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer, Nature Medicine, vol.10, issue.7, 2016.
DOI : 10.1158/0008-5472.CAN-14-1726

A. Bommi-reddy and W. Kaelin, Slaying RAS with a synthetic lethal weapon, Cell Research, vol.438, issue.2, pp.119-140, 2010.
DOI : 10.1056/NEJMoa0900212

G. Mulligan, D. Lichter, D. Bacco, A. Blakemore, S. Berger et al., Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy, Blood, vol.123, issue.5, pp.632-641, 2014.
DOI : 10.1182/blood-2013-05-504340

D. Smith, E. Armenteros, L. Percy, M. Kumar, A. Lach et al., mutation status and bortezomib therapy for relapsed multiple myeloma, British Journal of Haematology, vol.120, issue.6, pp.905-913, 2015.
DOI : 10.1111/bjh.13258

C. Cobaleda and I. Sánchez-garcía, B-cell acute lymphoblastic leukaemia: towards understanding its cellular origin, BioEssays, vol.6, issue.6, pp.600-609, 2009.
DOI : 10.1038/nature07602

J. Downward, Targeting RAS signalling pathways in cancer therapy, Nature Reviews Cancer, vol.3, issue.1, pp.11-22, 2003.
DOI : 10.1038/nrc969

L. Vassilev, B. Vu, B. Graves, D. Carvajal, F. Podlaski et al., In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2, Science, vol.303, issue.5659, pp.844-852, 2004.
DOI : 10.1126/science.1092472

Z. Xu-monette, M. Møller, A. Tzankov, S. Montes-moreno, W. Hu et al., MDM2 phenotypic and genotypic profiling, respective to TP53 genetic status, in diffuse large B-cell lymphoma patients treated with rituximab-CHOP immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program, pp.2630-2670, 2013.

F. Zhan, Y. Huang, S. Colla, J. Stewart, I. Hanamura et al., The molecular classification of multiple myeloma, Blood, vol.108, issue.6, pp.2020-2028, 2006.
DOI : 10.1182/blood-2005-11-013458

M. Elnenaei, A. Gruszka-westwood, A. Hernt, R. Matutes, E. Sirohi et al., Gene abnormalities in multiple myeloma; the relevance of TP53, MDM2, and CDKN2A, pp.529-566, 2003.

P. Konstantinopoulos, R. Ceccaldi, G. Shapiro, D. Andrea, and A. , Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer, Cancer Discovery, vol.5, issue.11, pp.1137-54, 2015.
DOI : 10.1158/2159-8290.CD-15-0714

S. Jaber, E. Toufektchan, V. Lejour, B. Bardot, and F. Toledo, p53 downregulates the Fanconi anaemia DNA repair pathway, Nature Communications, vol.39, p.11091, 2016.
DOI : 10.1038/ncomms11091

URL : https://hal.archives-ouvertes.fr/hal-01300933

B. Tessoulin, G. Descamps, P. Moreau, S. Maïga, L. Lodé et al., PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance, Blood, vol.124, issue.10, pp.1626-1662, 2014.
DOI : 10.1182/blood-2014-01-548800

M. Wanzel, J. Vischedyk, M. Gittler, N. Gremke, J. Seiz et al., CRISPR-Cas9???based target validation for p53-reactivating model compounds, Nature Chemical Biology, vol.21, issue.1, pp.22-30, 2016.
DOI : 10.1016/j.molcel.2010.02.037

L. Bodet, P. Gomez-bougie, C. Touzeau, C. Dousset, G. Descamps et al., ABT-737 is highly effective against molecular subgroups of multiple myeloma, Blood, vol.118, issue.14, pp.3901-3911, 2011.
DOI : 10.1182/blood-2010-11-317438

C. Touzeau, C. Dousset, L. Bodet, P. Gomez-bougie, S. Bonnaud et al., ABT-737 Induces Apoptosis in Mantle Cell Lymphoma Cells with a Bcl-2high/Mcl-1low Profile and Synergizes with Other Antineoplastic Agents, Clinical Cancer Research, vol.17, issue.18, pp.5973-81, 2011.
DOI : 10.1158/1078-0432.CCR-11-0955

M. Anderson, J. Deng, J. Seymour, C. Tam, S. Kim et al., The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism, Blood, vol.127, issue.25, pp.3215-3239, 2016.
DOI : 10.1182/blood-2016-01-688796

M. Kiebala, J. Skalska, C. Casulo, P. Brookes, D. Peterson et al., Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: A novel synergistic therapeutic approach, Experimental Hematology, vol.43, issue.2, pp.89-99, 2015.
DOI : 10.1016/j.exphem.2014.10.004

A. Lok and C. Pellat-deceunynck, Abstract N 310: the oncolytic measles virus preferentially infects p53 abnormal myeloma cells [Internet] Available from: https, 2016.

