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Abstract 

The efficacy of checkpoint inhibitor therapy illustrates that cancer immunotherapy, which aims 

to foster the host immune response against cancer to achieve durable anticancer responses, can be 

successfully implemented in a routine clinical practice. However, a substantial proportion of patients 

does not benefit from this treatment, underscoring the need to identify alternative strategies to defeat 

cancer. Despite the demonstration in the 1990’s that the detection of danger signals, including the 

nucleic acids DNA and RNA, by dendritic cells (DCs) in a cancer setting is essential for eliciting 

host defense, the molecular sensors responsible for recognizing these danger signals and eliciting 

anticancer immune responses remain incompletely characterized, possibly explaining the 

disappointing results obtained so far upon the clinical implementation of DC-based cancer vaccines. 

In 2008, STING (Stimulator of Interferon Genes), was identified as a protein that is indispensable for 

the recognition of cytosolic DNA. The central role of STING in controlling anticancer immune 

responses was exemplified by observations that spontaneous and radiation-induced adaptive 

anticancer immunity was reduced in the absence of STING, illustrating the potential of STING-

targeting for cancer immunotherapy. Here, we will discuss the relevance of manipulating the STING 

signaling pathway for cancer treatment and integrating STING-targeting based strategies into 

combinatorial therapies to obtain long-lasting anticancer immune responses. 
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1. Introduction 

Immunologists have long considered that the primary function of the immune system is to 

distinguish between self and non-self. However, the idea that the immune system only reacts to 

foreign organisms and is tolerant to self was difficult to reconcile with observations that individuals 

could feature antibodies to self-antigens, including DNA. In 1994, Polly Matzinger challenged the 

so-called Self-Nonself theory and proposed instead that the driving force that makes the immune 

system effective lies on its ability to recognize danger(1). Among the immune cell types able to 

detect danger, dendritic cells (DCs) are of central importance because of their ability to capture, 

process, and present antigens to T cells(2).The detection of danger by DCs relies on their expression 

of pattern recognition receptors (PRRs), which permit sensing, integration and transmission of 

danger signals to induce adaptive immunity. PRRs include membrane C-type lectins, Toll-like 

receptors (TLRs), cytoplasmic NOD-like receptors (NLRs) and DNA/RNA sensors(3, 4). These 

receptors allow DCs to sense pathogensas well as endogenous danger signals released from dying 

cells such as DNA(5, 6). These recognition mechanisms in DCs can be harnessed to generate more 

efficient cancer vaccines. For instance, immunogenicity of peptide-protein vaccines can be enhanced 

by the addition of adjuvants. These include agonists of various TLRs such as TLR3 (poly I:C), TLR4 

(monophosphoryl lipid A; MPL), and TLR9 (CpG)(7-12).  

The functional properties of DCs prompted their use as a tool in cancer immunotherapy with 

the aim of inducing anticancer immune responses. Initially, the use of non-targeted short peptides 

captured by DCs in vivo demonstrated that MHC class I-restricted antigen-specific CD8
+
 T cell 

immunity could be mounted in patients with metastatic disease(13-15). The clinical successes 

wereyet limited, possibly because of the lack of CD4
+
 T cell help necessary for the generation of 

potent cytotoxic T lymphocytes(CTLs) and long-lived memory CD8
+
 T cells(16-18). While the 
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clinical ineffectiveness of dendritic cell-based vaccinesis attributable to the immunosuppressive 

cancer microenvironment that curtails the induction of anticancer immune responses(19, 20), the 

impressive successesof checkpoint inhibitor therapies, which result in 20-40% complete responses in 

some metastatic cancers, illustrate that cancer-induced immunosuppression can be pharmacologically 

overcome and anticancer immunity restored(21, 22). This altogether suggests that a better knowledge 

of DC biology is required to design DC vaccines able to reverse tumor-induced immunosuppression 

and elicit long-term anticancer responses. 

DNA is a potent immune stimulatory molecule widely used as vaccine adjuvant to drive 

immunity(4, 23).Initially, TLR9 was identified as the sensor for DNA. TLR9 recognizes pathogen 

derived CpG DNA to trigger innate immune signaling predominantly in plasmacytoid dendritic cells 

(pDCs)(24). TLR9 was also shown to be responsible for the detection of self-DNA, leading to 

autoimmunity(25, 26). While TLR9 was promoting immune signaling following its interaction with 

DNA in endosomes, the mechanisms responsible for the detection of cytosolic DNA were unclear 

until the characterization of STING (Stimulator of Interferon Genes).  

