I. National-de-la-santé-et-de-la-recherche-médicale, U1048, Institute of Metabolic and Cardiovascular Diseases?I2MC, 1 avenue Jean Poulhès, B.P. 8422531432 Toulouse Cedex 4, France. 2 Université Toulouse III Paul-Sabatier, Biomedical Sciences Research Center 'Alexander Fleming', Fleming 34, 16672 Vari, Greece. 8 Service de Néphrologie?Médecine Interne?Hypertension Pédiatrique, p.31059, 10551.

F. Toulouse, 10 Unité de recherche clinique pédiatrique, Module plurithémathique pédiatrique du Centre d'Investigation Clinique Toulouse 1436 Hôpital des enfants 330 avenue de grande bretagne, Diabète athérothrombose Thérapies Réunion Océan Indien, CYROI, 2, rue Maxime Rivière, 97490 Sainte Clotilde, p.31059, 31059.

B. Warady and V. Chadha, Chronic kidney disease in children: the global perspective, Pediatric Nephrology, vol.17, issue.12, pp.1999-2009, 2007.
DOI : 10.1007/s00467-006-0410-1

R. Chevalier, Congenital Urinary Tract Obstruction: The Long View, Advances in Chronic Kidney Disease, vol.22, issue.4, pp.312-321, 2015.
DOI : 10.1053/j.ackd.2015.01.012

C. Chang, B. Mcdill, J. Neilson, H. Joist, J. Epstein et al., Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery, Journal of Clinical Investigation, vol.113, issue.7, pp.1051-1059, 2004.
DOI : 10.1172/JCI20049DS1

J. Klein, J. Gonzalez, M. Miravete, C. Caubet, R. Chaaya et al., Congenital ureteropelvic junction obstruction: human disease and animal models, International Journal of Experimental Pathology, vol.14, issue.Suppl. 2, pp.168-92, 2011.
DOI : 10.1111/j.1365-2613.2010.00727.x

URL : https://hal.archives-ouvertes.fr/inserm-00550883

R. Chevalier, Prognostic factors and biomarkers of congenital obstructive nephropathy, Pediatric Nephrology, vol.330, issue.8, pp.1411-420, 2015.
DOI : 10.1007/s00441-015-2273-x

S. Waikar, R. Betensky, and J. Bonventre, Creatinine as the gold standard for kidney injury biomarker studies?, Nephrology Dialysis Transplantation, vol.24, issue.11, pp.3263-3268, 2009.
DOI : 10.1093/ndt/gfp428

B. Chertin, A. Pollack, D. Koulikov, R. Rabinowitz, D. Hain et al., Conservative Treatment of Ureteropelvic Junction Obstruction in Children with Antenatal Diagnosis of Hydronephrosis: Lessons Learned after 16 Years of Follow-Up, European Urology, vol.49, issue.4, pp.734-742, 2006.
DOI : 10.1016/j.eururo.2006.01.046

R. Chevalier, M. Forbes, C. Galarreta, and B. Thornhill, Responses of proximal tubular cells to injury in congenital renal disease: fight or flight, Pediatric Nephrology, vol.100, issue.4, pp.537-578, 2014.
DOI : 10.1007/s00467-013-2590-9

C. Lacroix, C. Caubet, A. Gonzalez-de-peredo, B. Breuil, D. Bouyssie et al., Label-free Quantitative Urinary Proteomics Identifies the Arginase Pathway as a New Player in Congenital Obstructive Nephropathy, Molecular & Cellular Proteomics, vol.13, issue.12, pp.3421-3455, 2014.
DOI : 10.1074/mcp.M114.040121

M. Sergio, C. Galarreta, B. Thornhill, M. Forbes, and R. Chevalier, The Fate of Nephrons in Congenital Obstructive Nephropathy: Adult Recovery is Limited by Nephron Number Despite Early Release of Obstruction, The Journal of Urology, vol.194, issue.5, pp.1463-72, 2015.
DOI : 10.1016/j.juro.2015.04.078

S. Hammond, An overview of microRNAs, Advanced Drug Delivery Reviews, vol.87, pp.3-14, 2015.
DOI : 10.1016/j.addr.2015.05.001

M. Almeida, R. Reis, and G. Calin, MicroRNA history: Discovery, recent applications, and next frontiers, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.717, issue.1-2, pp.1-8, 2011.
DOI : 10.1016/j.mrfmmm.2011.03.009

URL : http://repositorium.sdum.uminho.pt/bitstream/1822/18666/1/Almeida%20MI_Mutation%20Res%20Fund%20%26%20Molec%20Mech%20Mutag-pp%202011.pdf