F. Husson and J. Josse, Handling missing values in multiple factor analysis, Food Quality and Preference, vol.30, issue.2, pp.77-85, 2013.
DOI : 10.1016/j.foodqual.2013.04.013

URL : https://hal.archives-ouvertes.fr/hal-01070888

D. Liang, L. Shih, J. Fu, H. Li, H. Wang et al., K-Ras mutations and Nras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements, Cancer Feb, vol.15106, issue.4, pp.950-956, 2006.
DOI : 10.1002/cncr.21687

A. Moorman, C. Harrison, G. Buck, S. Richards, L. Secker-walker et al., Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial, Blood, vol.109, issue.8, pp.3189-97, 2007.
DOI : 10.1182/blood-2006-10-051912

N. Xu, Y. Li, X. Zhou, R. Cao, H. Li et al., CDKN2 Gene Deletion as Poor Prognosis Predictor Involved in the Progression of Adult B-Lineage Acute Lymphoblastic Leukemia Patients, Journal of Cancer, vol.6, issue.11, pp.1114-1134, 2015.
DOI : 10.7150/jca.11959

M. Forero-castro, C. Robledo, R. Benito, M. Abáigar, A. Martín et al., Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome, PLOS ONE, vol.47, issue.6, pp.2016-0148972
DOI : 10.1371/journal.pone.0148972.s003

M. Haidar, H. Kantarjian, T. Manshouri, C. Chang, O. Brien et al., ATM gene deletion in patients with adult acute lymphoblastic leukemia, Cancer, vol.53, issue.5, pp.1057-62, 2000.
DOI : 10.1002/(SICI)1097-0142(20000301)88:5<1057::AID-CNCR16>3.0.CO;2-6

G. Pause, F. Wacker, P. Maillet, P. Betts, D. Sappino et al., ATM gene alterations in childhood acute lymphoblastic leukemias, Human Mutation, vol.21, issue.5, p.554, 2003.
DOI : 10.1002/humu.9140

A. Stengel, S. Schnittger, S. Weissmann, S. Kuznia, W. Kern et al., TP53 mutations occur in 15.7% of ALL and are associated with MYC-rearrangement, low hypodiploidy, and a poor prognosis, Blood, vol.124, issue.2, pp.251-259, 2014.
DOI : 10.1182/blood-2014-02-558833

D. Deangelo, K. Stevenson, S. Dahlberg, L. Silverman, S. Couban et al., Long-term outcome of a pediatric-inspired regimen used for adults aged 18???50 years with newly diagnosed acute lymphoblastic leukemia, Leukemia, vol.92, issue.3, pp.526-560, 2015.
DOI : 10.1002/(SICI)1097-0142(19990315)85:6<1395::AID-CNCR25>3.0.CO;2-2

D. Giudice, I. Osuji, N. Dexter, T. Brito-babapulle, V. et al., B-cell prolymphocytic leukemia and chronic lymphocytic leukemia have distinctive gene expression signatures, Leukemia, vol.63, issue.11, pp.2160-2167, 2009.
DOI : 10.1007/s00277-004-0879-2

E. Flatley, A. Chen, X. Zhao, E. Jaffe, J. Dunlap et al., Aberrations of MYC Are a Common Event in B-Cell Prolymphocytic Leukemia, American Journal of Clinical Pathology, vol.142, issue.3, pp.347-54, 2014.

D. Lens, P. Schouwer, R. Hamoudi, M. Abdul-rauf, N. Farahat et al., p53 Abnormalities in B-cell prolymphocytic leukemia, Blood Mar, vol.1589, issue.6, pp.2015-2038, 1997.

C. Hercher, M. Robain, F. Davi, R. Garand, G. Flandrin et al., A Multicentric Study of 41 Cases of B-Prolymphocytic Leukemia: Two Evolutive Forms: The Groupe Fran??ais d'H??matologie Cellulaire, Leukemia & Lymphoma, vol.33, issue.1, pp.981-988, 2001.
DOI : 10.1111/j.1365-2141.1986.tb07575.x

J. Zhang, D. Jima, A. Moffitt, Q. Liu, M. Czader et al., The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells, Blood, vol.123, issue.19, pp.2988-96, 2014.
DOI : 10.1182/blood-2013-07-517177

S. Beà, R. Valdés-mas, A. Navarro, I. Salaverria, D. Martín-garcia et al., Landscape of somatic mutations and clonal evolution in mantle cell lymphoma, Proceedings of the National Academy of Sciences, vol.110, issue.4, pp.18250-18255, 2013.
DOI : 10.1073/pnas.1205299110

S. Sander, L. Bullinger, E. Leupolt, A. Benner, D. Kienle et al., Genomic aberrations in mantle cell lymphoma detected by interphase fluorescence in situ hybridization. Incidence and clinicopathological correlations, Haematologica, vol.93, issue.5, pp.680-687, 2008.
DOI : 10.3324/haematol.12330

M. Delfau-larue, W. Klapper, F. Berger, F. Jardin, J. Briere et al., High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma, Blood, vol.126, issue.5, pp.604-615, 2015.
DOI : 10.1182/blood-2015-02-628792

F. Rubio-moscardo, J. Climent, R. Siebert, M. Piris, J. Martín-subero et al., Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome, Blood, vol.105, issue.11, pp.4445-54, 2005.
DOI : 10.1182/blood-2004-10-3907

A. Rosenwald, G. Wright, A. Wiestner, W. Chan, J. Connors et al., The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma, Cancer Cell, vol.3, issue.2, pp.185-97, 2003.
DOI : 10.1016/S1535-6108(03)00028-X