In 2008, STING was described as a transmembrane component of the endoplasmic reticulum 

(ER) essential for the production of type I IFN in fibroblasts, macrophages and dendritic cells (DCs) 

in response to cytoplasmic double-stranded DNA (dsDNA) as well as select DNA viruses and 

intracellular bacteria(27, 28). Interestingly, STING does not share homology with any known 

immunosensor and seems to represent a novel category of proteins involved in immune signaling in 

the context of cytosolic DNA presence, with an ability to link the majority of DNA sensors to 

immune signaling(29, 30). The detection of DNA indeed relies on a variety of cytoplasmic DNA 

sensors, including the cyclic GMP-AMP synthase (cGAS)(31). The discovery of cGAS in 2013 

actually represented a significant advance in our understanding of the signaling mechanisms 



 

 

underpinning innate DNA sensing. After binding to cytosolic DNA species from viruses, bacteria, or 

self -DNA from the nucleus or mitochondria, cGAS catalyzes the production of a type of cyclic 

dinucleotide (CDN) named cGAMP (cyclic GMP–AMP)(32, 33). Following binding to CDNs, 

STING activation leads to the phosphorylation of interferon regulatory factor 3 (IRF3) and nuclear 

factor-κB (NFκB) and the subsequent induction of cytokines and proteins, such as the type I 

interferons (IFN) that exert anti-pathogen activities(28, 34). STING was proposed to be activated by 

other cytoplasmic DNA sensors, including DAI, DHX9, DHX36, IFI204 (IFI16), DDX41, DXX60, 

Pol III, LRRFIP1, DNA-PK, cGAS and the DNA repair protein Mre11(35),that bind DNA directly 

and act upstream of STING to induce type I IFNs(30). This together defines STING as an adaptor 

protein that is essential for immune signaling following pathogen DNA detection by cytoplasmic 

DNA sensors (reviewed in(36)). Recent reports have also indicated that potent activators of the 

STING pathway may also include self-DNA that has leaked from the nucleus of the host cell, 

perhaps following cell division or as a consequence of DNA damage(37). STING is thus central to 

the induction of immune responses following DNA detection. 

In this review, we discuss recent findings illustrating the links between STING signaling in 

immune and cancer cells and cancer progression. We also describe emerging strategies that exploit 

the STING signaling pathway to enhance anticancer immune responses. We eventually highlight the 

relevance of modulating the STING pathway for cancer immunotherapy.  
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2. STING signaling in tumor promotion 

Studies have shown that STING activation could lead to inflammatory responses that promote 

tumorigenesis. Lemos and colleagues reported that DNA, apoptotic cells and STING agonists could 

induce STING-dependent tolerogenic responses. Mechanistically, they found that DNA sensing via 

the STING/IFN-β pathway induces indoleamine 2,3 dioxygenase (IDO), which catabolizes 

tryptophan to suppress effector and helper T-cell responses and activate regulatory T cells(38, 39) 

(Figure 1A). Moreover, IDO activity induced by STING in the tumor microenvironment promoted 

the growth of Lewis lung adenocarcinoma (LLC). In the LLC model, STING deficiency enhanced 

CD8
+
 T-cell infiltration and tumor cell killing while decreasing myeloid-derived suppressor cell 

infiltration and IL-10 production in the tumor microenvironment(40).In a model of cutaneous skin 

tumors induced by 7,12-dimethylbenz[]anthracene (DMBA), a potent carcinogen causing DNA 

damage, STING-driven inflammation also promoted tumor growth. In this context, DNA damage 

resulted in the leakage of DNA into the cytosol and the intrinsic chronic activation of the STING 

pathway was associated to the recruitment of phagocytes, inflammation and tumor development (41) 

(Figure 1B). Accordingly, STING deficiency protected against DMBA-induced tumorigenesis(41).  