E. Van-rooij and S. Kauppinen, Development of microRNA therapeutics is coming of age, EMBO Molecular Medicine, vol.6, issue.7, pp.851-64, 2014.
DOI : 10.15252/emmm.201100899

M. Esteller, Non-coding RNAs in human disease, Nature Reviews Genetics, vol.39, issue.12, pp.861-74, 2011.
DOI : 10.1038/nrg3074

F. Schena, G. Serino, and F. Sallustio, MicroRNAs in kidney diseases: new promising biomarkers for diagnosis and monitoring, Nephrology Dialysis Transplantation, vol.29, issue.4, pp.755-63, 2014.
DOI : 10.1093/ndt/gft223

T. Papadopoulos, J. Belliere, J. Bascands, E. Neau, J. Klein et al., miRNAs in urine: a mirror image of kidney disease?, Expert Review of Molecular Diagnostics, vol.15, issue.3, pp.361-74, 2015.
DOI : 10.1586/14737159.2015.1009449

A. Zarjou, S. Yang, E. Abraham, A. Agarwal, and G. Liu, Identification of a microRNA signature in renal fibrosis: role of miR-21, AJP: Renal Physiology, vol.301, issue.4, pp.793-801, 2011.
DOI : 10.1152/ajprenal.00273.2011

B. Chau, C. Xin, J. Hartner, S. Ren, A. Castano et al., MicroRNA-21 Promotes Fibrosis of the Kidney by Silencing Metabolic Pathways, Science Translational Medicine, vol.4, issue.121, pp.121-118, 2012.
DOI : 10.1126/scitranslmed.3003205

F. Glowacki, G. Savary, V. Gnemmi, D. Buob, C. Van-der-hauwaert et al., Increased Circulating miR-21 Levels Are Associated with Kidney Fibrosis, PLoS ONE, vol.25, issue.2, p.58014, 2013.
DOI : 10.1371/journal.pone.0058014.t002

URL : http://doi.org/10.1371/journal.pone.0058014

Y. He, C. Huang, X. Lin, and J. Li, MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases, Biochimie, vol.95, issue.7, pp.1355-1364, 2013.
DOI : 10.1016/j.biochi.2013.03.010

B. Wang, R. Komers, R. Carew, C. Winbanks, B. Xu et al., Suppression of microRNA-29 Expression by TGF-??1 Promotes Collagen Expression and Renal Fibrosis, Journal of the American Society of Nephrology, vol.23, issue.2, pp.252-65, 2012.
DOI : 10.1681/ASN.2011010055

W. Qin, A. Chung, X. Huang, X. Meng, D. Hui et al., TGF-??/Smad3 Signaling Promotes Renal Fibrosis by Inhibiting miR-29, Journal of the American Society of Nephrology, vol.22, issue.8, pp.1462-74, 2011.
DOI : 10.1681/ASN.2010121308

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148701

D. Bartel, MicroRNAs, Cell, vol.116, issue.2, pp.281-97, 2004.
DOI : 10.1016/S0092-8674(04)00045-5

URL : https://hal.archives-ouvertes.fr/hal-00369966

R. Denzler and M. Stoffel, The Long, the Short, and the Unstructured: A Unifying Model of miRNA Biogenesis, Molecular Cell, vol.60, issue.1, pp.4-6, 2015.
DOI : 10.1016/j.molcel.2015.09.014

M. Bartram, M. Hohne, C. Dafinger, L. Volker, M. Albersmeyer et al., Conditional loss of kidney microRNAs results in congenital anomalies of the kidney and urinary tract (CAKUT), Journal of Molecular Medicine, vol.137, issue.6, pp.739-787, 2013.
DOI : 10.1007/s00109-013-1000-x

S. Griffiths-jones, R. Grocock, S. Van-dongen, A. Bateman, and A. Enright, miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Research, vol.34, issue.90001, pp.140-144, 2006.
DOI : 10.1093/nar/gkj112

URL : http://doi.org/10.1093/nar/gkj112

J. Zhu, R. Chen, Y. Fu, Q. Lin, S. Huang et al., Smad3 Inactivation and MiR-29b Upregulation Mediate the Effect of Carvedilol on Attenuating the Acute Myocardium Infarction-Induced Myocardial Fibrosis in Rat, PLoS ONE, vol.22, issue.9, p.75557, 2013.
DOI : 10.1371/journal.pone.0075557.s004