C. Chim, K. Wong, F. Loong, and G. Srivastava, Absence of ATM hypermethylation in mantle cell and follicular lymphoma, Leukemia, vol.103, issue.5, pp.880-882, 2005.
DOI : 10.1038/sj.leu.2403676

N. Fang, T. Greiner, D. Weisenburger, W. Chan, J. Vose et al., Oligonucleotide microarrays demonstrate the highest frequency of ATM mutations in the mantle cell subtype of lymphoma, Proceedings of the National Academy of Sciences, vol.62, issue.15, pp.5372-5379, 2003.
DOI : 10.1038/sj.leu.2402540

T. Greiner, C. Dasgupta, V. Ho, D. Weisenburger, L. Smith et al., Mutation and genomic deletion status of ataxia telangiectasia mutated (ATM) and p53 confer specific gene expression profiles in mantle cell lymphoma, Proceedings of the National Academy of Sciences, vol.25, issue.14, pp.2352-2359, 2006.
DOI : 10.1093/nar/25.14.2745

M. Solenthaler, E. Matutes, V. Brito-babapulle, R. Morilla, and D. Catovsky, p53 and mdm2 in mantle cell lymphoma in leukemic phase, Haematologica, vol.87, issue.11, pp.1141-50, 2002.

L. Stefancikova, M. Moulis, P. Fabian, B. Ravcukova, I. Vasova et al., Loss of the p53 tumor suppressor activity is associated with negative prognosis of mantle cell lymphoma, Int J Oncol Mar, vol.136, issue.3, pp.699-706, 2010.

A. Halldórsdóttir, A. Lundin, F. Murray, L. Mansouri, S. Knuutila et al., Impact of TP53 mutation and 17p deletion in mantle cell lymphoma, Leukemia, vol.93, issue.12, pp.1904-1912, 2011.
DOI : 10.1182/blood-2008-01-129783

H. Dong, L. Zhou, C. Fang, L. Fan, D. Zhu et al., TP53 mutation is not an independent prognostic factor in patients with mantle cell lymphoma at advanced stage, Medical Oncology, vol.93, issue.3, pp.2166-73, 2011.
DOI : 10.1007/s12032-011-0096-5

T. Greiner, M. Moynihan, W. Chan, D. Lytle, A. Pedersen et al., p53 mutations in mantle cell lymphoma are associated with variant cytology and predict a poor prognosis, pp.4302-4312, 1996.

L. Hernandez, T. Fest, M. Cazorla, J. Teruya-feldstein, F. Bosch et al., p53 gene mutations and protein overexpression are associated with aggressive variants of mantle cell lymphomas, Blood, vol.87, issue.8, pp.3351-3360, 1996.

E. Hartmann, V. Fernàndez, H. Stoecklein, L. Hernández, E. Campo et al., Increased MDM2 expression is associated with inferior survival in mantle cell lymphoma, but not related to the MDM2 SNP309, Haematologica, vol.92, issue.4, pp.574-579, 2007.
DOI : 10.3324/haematol.10891

J. Slotta-huspenina, I. Koch, L. Leval, . De, G. Keller et al., The impact of cyclin D1 mRNA isoforms, morphology and p53 in mantle cell lymphoma: p53 alterations and blastoid morphology are strong predictors of a high proliferation index, Haematologica, vol.97, issue.9, pp.1422-1452, 2012.
DOI : 10.3324/haematol.2011.055715

C. Leux, M. Maynadié, X. Troussard, Q. Cabrera, A. Herry et al., Mantle cell lymphoma epidemiology: a population-based study in France, Annals of Hematology, vol.91, issue.11, pp.1327-1360, 2014.
DOI : 10.1007/s00277-014-2049-5

O. Hermine, E. Hoster, J. Walewski, A. Bosly, S. Stilgenbauer et al., Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): a randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma Network, The Lancet, vol.388, issue.10044, pp.565-75, 2016.
DOI : 10.1016/S0140-6736(16)00739-X

D. Landau, E. Tausch, A. Taylor-weiner, C. Stewart, J. Reiter et al., Mutations driving CLL and their evolution in progression and relapse, Nature, vol.339, issue.7574, pp.525-555, 2015.
DOI : 10.1038/nature15395

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815041

J. Brown, M. Hanna, B. Tesar, L. Werner, N. Pochet et al., Integrative genomic analysis implicates gain of PIK3CA at 3q26 and MYC at 8q24 in chronic lymphocytic leukemia. Clin Cancer Res, pp.3791-802, 2012.