  



 

 

3. STING in spontaneous anti-cancer immunity 

While the findings discussed above suggest that STING-driven chronic inflammation leads to 

cancer, STING-dependent DNA detection was also found to trigger anticancer immunity(29, 31). 

Importantly, activation of the STING pathway was correlated to the induction of a spontaneous 

antitumor T cell response involving the expression of Type I interferon (IFN) genes(29, 31). These 

observations are in line with several studies identifying type I IFN as critical mediator in the 

spontaneous priming of antitumor CD8
+
T cell responses(42, 43). Accordingly, Woo and colleagues 

reported that the spontaneous CD8
+
 T cell priming against tumors was defective in mice lacking 

STING. Moreover, STING-deficient mice are unable to generate efficient antitumor T cell responses 

and prevent melanoma tumor growth(44) (Figure 2A). STING protein is predominantly expressed in 

macrophages, T cells, DCs endothelial cells and select fibroblasts and epithelial cells(27, 28, 45-47). 

However, in the tumor microenvironment, the main sources of IFN-β are DCs and endothelial 

cells(48, 49). One hypothesis to account for these observations is that CD8α
+
 DCs engulf necrotic 

tumor cells, and the tumor cell-derived DNA triggers STING signaling in DCs(44, 50-52). The 

resultant type I IFNs, functioning in a paracrine or autocrine manner, enhance DCs cross-

presentation activity and T cell activation. Similarly, in a mouse model of de novo gliomas, CD11b
+
 

brain-infiltrating leukocytes (BIL) are the main source of type I IFNs. Consequently, glioma-bearing 

mice with a single nucleotide variant (T596A) of STING that functions as a null allele and fails to 

produce detectable protein, showed shorter survival and lower expression levels of IFNs compared 

with wild-type mice. Furthermore, BILs of those mice showed increased CD11b
+
 Gr-1

+
 immature 

myeloid suppressor and CD25
+
 Foxp3

+
 regulatory T cells (Treg) and decreased IFNγ-producing 

CD8
+
 T cells(53). Accordingly, CD4

+
 and CD8

+
 T cells that received direct type I IFN signals 

showed lesser degrees of regulatory activity and increased levels of antitumor activity, 

respectively(53, 54).  
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4. STING in intestinal wound repair and therapy-induced anti-cancer immunity 

 

The anticancer effects of STING activation were also demonstrated in a model of colitis-

associated carcinogenesis (CAC). CAC can be experimentally induced by carcinogens and inflam-

matory agents such as azoxymethane (AOM) and dextran sulfate sodium (DSS)(52, 55). DNA dam-

age induced by these agents resulted in the leakage of DNA into the cytosol and activation of the 

intrinsic STING pathway in intestinal cells. This event triggered wound repair cytokine expression 

such as IL-1β, IL-18 as well as IL-22 binding protein(56-59). This series of events contributed to 

tissue protection and prevented cancer development. Thus, STING signaling activation has important 

protective effects against colon cancer (Figure 2B). 

Recent studies have shown that the STING pathway is also implicated in radiation-induced an-

titumor T cell responses(50). Antitumor effects of radiation were previously shown to be dependent 

on type I IFN signaling(60). Moreover, radiation induces cell stress and causes excess DNA breaks, 

indicating that nucleic acid sensing could account for the induction of type I IFNs upon radiation. 

Accordingly, the induction of IFN-β in tumors was reduced in the absence of STING in the host after 

radiation. In line with the immunogenicity of IFNs, the anticancer efficacy of radiation therapy was 

impaired in STING-deficient mice compared to controls, suggesting that STING-dependent cytosolic 

DNA sensing is critical for the therapeutic effect of radiation in vivo(50).STING was further shown 

to be essential for tumor-infiltrating DCs type I IFN production after radiation. The functional ability 

of DCs to cross-present antigen was augmented by the stimulation of irradiated-tumor cells com-

pared to nonirradiated-tumor cells, whereas the deficiency of STING in DCs resulted in their inabili-

ty to cross-prime CD8
+ 

T cells(50). Thus a component provided by irradiated-tumor cells, presuma-

bly DNA, somehow gains access to the cytosolic DNA sensing pathway to trigger STING-dependent 

type I IFN induction and anticancer immunity(50). 