H. Chen, X. Zhong, X. Huang, X. Meng, Y. You et al., MicroRNA-29b Inhibits Diabetic Nephropathy in db/db Mice, Molecular Therapy, vol.22, issue.4, pp.842-53, 2014.
DOI : 10.1038/mt.2013.235

Y. Liu, B. Yin, C. Zhang, L. Zhou, and F. J. , Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc, Biochemical and Biophysical Research Communications, vol.417, issue.1, pp.371-376, 2012.
DOI : 10.1016/j.bbrc.2011.11.119

Q. Dong, P. Meng, T. Wang, W. Qin, W. Qin et al., MicroRNA Let-7a Inhibits Proliferation of Human Prostate Cancer Cells In Vitro and In Vivo by Targeting E2F2 and CCND2, PLoS ONE, vol.5, issue.4, p.10147, 2010.
DOI : 10.1371/journal.pone.0010147.s002

Y. Wang, T. Ren, Y. Cai, and X. He, Gene Expression, Cancer Biotherapy & Radiopharmaceuticals, vol.28, issue.2, pp.131-138, 2013.
DOI : 10.1089/cbr.2012.1307

URL : https://hal.archives-ouvertes.fr/hal-01499736

J. Han, L. Wang, X. Wang, and K. Li, Downregulation of Microrna-126 Contributes to Tumorigenesis of Squamous Tongue Cell Carcinoma via Targeting KRAS, Medical Science Monitor, vol.22, pp.522-531, 2016.
DOI : 10.12659/MSM.895306

D. Chen, Y. Li, Z. Yu, Z. Su, W. Yu et al., Upregulated microRNA-16 as an oncogene in renal cell carcinoma, Molecular Medicine Reports, vol.12, issue.1, pp.1399-404, 2015.
DOI : 10.3892/mmr.2015.3496

E. Papadopoulos, G. Yousef, and A. Scorilas, Cytotoxic activity of sunitinib and everolimus in Caki-1 renal cancer cells is accompanied by modulations in the expression of apoptosis-related microRNA clusters and BCL2 family genes, Biomedicine & Pharmacotherapy, vol.70, pp.33-40, 2015.
DOI : 10.1016/j.biopha.2014.12.043

K. Makino, M. Jinnin, A. Hirano, K. Yamane, M. Eto et al., The Downregulation of microRNA let-7a Contributes to the Excessive Expression of Type I Collagen in Systemic and Localized Scleroderma, The Journal of Immunology, vol.190, issue.8, pp.3905-3920, 2013.
DOI : 10.4049/jimmunol.1200822

N. Chen, K. Kiattisunthorn, O. Neill, K. Chen, X. Moorthi et al., Decreased MicroRNA Is Involved in the Vascular Remodeling Abnormalities in Chronic Kidney Disease (CKD), PLoS ONE, vol.26, issue.5, p.64558, 2013.
DOI : 10.1371/journal.pone.0064558.t002

M. Joo, C. Lee, J. Koo, and S. Kim, miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury, Cell Death and Disease, vol.5, issue.10, p.899, 2013.
DOI : 10.1124/mol.111.077149

URL : http://doi.org/10.1038/cddis.2013.427

J. Ho, K. Ng, S. Rosen, A. Dostal, R. Gregory et al., Podocyte-Specific Loss of Functional MicroRNAs Leads to Rapid Glomerular and Tubular Injury, Journal of the American Society of Nephrology, vol.19, issue.11, pp.2069-75, 2008.
DOI : 10.1681/ASN.2008020162

W. Gao, Y. Zhou, J. Xie, Z. Xu, and L. Zhou, MicroRNA expression profiling of kidney tissues in patients with congenital ureteropelvic junction obstruction, Int J Clin Exp Pathol, vol.9, issue.6, pp.6455-61, 2016.

J. Klein, S. Jupp, P. Moulos, M. Fernandez, B. Buffin-meyer et al., The KUPKB: a novel Web application to access multiomics data on kidney disease, The FASEB Journal, vol.26, issue.5, pp.2145-53, 2012.
DOI : 10.1096/fj.11-194381

URL : https://hal.archives-ouvertes.fr/inserm-00726822

W. Chen, Y. Tzeng, and H. Li, Gene expression in early and progression phases of autosomal dominant polycystic kidney disease, BMC Research Notes, vol.1, issue.1, p.131, 2008.
DOI : 10.1186/1756-0500-1-131

H. Dweep, C. Sticht, A. Kharkar, P. Pandey, and N. Gretz, Parallel Analysis of mRNA and microRNA Microarray Profiles to Explore Functional Regulatory Patterns in Polycystic Kidney Disease: Using PKD/Mhm Rat Model, PLoS ONE, vol.438, issue.1, p.53780, 2013.
DOI : 10.1371/journal.pone.0053780.s009