R. Guièze, P. Robbe, R. Clifford, S. Guibert, . De et al., Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL, Blood, vol.126, issue.18, pp.2110-2117, 2015.
DOI : 10.1182/blood-2015-05-647578

A. Skowronska, A. Parker, G. Ahmed, C. Oldreive, Z. Davis et al., Inactivation Significantly Reduces Survival in Patients Treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 Trial, Journal of Clinical Oncology, vol.30, issue.36, pp.4524-4556, 2012.
DOI : 10.1200/JCO.2011.41.0852

J. Edelmann, K. Holzmann, F. Miller, D. Winkler, A. Bühler et al., High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations, Blood, vol.120, issue.24, pp.4783-94, 2012.
DOI : 10.1182/blood-2012-04-423517

T. Zenz, B. Eichhorst, R. Busch, T. Denzel, S. Häbe et al., Mutation and Survival in Chronic Lymphocytic Leukemia, Journal of Clinical Oncology, vol.28, issue.29, pp.4473-4482, 2010.
DOI : 10.1200/JCO.2009.27.8762

M. Trbusek, J. Malcikova, J. Smardova, V. Kuhrova, D. Mentzlova et al., Inactivation of p53 and deletion of ATM in B-CLL patients in relation to IgVH mutation status and previous treatment, Leukemia, vol.12, issue.6, pp.1159-61, 2006.
DOI : 10.1038/sj.leu.2404195

H. Döhner, S. Stilgenbauer, A. Benner, E. Leupolt, A. Kröber et al., Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia, New England Journal of Medicine, vol.343, issue.26, pp.1910-1916, 2000.
DOI : 10.1056/NEJM200012283432602

C. Vollbrecht, F. Mairinger, U. Koitzsch, M. Peifer, K. Koenig et al., Comprehensive analysis of disease-related genes in chronic lymphocytic leukemia by multiplex pcr-based next generation sequencing Available from, PLoS One Jun, vol.810, issue.6, 2015.

A. Pettitt, P. Sherrington, G. Stewart, J. Cawley, A. Taylor et al., p53 dysfunction in B-cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation, Blood, vol.98, issue.3, pp.814-836, 2001.
DOI : 10.1182/blood.V98.3.814

T. Zenz, A. Kröber, K. Scherer, S. Häbe, A. Bühler et al., Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up, Blood, vol.112, issue.8, pp.3322-3331, 2008.
DOI : 10.1182/blood-2008-04-154070

R. Guièze and C. Wu, Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia, Blood, vol.126, issue.4, pp.445-53, 2015.
DOI : 10.1182/blood-2015-02-585042

K. Fischer, J. Bahlo, A. Fink, V. Goede, C. Herling et al., Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial, Blood, vol.127, issue.2, pp.208-223, 2016.
DOI : 10.1182/blood-2015-06-651125

A. Pastore, V. Jurinovic, R. Kridel, E. Hoster, A. Staiger et al., Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry, The Lancet Oncology, vol.16, issue.9, pp.1111-1133, 2015.
DOI : 10.1016/S1470-2045(15)00169-2

T. Yano, E. Jaffe, D. Longo, and M. Raffeld, MYC rearrangements in histologically progressed follicular lymphomas, Blood Aug, vol.180, issue.3, pp.758-67, 1992.

L. Christie, N. Kernohan, D. Levison, M. Sales, J. Cunningham et al., translocation in t(14;18) positive follicular lymphoma at presentation: An adverse prognostic indicator?, Leukemia & Lymphoma, vol.127, issue.3, pp.470-476, 2008.
DOI : 10.1038/modpathol.3800500

M. Pinyol, L. Hernández, A. Martínez, F. Cobo, S. Hernández et al., INK4a/ARFLocus Alterations in Human Non-Hodgkin's Lymphomas Mainly Occur in Tumors with Wild-Type p53 Gene, The American Journal of Pathology, vol.156, issue.6, pp.1987-96, 2000.
DOI : 10.1016/S0002-9440(10)65071-7

A. Alhejaily, A. Day, H. Feilotter, T. Baetz, and D. Lebrun, Inactivation of the CDKN2A Tumor-Suppressor Gene by Deletion or Methylation Is Common at Diagnosis in Follicular Lymphoma and Associated with Poor Clinical Outcome, Clinical Cancer Research, vol.20, issue.6, pp.1676-86, 2014.
DOI : 10.1158/1078-0432.CCR-13-2175

A. Bouska, T. Mckeithan, K. Deffenbacher, C. Lachel, G. Wright et al., Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma, Blood, vol.123, issue.11, pp.1681-90, 2014.
DOI : 10.1182/blood-2013-05-500595

C. Ross, P. Ouillette, C. Saddler, K. Shedden, and S. Malek, Comprehensive analysis of copy number and allele status identifies multiple chromosome defects underlying follicular lymphoma pathogenesis. Clin Cancer Res, pp.4777-85, 2007.

N. Johnson, A. Tourah, C. Brown, J. Connors, R. Gascoyne et al., Prognostic significance of secondary cytogenetic alterations in follicular lymphomas, Genes, Chromosomes and Cancer, vol.316, issue.12, pp.1038-1086, 2008.
DOI : 10.1002/gcc.20606

I. Lossos, Y. Thorstenson, T. Wayne, P. Oefner, R. Levy et al., Mutation of the ATM Gene is Not Involved in the Pathogenesis of Either Follicle Center Lymphoma or its Transformation to Higher-grade Lymphoma, Leukemia & Lymphoma, vol.43, issue.5, pp.1079-85, 2002.
DOI : 10.1080/10428190290021623

M. Bellido, D. Capello, A. Altes, C. Estivill, G. Gaidano et al., Bcl-6 p53 mutations in lymphomas carrying the bcl-2/Jh rearrangement, Haematologica, vol.87, issue.9, pp.908-925, 2002.