 

 

STING is a DNA sensor located in the cytosol of the cell. This observation raises a major 

question concerning the DNA immunogenicity and suggests that the presence of DNA outside of the 

nucleus is the key danger signal for STING-dependent immune activation. As discussed above, the 

host immune system is able to initiate innate immune sensing of tumor DNA leading to the induction 

of a STING-dependent adaptive immune response against tumors.  Mechanistically, it is unknown 

how DNA is transferred to APCs cytosol from tumor cells in order to activate the STING pathway. It 

was suggested that CD8α
+
 DCs engulf necrotic tumor cells, and the tumor cell-derived DNA triggers 

STING signaling in the DC(44, 50, 51). In line with this hypothesis, in vitro incubation of DCs with 

tumor-cell-derived DNA led to IFN-β production and DC activation via the cGAS-STING-IRF3 

axis(44). To determine whether tumor-derived DNA can be transferred to host APCs within the 

tumor microenvironment and lead to STING activation, B16 tumor cells stained in vitro with DNA-

intercalating dye DRAQ5 were implanted in vivo. The analysis of tumor infiltrating DCs revealed the 

presence of CD45
+
CD11c

+
 cells positive for staining with tumor-cell-derived DRAQ5. In addition, 

multiple tumor cell lines were also labeled with the nucleotide analog EdU prior to injection into 

mice. Similar to DRAQ5, EdU staining was observed on a large population of tumor-infiltrating 

CD45
+
CD11c

+
 cells, arguing that this is a general phenomenon. Moreover, by a co-staining 

approach, using the nuclear and lysosomal markers Lamin A and LAMP-1, the authors showed that 

the majority of the signal did not colocalize with either marker suggesting that the DNA label 

detected in host APCs appears to be localized in the cytosol, which would provide access to the 

STING pathway for engagement. Subsequently, the ectopic presence of tumor-derived DNA in the 

cytosol of DCs correlated with STING pathway activation illustrated by IRF-3 translocation to the 

nucleus and expression of IFN-β (Figure 2A)(44). Another study has shown that cGAS responds to 

irradiated-murine and -human tumor cells and initiates type I IFN to enhance DC cross-priming 

activity. Thus, DNA from irradiated-tumor cells somehow gains access to the cytosolic DNA sensing 
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pathway to trigger STING-dependent type I IFN induction. The priming ability of DCs in response to 

irradiated-tumor cells was not impaired by the presence of DNase I, suggesting that DCs do not 

engulf free DNA fragments. By contrast, the addition of latrunculin B, an actin polymerization 

inhibitor, in the coculture of DCs and tumor irradiated cells led to a dramatic reduction in the ability 

of DCs to induce cross-priming suggesting that DNA delivery might be mediated by direct cell-cell 

contact. Production of IFN-β by DCs in response to irradiated-tumor cells was also greatly decreased 

by application of a physical barrier or an actin polymerization inhibitor. These results suggest that 

DNA from irradiated-tumor cells is sensed by host cGAS during a cell-cell contact-mediated 

process(50).Altogether, these results show that STING activation can trigger DNA-dependent 

anticancer immune responses. 

 

 

 

  



 

 

5. STING expression shapes cancer cell immunogenicity  

 

While the STING pathway has been mostly characterized in antigen presenting cells (APCs) in 

the tumor microenvironment, tumor cells, T cells, endothelial cells and fibroblasts all have been 

observed to produce type I IFN production upon stimulation with STING agonists ex vivo(61). The 

relevance of STING signaling in tumor cells was recently underscored. The oncogenes E7 and E1A 

expressed by DNA tumor viruses inhibit the cGAS-STING pathway and prevent innate immune 

signaling(62) (Figure 3A). Barber and colleagues also showed that STING signaling is inhibited in a 

wide variety of cancers. STING and/or cGAS expression is silenced through epigenetic 

hypermethylation processes. As a consequence of STING signaling loss, cancer cells featured 

impaired type I IFN secretion in response to DNA(63) (Figure 3B). Another study in lymphoma 

cells showed that cytosolic DNA contributes to the expression of retinoic acid early transcript 1 

(RAE1) in response to DNA damage(64). The induction of RAE1 relies on a STING-dependent 