K. Teramoto, N. Negoro, K. Kitamoto, T. Iwai, H. Iwao et al., Microarray Analysis of Glomerular Gene Expression in Murine Lupus Nephritis, Journal of Pharmacological Sciences, vol.106, issue.1, pp.56-67, 2008.
DOI : 10.1254/jphs.FP0071337

P. Viatour, U. Ehmer, L. Saddic, C. Dorrell, J. Andersen et al., Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway, The Journal of Experimental Medicine, vol.13, issue.10, pp.1963-76, 2011.
DOI : 10.1182/blood-2005-01-0355

Y. Sirin and K. Susztak, Notch in the kidney: development and disease, The Journal of Pathology, vol.15, issue.2, pp.394-403, 2012.
DOI : 10.1002/path.2967

C. Lavoz, A. Droguett, M. Burgos, D. Carpio, A. Ortiz et al., Translational study of the Notch pathway in hypertensive nephropathy, Nefrologia, vol.34, issue.3, pp.369-76, 2014.

S. Djudjaj, C. Chatziantoniou, U. Raffetseder, D. Guerrot, J. Dussaule et al., Notch-3 receptor activation drives inflammation and fibrosis following tubulointerstitial kidney injury, The Journal of Pathology, vol.5, issue.3, pp.286-99, 2012.
DOI : 10.1002/path.4076

URL : https://hal.archives-ouvertes.fr/inserm-00771471

M. Sanchez-nino and A. Ortiz, Notch3 and kidney injury: never two without three, The Journal of Pathology, vol.105, issue.3, pp.266-73, 2012.
DOI : 10.1002/path.4101

M. Sweetwyne, J. Tao, and K. Susztak, Kick it up a notch: Notch signaling and kidney fibrosis, Kidney International Supplements, vol.4, issue.1, pp.91-97, 2014.
DOI : 10.1038/kisup.2014.17

M. Martinez-lopez, S. Alcantara, C. Mascaro, F. Perez-branguli, P. Ruiz-lozano et al., Mouse Neuron navigator 1, a novel microtubule-associated protein involved in neuronal migration, Molecular and Cellular Neuroscience, vol.28, issue.4, pp.599-612, 2005.
DOI : 10.1016/j.mcn.2004.09.016

E. Brennan, M. Morine, D. Walsh, S. Roxburgh, M. Lindenmeyer et al., Next-generation sequencing identifies TGF-??1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1822, issue.4, pp.589-99, 2012.
DOI : 10.1016/j.bbadis.2012.01.008

S. Nottrott, M. Simard, and J. Richter, Human let-7a miRNA blocks protein production on actively translating polyribosomes, Nature Structural & Molecular Biology, vol.285, issue.12, pp.1108-1122, 2006.
DOI : 10.1038/nsmb1173

C. Petersen, M. Bordeleau, J. Pelletier, and P. Sharp, Short RNAs Repress Translation after Initiation in Mammalian Cells, Molecular Cell, vol.21, issue.4, pp.533-575, 2006.
DOI : 10.1016/j.molcel.2006.01.031

R. Pillai, S. Bhattacharyya, C. Artus, T. Zoller, N. Cougot et al., Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells, Science, vol.309, issue.5740, pp.1573-1579, 2005.
DOI : 10.1126/science.1115079

A. Pasquinelli, MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship, Nature Reviews Genetics, vol.20, issue.4, pp.271-82, 2012.
DOI : 10.1038/nrg3162

S. Vasudevan, Posttranscriptional Upregulation by MicroRNAs, Wiley Interdisciplinary Reviews: RNA, vol.31, issue.3, pp.311-341, 2012.
DOI : 10.1002/wrna.121

S. Vasudevan and J. Steitz, AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2, Cell, vol.128, issue.6, pp.1105-1123, 2007.
DOI : 10.1016/j.cell.2007.01.038

S. Vasudevan, Y. Tong, and J. Steitz, Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation, Science, vol.318, issue.5858, pp.1931-1935, 2007.
DOI : 10.1126/science.1149460

U. Orom, F. Nielsen, and A. Lund, MicroRNA-10a Binds the 5???UTR of Ribosomal Protein mRNAs and Enhances Their Translation, Molecular Cell, vol.30, issue.4, pp.460-71, 2008.
DOI : 10.1016/j.molcel.2008.05.001

V. Orang, A. Safaralizadeh, R. Kazemzadeh-bavili, and M. , Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation, Int J Genomics, vol.2014, p.970607, 2014.