O. Shea, D. O-'riain, C. Taylor, C. Waters, R. Carlotti et al., The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival, Blood Oct, vol.15112, issue.8, pp.3126-3135, 2008.

J. Seymour, P. Feugier, F. Offner, A. Lopez-guillermo, D. Belada et al., Updated 6 year follow-up of the PRIMA study confirms the benefit of 2-year rituximab maintenance in follicular lymphoma patients responding to frontline immunochemotherapy, Blood, vol.122, issue.21, p.509, 2013.

C. Love, Z. Sun, D. Jima, G. Li, J. Zhang et al., The genetic landscape of mutations in Burkitt lymphoma, Nature Genetics, vol.57, issue.12, pp.1321-1326, 2012.
DOI : 10.1126/science.1145720

T. Taniguchi, N. Chikatsu, S. Takahashi, A. Fujita, K. Uchimaru et al., Expression of p16INK4A and p14ARF in hematological malignancies, Leukemia, vol.13, issue.11, pp.1760-1769, 1999.
DOI : 10.1038/sj.leu.2401557

M. Wilda, J. Bruch, L. Harder, D. Rawer, A. Reiter et al., Inactivation of the ARF???MDM-2???p53 pathway in sporadic Burkitt's lymphoma in children, Leukemia, vol.18, issue.3, pp.584-592, 2003.
DOI : 10.1038/sj.leu.2403254

V. Leventaki, V. Rodic, S. Tripp, M. Bayerl, S. Perkins et al., TP53 pathway analysis in paediatric Burkitt lymphoma reveals increased MDM4 expression as the only TP53 pathway abnormality detected in a subset of cases, British Journal of Haematology, vol.18, issue.6, pp.763-71, 2012.
DOI : 10.1111/j.1365-2141.2012.09243.x

M. Forero-castro, C. Robledo, E. Lumbreras, R. Benito, J. Hernández-sánchez et al., The presence of genomic imbalances is associated with poor outcome in patients with burkitt lymphoma treated with doseintensive chemotherapy including rituximab, Br J Haematol Feb, vol.1, issue.1723, pp.428-466, 2016.

R. Scholtysik, M. Kreuz, W. Klapper, B. Burkhardt, A. Feller et al., Detection of genomic aberrations in molecularly defined Burkitt's lymphoma by arraybased , high resolution, single nucleotide polymorphism analysis, pp.2047-55, 2010.

M. Sánchez-beato, A. Sáez, I. Navas, P. Algara, S. Mateo et al., Overall Survival in Aggressive B-Cell Lymphomas Is Dependent on the Accumulation of Alterations in p53, p16, and p27, The American Journal of Pathology, vol.159, issue.1, pp.205-218, 2001.
DOI : 10.1016/S0002-9440(10)61686-0

G. Gaidano, P. Ballerini, J. Gong, G. Inghirami, A. Neri et al., p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia., Proceedings of the National Academy of Sciences, vol.88, issue.12, pp.5413-5420, 1991.
DOI : 10.1073/pnas.88.12.5413

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC51883

S. Toujani, P. Dessen, N. Ithzar, G. Danglot, C. Richon et al., High Resolution Genome-Wide Analysis of Chromosomal Alterations in Burkitt's Lymphoma, PLoS ONE, vol.446, issue.9, p.7089, 2009.
DOI : 10.1371/journal.pone.0007089.s013

H. Kretzmer, S. Bernhart, W. Wang, A. Haake, M. Weniger et al., DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control, Nature Genetics, vol.47, issue.11, pp.1316-1341, 2015.
DOI : 10.1073/pnas.1732008100

D. Hoelzer, J. Walewski, H. Döhner, A. Viardot, W. Hiddemann et al., Improved outcome of adult Burkitt lymphoma/leukemia with rituximab and chemotherapy: report of a large prospective multicenter trial, Blood, vol.124, issue.26, pp.3870-3879, 2014.
DOI : 10.1182/blood-2014-03-563627

J. Lohr, P. Stojanov, M. Lawrence, D. Auclair, B. Chapuy et al., Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing, Proceedings of the National Academy of Sciences, vol.79, issue.1, pp.3879-84, 2012.
DOI : 10.1182/blood-2007-07-100115

L. Pasqualucci, V. Trifonov, G. Fabbri, J. Ma, D. Rossi et al., Analysis of the coding genome of diffuse large B-cell lymphoma, Nature Genetics, vol.96, issue.9, pp.830-837, 2011.
DOI : 10.1093/bioinformatics/btl646

M. Møller, Y. Ino, A. Gerdes, K. Skjødt, D. Louis et al., Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma, Leukemia, vol.13, issue.3, pp.453-462, 1999.
DOI : 10.1038/sj.leu.2401315

F. Jardin, J. Jais, T. Molina, F. Parmentier, J. Picquenot et al., Diffuse large B-cell lymphomas with CDKN2A deletion have a distinct gene expression signature and a poor prognosis under R-CHOP treatment: a GELA study, Blood, vol.116, issue.7, pp.1092-104, 2010.
DOI : 10.1182/blood-2009-10-247122

URL : https://hal.archives-ouvertes.fr/ensl-00816038

K. Grønbaek, J. Worm, E. Ralfkiaer, V. Ahrenkiel, P. Hokland et al., ATM mutations are associated with inactivation of theARF-TP53 tumor suppressor pathway in diffuse large B-cell lymphoma, Blood Aug, vol.15100, issue.4, pp.1430-1437, 2002.