DNA sensor pathway involving the effector molecules TBK1 and IRF3. RAE1 is a ligand for the 

immunoreceptor NKG2D originally identified in natural killer cells that recognizes ligands that are 

upregulated on tumor cells. Expression of NKG2D ligands is activated by the DNA damage 

response, which is often activated constitutively in cancer cells, enabling their detection and killing 

by natural killer cells as a mechanism of immunosurveillance(65)(Figure 3C). The relevance of 

STING-driven enhancement of cancer immunogenicity was further shown in prostate cancer cells. In 

an elegant study, Ho et al. showed that the cleavage of genomic DNA by the endonuclease MUS81 

was responsible for cytosolic DNA accumulation in prostate cancer cells, leading to their type I IFN-

dependent rejection(66).  These studies altogether demonstrate that STING expression by tumor cells 

can shape their immunogenicity and make a decisive contribution to cancer cell immunosurveillance 

(Figure 3D).  
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6. STING in cancer immunotherapy  

 

6.1.Pioneering studies for pharmacological use of STING agonists in immunotherapy 

The first pharmacological STING agonist was initially used as an anticancer drug long before 

the discoveryof STING. Flavone acetic acid (FAA) has potent antitumor activity against murine 

colon tumors (Table 1)(67). The further characterization of FAA as vascular disrupting agent led to 

testing its clinical potential. However, FAA failed in a phase I clinical trial and showed no activity in 

rat tumor models implying possible species specificity issues(68). To obtain compounds able to 

induce tumor hemorrhagic necrosis, the molecular structure of FAA was modified giving rise to 5,6-

dimethyllxanthenone-4-acetic acid (DMXAA), which not only showed activity against a rat 

mammary carcinoma but also featured IFNs and TNF-dependent anticancer functions in different 

mouse models(69, 70). Unfortunately Phase III trials in non-small-cell lung cancer (NSCLC) patients 

failed to confirm the anti-tumor effect of DMXAA in humans(71). Further molecular 

characterization revealed that the mechanism underlying DMXAA-induced type I IFNs and TNF-α 

secretion and anticancer activity wasSTING dependent(72). Importantly, structural studies of mouse 

and human STING showed that only mouse STING binds and signals in response to DMXAA. This 

species-specific DMXAA recognition by STING likely explains the negative results observed in 

phase III clinical trial in humans (Table 1)(73-75). 

6.2. Cyclic dinucleotides (CDNs) STING agonists as potent anti-cancer agents in mice 

As previously discussed, CDNs are second messengers able to activate the STING pathway, 

leading to type I IFNs and pro-inflammatory cytokine expression(76). In mice, cyclic diguanylate 

monophosphate (c-di-GMP) showed anti-tumor effects in the 4T1 metastatic breast cancer model 

when daily injected at low doses after immunization with an attenuated Listeria monocytogenes 

(LM)-based vaccine (Table 1 and Figure 4A)(77). These observations were confirmed in the GL261 

glioma murine modeland in the B16 melanoma bearing mice treated with c-di-GMP associated with 



 

 

the TRIVAX vaccine, a mix of synthetic CD8 T cell epitopes (Table 1 and Figure 4B)(77, 78). A 

recent study using the 1000 Human Genome Project database allowed the identification of five 

human STING (hSTING) alleles named WT, REF, HAQ, AQ and Q. This variability on hSTING 

gene does not exist in mice, explaining the divergence concerning STING activation upon different 

CDNs treatments. Indeed, some of these natural variants of hSTING are poorly responsive to 

canonical CDNs(79). Thus, bacterial-derived canonical CDNs molecules may not be suitable for 

clinical development(80, 81). 

Cyclic GMP-AMP (cGAMP) is also a natural STING ligand(31). Importantly, there are 

hSTING variants poorly responsive to cGAMP but normally responsive to DNA and cGAS 

signaling. In an effort to explain this paradox, Diner and colleagues found that the cGAS product is 

actually a noncanonical CDN [G(2′-5′)pA(3′-5′)p], which contains a single 2′-5′ phosphodiester 

bond. These results indicate that hSTING variants are able to distinguish conventional (3′-5′) CDNs, 

mainly produced by bacteria, from the noncanonical CDNs produced by mammalian cGAS(80).Like 