G. Wang, B. Kwan, F. Lai, K. Chow, P. Li et al., Urinary miR-21, miR-29, and miR-93: Novel Biomarkers of Fibrosis, American Journal of Nephrology, vol.36, issue.5, pp.412-420, 2012.
DOI : 10.1159/000343452

M. Hennino, D. Buob, C. Van-der-hauwaert, V. Gnemmi, Z. Jomaa et al., miR-21-5p renal expression is associated with fibrosis and renal survival in patients with IgA nephropathy, Scientific Reports, vol.30, issue.1, p.27209, 2016.
DOI : 10.1016/S0167-9473(98)00096-6

URL : https://hal.archives-ouvertes.fr/hal-01339801

Y. Zhou, M. Xiong, L. Fang, L. Jiang, P. Wen et al., miR-21???Containing Microvesicles from Injured Tubular Epithelial Cells Promote Tubular Phenotype Transition by Targeting PTEN Protein, The American Journal of Pathology, vol.183, issue.4, pp.1183-96, 2013.
DOI : 10.1016/j.ajpath.2013.06.032

URL : http://doi.org/10.1016/j.ajpath.2013.06.032

J. Saikumar, D. Hoffmann, T. Kim, V. Gonzalez, Q. Zhang et al., Expression, Circulation, and Excretion Profile of MicroRNA-21, -155, and -18a Following Acute Kidney Injury, Toxicological Sciences, vol.129, issue.2, pp.256-67, 2012.
DOI : 10.1093/toxsci/kfs210

N. Wang, Y. Zhou, L. Jiang, D. Li, Y. J. Zhang et al., Urinary MicroRNA-10a and MicroRNA-30d Serve as Novel, Sensitive and Specific Biomarkers for Kidney Injury, PLoS ONE, vol.71, issue.12, p.51140, 2012.
DOI : 10.1371/journal.pone.0051140.s004

A. Chung, X. Huang, X. Meng, and H. Lan, miR-192 Mediates TGF-??/Smad3-Driven Renal Fibrosis, Journal of the American Society of Nephrology, vol.21, issue.8, pp.1317-1342, 2010.
DOI : 10.1681/ASN.2010020134

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938591

S. Deshpande, S. Putta, M. Wang, J. Lai, M. Bitzer et al., Transforming Growth Factor-??-Induced Cross Talk Between p53 and a MicroRNA in the Pathogenesis of Diabetic Nephropathy, Diabetes, vol.62, issue.9, pp.3151-62, 2013.
DOI : 10.2337/db13-0305

M. Kato, V. Dang, M. Wang, J. Park, S. Deshpande et al., TGF-beta induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy, Sci Signal, vol.6, issue.278, p.43, 2013.

Y. Jia, M. Guan, Z. Zheng, Q. Zhang, C. Tang et al., miRNAs in Urine Extracellular Vesicles as Predictors of Early-Stage Diabetic Nephropathy, Journal of Diabetes Research, vol.28, issue.4, p.7932765, 2016.
DOI : 10.2337/db09-1736

B. Thornhill, M. Forbes, E. Marcinko, and R. Chevalier, Glomerulotubular disconnection in neonatal mice after relief of partial ureteral obstruction, Kidney International, vol.72, issue.9, pp.1103-1115, 2007.
DOI : 10.1038/sj.ki.5002512

J. Klein, J. Gonzalez, J. Duchene, L. Esposito, J. Pradere et al., Delayed blockade of the kinin B1 receptor reduces renal inflammation and fibrosis in obstructive nephropathy, The FASEB Journal, vol.23, issue.1, pp.134-176, 2009.
DOI : 10.1096/fj.08-115600

URL : https://hal.archives-ouvertes.fr/hal-00360882

D. Bachvarov, M. Bachvarova, R. Koumangaye, J. Klein, J. Pesquero et al., Renal gene expression profiling using kinin B1 and B2 receptor knockout mice reveals comparable modulation of functionally related genes, Biological Chemistry, vol.387, issue.1, pp.15-22, 2006.
DOI : 10.1515/BC.2006.004

A. Faddaoui, M. Bachvarova, M. Plante, J. Gregoire, M. Renaud et al., The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells, Oncotarget, vol.7, p.14125, 2016.

A. Chatziioannou, P. Moulos, and F. Kolisis, Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB, BMC Bioinformatics, vol.10, issue.1, p.354, 2009.
DOI : 10.1186/1471-2105-10-354