Y. Zhu, O. Monni, K. Franssila, E. Elonen, J. Vilpo et al., Deletions at 11q23 in different lymphoma subtypes, Haematologica, vol.85, issue.9, pp.908-920, 2000.
DOI : 10.1038/sj.leu.2401405

S. Mareschal, S. Dubois, P. Viailly, P. Bertrand, E. Bohers et al., Whole exome sequencing of relapsed/refractory patients expands the repertoire of somatic mutations in diffuse large B-cell lymphoma, Genes, Chromosomes and Cancer, vol.110, issue.3, pp.251-67, 2016.
DOI : 10.1002/gcc.22328

URL : https://hal.archives-ouvertes.fr/hal-01237083

Z. Xu-monette, L. Wu, C. Visco, Y. Tai, A. Tzankov et al., Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study, Blood, vol.120, issue.19, pp.3986-96, 2012.
DOI : 10.1182/blood-2012-05-433334

P. Koduru, K. Raju, V. Vadmal, G. Menezes, S. Shah et al., Correlation between mutation in P53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin's lymphoma, Blood Nov 15, vol.90, issue.10, pp.4078-91, 1997.

S. Hu, Z. Xu-monette, A. Tzankov, T. Green, L. Wu et al., MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program, Blood, vol.121, issue.20, pp.4021-4052, 2013.
DOI : 10.1182/blood-2012-10-460063

T. Hiyama, K. Haruma, Y. Kitadai, M. Ito, H. Masuda et al., Helicobacter pylori eradication therapy for high-grade mucosa-associated lymphoid tissue lymphomas of the stomach with analysis of p53 and K-ras alteration and microsatellite instability, International Journal of Oncology, vol.18, issue.6, pp.1207-1219, 2001.
DOI : 10.3892/ijo.18.6.1207

A. Rinaldi, M. Mian, E. Chigrinova, L. Arcaini, G. Bhagat et al., Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome, Blood, vol.117, issue.5, pp.1595-604, 2011.
DOI : 10.1182/blood-2010-01-264275

E. Braggio, A. Dogan, J. Keats, W. Chng, G. Huang et al., Genomic analysis of marginal zone and lymphoplasmacytic lymphomas identified common and disease-specific abnormalities, Modern Pathology, vol.23, issue.5, pp.651-60, 2012.
DOI : 10.1038/modpathol.2011.213

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3341516

G. Zhang, P. Cao, and L. Feng, Detection and clinical significance of genes in primary gastrointestinal MALT lymphoma, Tumor Biology, vol.114, issue.12, pp.3223-3231, 2013.
DOI : 10.1007/s13277-013-1421-8

S. Mateo, M. Mollejo, M. Villuendas, R. Algara, P. Sánchez-beato et al., Analysis of the frequency of microsatellite instability and p53 gene mutation in splenic marginal zone and MALT lymphomas, Molecular Pathology, vol.51, issue.5, pp.262-269, 1998.
DOI : 10.1136/mp.51.5.262

P. Chen, T. Chiou, I. Yu, F. Fan, C. Chu et al., Molecular Analysis of Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma of Ocular Adnexa, Leukemia & Lymphoma, vol.24, issue.1-2, pp.207-221, 2001.
DOI : 10.1006/viro.1993.1224

E. Zucca, F. Bertoni, E. Roggero, and F. Cavalli, The gastric marginal zone B-cell lymphoma of MALT type, Blood Jul, vol.1596, issue.2, pp.410-419, 2000.

N. Martínez, C. Almaraz, J. Vaqué, I. Varela, S. Derdak et al., Whole-exome sequencing in splenic marginal zone lymphoma reveals mutations in genes involved in marginal zone differentiation, Leukemia, vol.78, issue.6, pp.1334-1374, 2014.
DOI : 10.1016/j.ccr.2009.01.007

M. Parry, M. Rose-zerilli, V. Ljungström, J. Gibson, J. Wang et al., Genetics and Prognostication in Splenic Marginal Zone Lymphoma: Revelations from Deep Sequencing, Clinical Cancer Research, vol.21, issue.18, pp.4174-83, 2015.
DOI : 10.1158/1078-0432.CCR-14-2759

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490180

M. Salido, C. Baró, D. Oscier, K. Stamatopoulos, J. Dierlamm et al., Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group, Blood, vol.116, issue.9, pp.1479-88, 2010.
DOI : 10.1182/blood-2010-02-267476

V. Fresquet, E. Robles, A. Parker, J. Martinez-useros, M. Mena et al., High-throughput sequencing analysis of the chromosome 7q32 deletion reveals IRF5 as a potential tumour suppressor in splenic marginal-zone lymphoma, British Journal of Haematology, vol.100, issue.6, pp.712-738, 2012.
DOI : 10.1111/j.1365-2141.2012.09226.x