c-di-GMP and DMXAA, studies demonstrated CD8
+
T and type I IFNs dependent antitumor effect of 

cGAMP, in melanoma and colon cancer models in mice(48). It was also demonstrated that STING 

was required for type I IFN-dependent antitumor effects of ionizing-radiation with an enhanced 

antitumor immunity with cGAMP co-treatment(50). Intratumorally administrated cGAMP after 

radiation effectively reduced tumor burden compared to radiation alone in mice, showing that 

cGAMP treatment potentiates the effect of radiation(50) (Figure 4C). In 2016, Li et al. confirmed 

the potent antitumor effect of cGAMP in CT26 colon adenocarcinoma bearingmice. The antitumor 

activity of cGAMP relied onDC activation and CD8
+
T cell cross-priming. The improved antitumor 

activity and the reduced toxicity of 5-FU in combination with cGAMP injection strengthened the 

therapeutic potential of cGAMP for applications in cancer immunotherapy(82) (Table 1 and Figure 

4D).Woo and colleagues also tested the contribution of STING signaling in context of combined 
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treatment with checkpoint inhibitors and found that the therapeutic effect of CTLA-4 and anti-PD-L1 

mAbs was lost in STING-deficient mice(44). Their results suggest that the host STING pathway 

plays a critical role in the therapeutic efficacy of cancer immunotherapies and provide impetus to 

deliberately activate STING using STING agonists for treating cancer. Thus, manipulation of STING 

signaling can be successfully integrated in the context of combination therapies(Table 1). 

In addition to its established role as a signaling adaptor in the response to cytosolic DNA, 

STING was proposed to function as a direct sensor able to directly bind different DNA species or 

CDNs(76, 83). Biotin pull-down assays using in vitro transcribed STING and different biotinylated 

DNA species showed that STING directly binds ssDNA and dsDNA without a requirement for 

accessory molecules(83). Moreover, using radiolabeled c-di-GMP
32 

binding assays, Burdette and 

colleagues shown that STING can also directly and specifically binds CDNs(76) in contrast to a 

study showing that c-di-GMP was detected by DDX41(84). To unveil the underlying mechanism, 

Parvatiyar and colleagues performed binding assays to determine the affinities of c-di-GMP for 

DDX41 and for STING in parallel. Physiologically, binding of c-di-GMP with endogenous DDX41 

turned out to be greater than the association between c-di-GMP and endogenous STING. 

Accordingly, c-di-GMP bound to purified recombinant DDX41 with stronger affinity than purified 

recombinant STING in pulldown binding assays. These findings thus suggest that even though 

STING can directly bind c-di-GMP, DDX41 is the major sensor of c-di-GMP, operating upstream of 

STING to facilitate downstream signaling and type I IFN activation(84). In line with this work, 

Zhang and colleagues found that c-di-GMP bound to STING with a Kd of 1.21 μM(85). 

Interestingly, both natural cGAMP and synthetic 2′3′-cGAMP bound to STING with a high 

affinity(85). Indeed, the Kd of 2′3′-cGAMP was nearly 300 fold lower than those of c-di-GMP, 3′2′-

cGAMP and 3′3′-cGAMP, and around 75 fold lower than that of 2′2′-cGAMP. In addition, unlike the 

binding of c-di-GMP, which is an exothermic process, the binding of natural and 2′3′-cGAMP to 



 

 

STING was endothermic, suggesting that the energy may be used for STING conformational 

change(85). The authors further showed that 2′3′- cGAMP and other cGAMP isomers are much more 

potent than c-di-GMP in inducing IFNβ in cells(85). Overall, these resultsillustrate the potential to 

design cGAMP isomers with a potentially enhanced ability to trigger type I IFN secretion, thereby 

resulting in more potent anticancer immune responses. 