R. Piva, S. Deaglio, R. Famà, R. Buonincontri, I. Scarfò et al., The Kr??ppel-like factor 2 transcription factor gene is recurrently mutated in splenic marginal zone lymphoma, Leukemia, vol.28, issue.2, pp.503-510, 2015.
DOI : 10.1038/ng.892

D. Rossi, V. Trifonov, M. Fangazio, A. Bruscaggin, S. Rasi et al., and other pathways regulating marginal zone development, The Journal of Experimental Medicine, vol.220, issue.9, pp.1537-51, 2012.
DOI : 10.1016/j.str.2005.07.015

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428941

L. Liu, H. Wang, Y. Chen, L. Rustveld, G. Liu et al., Splenic marginal zone lymphoma: a population-based study on the 2001???2008 incidence and survival in the United States, Leukemia & Lymphoma, vol.47, issue.7, pp.1380-1386, 2013.
DOI : 10.1038/nature01322

N. Weston-bell, W. Tapper, J. Gibson, D. Bryant, Y. Moreno et al., Exome Sequencing in Classic Hairy Cell Leukaemia Reveals Widespread Variation in Acquired Somatic Mutations between Individual Tumours Apart from the Signature BRAF V(600)E Lesion, PLOS ONE, vol.128, issue.238, p.149162, 2016.
DOI : 10.1371/journal.pone.0149162.t004

U. Haglund, G. Juliusson, B. Stellan, and G. Gahrton, Hairy cell leukemia is characterized by clonal chromosome abnormalities clustered to specific regions, Blood May, vol.1, issue.839, pp.2637-2682, 1994.

A. Rinaldi, I. Kwee, K. Young, E. Zucca, G. Gaidano et al., Genome-wide high resolution DNA profiling of hairy cell leukaemia, British Journal of Haematology, vol.119, issue.4, pp.566-575, 2013.
DOI : 10.1111/bjh.12393

F. Forconi, E. Sozzi, E. Cencini, F. Zaja, T. Intermesoli et al., Hairy cell leukemias with unmutated IGHV genes define the minor subset refractory to singleagent cladribine and with more aggressive behavior, pp.4696-702, 2009.

J. Dierlamm, M. Stefanova, I. Wlodarska, L. Michaux, K. Hinz et al., Chromosomal gains and losses are uncommon in hairy cell leukemia, Cancer Genetics and Cytogenetics, vol.128, issue.2, pp.164-171, 2001.
DOI : 10.1016/S0165-4608(01)00415-0

E. König, W. Kusser, C. Day, F. Porzsolt, B. Glickman et al., P53 mutations in hairy cell leukemia, Leukemia, vol.14, issue.4, pp.706-717, 2000.
DOI : 10.1038/sj.leu.2401721

E. Cornet, C. Tomowiak, A. Tanguy-schmidt, S. Lepretre, J. Dupuis et al., Long-term follow-up and second malignancies in 487 patients with hairy cell leukaemia, British Journal of Haematology, vol.116, issue.Suppl. 2, pp.390-400, 2014.
DOI : 10.1111/bjh.12908

S. Treon, L. Xu, G. Yang, Y. Zhou, X. Liu et al., MYD88 L265P Somatic Mutation in Waldenstr??m's Macroglobulinemia, New England Journal of Medicine, vol.367, issue.9, pp.826-859, 2012.
DOI : 10.1056/NEJMoa1200710

F. Nguyen-khac, J. Lambert, E. Chapiro, A. Grelier, S. Mould et al., Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenstrom's macroglobulinemia, Haematologica, vol.98, issue.4, pp.649-54, 2013.
DOI : 10.3324/haematol.2012.070458

E. Braggio, J. Keats, X. Leleu, S. Van-wier, V. Jimenez-zepeda et al., Identification of Copy Number Abnormalities and Inactivating Mutations in Two Negative Regulators of Nuclear Factor-??B Signaling Pathways in Waldenstrom's Macroglobulinemia, Cancer Research, vol.69, issue.8, pp.3579-88, 2009.
DOI : 10.1158/0008-5472.CAN-08-3701

Z. Hunter, L. Xu, G. Yang, Y. Zhou, X. Liu et al., The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis, Blood, vol.123, issue.11, pp.1637-1683, 2014.
DOI : 10.1182/blood-2013-09-525808

P. Morel, A. Duhamel, P. Gobbi, M. Dimopoulos, M. Dhodapkar et al., International prognostic scoring system for Waldenström macroglobulinemia, pp.4163-70, 2009.
DOI : 10.1182/blood-2008-08-174961

M. Lionetti, M. Barbieri, K. Todoerti, L. Agnelli, S. Marzorati et al., Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation, Oncotarget, vol.6, issue.27, pp.24205-24222, 2015.
DOI : 10.18632/oncotarget.4434

B. Walker, E. Boyle, C. Wardell, A. Murison, D. Begum et al., Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma, Journal of Clinical Oncology, vol.33, issue.33, pp.3911-3931, 2015.
DOI : 10.1200/JCO.2014.59.1503