 

6.3. STING agonists for cancer treatment in humans 

 In 2014, Li discovered an ecto-nucleotide pyrophosphatase/phosphodiesterase enzyme named 

ENPP1(86). This enzyme is a 2'3'cGAMP hydrolizing protein, giving rise to a hydrolysis-resistant 

bisphosphothioate analog of 2′3′-cGAMP named 2′3′- cG
s
A

s
MP. This improved hSTING agonist 

could have higher potency for cancer therapy as vaccine adjuvant in humans(86). In the light of Li’s 

work a new synthetic CDN, ML RR-S2 CDA, with high stability, high anti-tumor effect and able to 

activate all hSTING variants, has been synthesized. This improved synthetic CDN contains, like 

endogenous human 2'3' cGAMP, a phosphate bridge configuration with both 2′-5′ and 3′-5′ linkages, 

called “mixed linkage” (ML). This ML endows this molecule with increased binding affinity to 

STING. Moreover, like the 2′3′- cG
s
A

s
MP, the bisphosphothioate analog of ML-CDA (ML RR-S2 

CDA) is protected against ENPP1 hydrolysis and has higher ability for STING stimulation. 

Accordingly, this new synthetic CDNs agonist has shown potent anti-tumor efficiency in various 

tumor models like B16F10 melanoma, 4T1 mammary adenocarcinoma and CT26 colon carcinoma 

dependent on STING and CD8
+
T priming. ML RR-S2 CDA also induced the establishment of long-

term immune memory(87). This agonist has also been used in combination with other 

immunomodulatory agents. In 2015, Fu synthetized STINGVAX, a cell based cancer vaccine 

combining synthetic CDNs, used in Corrales study including ML RR-S2 CDA, with granulocyte-

macrophage colony-stimulating factor (GM-CSF)–producing cells (Table 1 and Figure 4F). The 
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high efficiency of this treatment in B16 melanoma bearing mice could also be increased upon 

neutralization of the PD-1/PD-L1 pathway(88) (Figure 4E). Similar results were obtained in a 

mouse model of head and neck cancer(89). A clinical trial studying the safety and efficacy of ML 

RR-S2 CDA (also called MIW815 or ADU-S100) in patients with advanced/metastatic solid tumors 

or lymphomas (ClinicalTrials.gov Identifier: NCT02675439) is actually ongoing(Table 1). Despite 

all this encouraging evidence showing the rationale for implementing STING targeting therapy into 

the clinic, further characterization of the STING pathway is necessary for the development of 

tailored treatments relying on the modulation of the STING pathway.  

  



 

 

 

Conclusion 

 

STING protein is essential for cytosolic DNA sensing in mammal cells. Although the precise 

mechanism of action of STING is currentlynot fully understood, STING acts as a scaffold protein for 

the assembly of multiprotein complexes driving type I IFN and inflammatory cytokine production. 

An increasing amount of evidence indicates that intratumoral STING agonists are promising cancer 

therapeutic agents. However, numerous questions still remain unanswered. It is still unclear how 

tumor derived DNA gains access to host APCs following tumor cell death. The role of STING 

signaling in the efficacy of other cancer therapeutics in addition to radiotherapy, including 

chemotherapy and kinase inhibitors, remains to be characterized. Little is also known about STING 

pathway regulation and the characterization of negative feedback mechanisms will facilitate the 

establishment of more accurate strategies to regulate the STING signaling pathway for therapeutic 

use.Eventually, we believe that STING axis activationand its functional consequences in different 

cell subsets within the tumor microenvironment need deeper characterization. CD4 and CD8 T cells 

actively participate in shaping antitumor immunity in the tumor microenvironment(90-92). 

Interestingly STING is expressed at high levels in lymphoid tissues and particularly, in T 

lymphocytes suggesting that STING might be an active player in T cell signaling cascades (our 

unpublished data and (93, 94)). Further investigation will be required to address this hypothesis, but 

even if we assume that STING-mediated induction of IFNs/ISG in T cells is not physiologically 

relevant in norm(95), it nevertheless becomes of high importance for the study of high affinity 

synthetic agonists of STING for their subsequent use as anticancer therapeutic agents. 
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Figure legends 

 

Figure 1: Involvement of STING in the promotion of tumor growth  

A) The stimulation of the STING signaling pathway by DNA elicits IDO dependent inhibition of 

effector T cells while promoting regulatory T cell activity resulting in enhanced tumor growth(38-

40).  

B) The leakage of DNA induced by 7,12-dimethylbenz[]anthracene(DMBA), a potent carcinogen, 

can result in intrinsic chronic activation of STING signaling which drives phagocyte recruitment 

inflammation and tumor growth(41). 

 

Figure 2: STING-driven cytokine secretion can activate adaptive immunity and prevent tumor 

growth  

A) Tumor derived-DNA recognition by STING, leads to IFN/ secretion by CD8
+
 DC, increased 

cross-priming and T cell activation(44) 

B) DNA damage induced by carcinogens, such as azoxymethane (AOM) or dextran sulfate sodium 

(DSS), triggers activation of the STING signaling pathway, resulting in IL-18 and IL-1 cytokine 

expression and favoring wound repair and tumor growth control(59). 
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Figure 3: Cell-intrinsic effect of STING activation in tumor cells 

The functionality of the STING signaling pathway can be altered in tumors. 

A) Oncolytic viruses like HPV or adenoviruses drive E7 or E1A oncoprotein expression. These pro-

teins act as STING antagonists able to inhibit the STING pathway, possibly leading to their evasion 

from immune cells(62) 

B) Spontaneous epigenetic silencing of STING signaling components is also observed in various 

cancer types(63) 

C) Tumor DNA damage leads to Natural Killer cell activation through STING-dependent expression 

of RAE1(64). 

D) MUS81 endonuclease induces genomic DNA cleavage and accumulation followed by STING, 

type I IFN and CD8 T cell dependent rejection of tumor cells(66) 

 

Figure 4: Therapeutic strategies combining STING targeting with immunomodulation and anticanc-

er therapies 

The addition of STING agonists was shown to enhance the anticancer activity of the following anti-

cancer therapies and immunomodulation strategies that elicit CD8 T cell dependent anticancer res-

ponses:  

A) Vaccination using Tumor Associated Antigen expressing attenuated Listeria Monocytogenes(77) 

B) Vaccination using Trivax (anti-CD40 as a co-stimulation signal, Poly(I:C) as adjuvant and peptide 

mix)(78) 

C) Radiotherapy(50) 

D) Chemotherapy, such as 5-Fluorouracil(82) 

E) Checkpoint inhibitors, such as anti-PD1(88) 

F) Vaccination using irradiated GM-CSF secreting tumor cells(88) 
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Table 1

STING 

agonist

Co-treatment Model References

Flavone Acetic

Acid (FAA)

- Murine MC38 Colon model
Plowman and al, 1986, 

Cancer Treat Rep

-

Phase I Clinical and

Pharmacokinetic Trial of 

LM985 (Flavone Acetic Acid 

Ester) and Flavone Acetic Acid 

in patients with advanced cancer

Kerr and al, 1986,

Cancer Res

Havlin and al, 1991, J 

Natl Cancer Inst

DMXAA 

(ASA404)
-

Phase III clinical trial in patient 

with non–small-cell lung cancer

Lara and  al, 2011, J 

Clin Oncol

ClinicalTrials.gov 

Identifier:

NCT00662597

C-di-GMP

- Murine 4T1 mammary model
Chandra and al, 2014, 

Cancer Immunol Res

- Murine GL261 glioma model
Ohkuri, 2015, 

Oncoimmunology

TRIVAX vaccine 

association
Murine B16 melanoma model

Wang and Celis, 2015, 

Cancer Immunol

Immunother

cGAMP

-

Murine B16 melanoma and 

MC38 Colon model
Demaria and al, 2015,

PNAS USA

ionizing-radiation 

co-treatment
Murine MC38 Colon model

Deng and al, 2014, 

Immunity

Alone and 5-FU co-

treatment
Murine CT26 colon model

Li and al, 2016, Sci

Rep

Disodium dithio-

(RP, RP)-

[cyclic[A(2′,5′)p

A(3′,5′)p]], 

(ML RR-S2 

CDA)

-

Murine B16-F10 melanoma,

4T1 mammary and CT26 colon 

model

Corrales and al, 2016, 

Cell Rep

GM-CSF producing

cells association

(STINGVAX)

Murine B16 melanoma model
Fu and al, 2015, Sci

Transl Med

STINGVAX and 

anti-PD1 co-

treatment

Murine B16 melanoma model Fu and al, 2015, Sci

Transl Med

-

Phase I clinical trial in patients 

with advanced/metastatic solid 

tumors or lymphomas

ClinicalTrials.gov 

Identifier : 

NCT02675439
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