M. Affer, M. Chesi, W. Chen, J. Keats, Y. Demchenko et al., Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma, Leukemia, vol.92, issue.8, pp.1725-1760, 2014.
DOI : 10.1182/blood-2006-08-040410

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126852

B. Austen, G. Barone, A. Reiman, P. Byrd, C. Baker et al., mutations occur rarely in a subset of multiple myeloma patients, British Journal of Haematology, vol.32, issue.6, pp.925-958, 2008.
DOI : 10.1111/j.1365-2141.2008.07281.x

H. Avet-loiseau, M. Attal, P. Moreau, C. Charbonnel, F. Garban et al., Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome, Blood, vol.109, issue.8, pp.3489-95, 2007.
DOI : 10.1182/blood-2006-08-040410

G. Kaufman, M. Gertz, A. Dispenzieri, M. Lacy, F. Buadi et al., Impact of cytogenetic classification on outcomes following early high-dose therapy in multiple myeloma, Leukemia, vol.92, issue.3, pp.633-642, 2016.
DOI : 10.1200/JCO.2011.39.6820

S. Kazmi, M. Nusrat, H. Gunaydin, A. Cornelison, N. Shah et al., Outcomes Among High-Risk and Standard-Risk Multiple Myeloma Patients Treated With High-Dose Chemotherapy and Autologous Hematopoietic Stem-Cell Transplantation, Clinical Lymphoma Myeloma and Leukemia, vol.15, issue.11, pp.687-93, 2015.
DOI : 10.1016/j.clml.2015.07.641

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644689

A. Palumbo, H. Avet-loiseau, S. Oliva, H. Lokhorst, H. Goldschmidt et al., Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group, Journal of Clinical Oncology, vol.33, issue.26, pp.2863-2872, 2015.
DOI : 10.1200/JCO.2015.61.2267

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846284

S. Bezieau, M. Devilder, H. Avet-loiseau, M. Mellerin, D. Puthier et al., High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis, Human Mutation, vol.83, issue.3, pp.212-236, 2001.
DOI : 10.1002/humu.1177

R. Tiedemann, N. Gonzalez-paz, R. Kyle, R. Santana-davila, T. Price-troska et al., Genetic aberrations and survival in plasma cell leukemia, Leukemia, vol.156, issue.5, pp.1044-52, 2008.
DOI : 10.1038/leu.2008.4

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893817

H. Avet-loiseau, F. Gerson, F. Magrangeas, S. Minvielle, J. Harousseau et al., Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors, Blood, vol.98, issue.10, pp.3082-3088, 2001.
DOI : 10.1182/blood.V98.10.3082

L. Chiecchio, G. Dagrada, H. White, M. Towsend, R. Protheroe et al., in plasma cell leukemia, Genes, Chromosomes and Cancer, vol.108, issue.7, pp.624-660, 2009.
DOI : 10.1002/gcc.20670

L. Mosca, P. Musto, K. Todoerti, M. Barbieri, L. Agnelli et al., Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles, American Journal of Hematology, vol.118, issue.Suppl 1, pp.16-23, 2013.
DOI : 10.1002/ajh.23339

B. Royer, S. Minvielle, M. Diouf, M. Roussel, L. Karlin et al., Bortezomib, Doxorubicin, Cyclophosphamide, Dexamethasone Induction Followed by Stem Cell Transplantation for Primary Plasma Cell Leukemia: A Prospective Phase II Study of the Intergroupe Francophone du My??lome, Journal of Clinical Oncology, vol.34, issue.18, pp.2125-2157, 2016.
DOI : 10.1200/JCO.2015.63.1929

I. Cifola, M. Lionetti, E. Pinatel, K. Todoerti, E. Mangano et al., Whole-exome sequencing of primary plasma cell leukemia discloses heterogeneous mutational patterns, Oncotarget, vol.6, issue.19, pp.17543-58, 2015.
DOI : 10.18632/oncotarget.4028

H. Chang, S. Sloan, D. Li, and B. Patterson, Genomic aberrations in plasma cell leukemia shown by interphase fluorescence in situ hybridization, Cancer Genetics and Cytogenetics, vol.156, issue.2, pp.150-153, 2005.
DOI : 10.1016/j.cancergencyto.2004.05.004

M. Lionetti, M. Barbieri, M. Manzoni, S. Fabris, C. Bandini et al., Molecular spectrum of TP53 mutations in plasma cell dyscrasias by next generation sequencing: an Italian cohort study and overview of the literature, Oncotarget Feb, vol.8, issue.716, pp.21353-61, 2016.

W. Gonsalves, S. Rajkumar, R. Go, A. Dispenzieri, V. Gupta et al., Trends in survival of patients with primary plasma cell leukemia: a population-based analysis, Blood, vol.124, issue.6, pp.907-919, 2014.
DOI : 10.1182/blood-2014-03-565051

E. Katodritou, E. Terpos, C. Kelaidi, M. Kotsopoulou, S. Delimpasi et al., Treatment with bortezomib-based regimens improves overall response and predicts for survival in patients with primary or secondary plasma cell leukemia: Analysis of the Greek myeloma study group, American Journal of Hematology, vol.11, issue.2, pp.145-50, 2014.
DOI : 10.1002/ajh.23600