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ABSTRACT 

We previously reported that OPG is involved in ischemic tissue neovascularization through 

the secretion of SDF-1 by pretreated-OPG endothelial colony-forming cells (ECFCs). As the 

vascularization is important for tumour growth and dissemination, we examined whether OPG 

was able to modulate the invasion of human HOS osteosarcoma and DU145 prostate cancer 

cell lines in vitro and investigated its effect in vivo. Cell motility was examined in Boyden 

chambers. Human GFP-labelled HOS cells were injected in nude mice and the tumour 

nodules formed were injected with OPG and/or FGF-2, or PBS. Angiogenesis was assessed 

by immunohistochemistry. In vitro, SDF-1 released by OPG-pretreated ECFCs markedly 

attracted both HOS and DU145 cells and also induced spontaneous migration of cancer cells. 

In vivo, tumour volumes were significantly increased in OPG-treated group compared to the 

control group and OPG potentiated the effect of FGF-2. Concomitantly, OPG alone or 

combined with FGF-2 increased the number of new vasculature compared to the control 

group. This study provided experimental evidence that OPG promotes tumour development in 

an orthotopic murine model of osteosarcoma and supports recent findings that it is actively 

involved in tumour vascularization. 

 

Highlights 
 
- OPG promotes tumour development 
 
- OPG is actively involved in tumour revascularization 
 
- SDF-1 released by OPG-pretreated endothelial colony-forming cells attract cancer cells 
 
- SDF-1 induces spontaneous migration of HOS osteosarcoma cell line 
 

Key Words: Osteoprotegerin, SDF-1, tumour angiogenesis, osteosarcoma. 
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1. INTRODUCTION 

Osteoprotegerin (OPG) is a member of the tumour necrosis factor (TNF) receptor family 

which is involved in the regulation of bone remodelling, where it acts as a decoy receptor for 

nuclear factor-kB ligand (RANKL). OPG is expressed in a variety of tissues such as bone, 

heart, lung, liver, placenta, vessels and can therefore interact with a large number of cell types 

belonging to normal or cancerous tissues [1]. Because of its anti-resorptive properties, several 

studies have investigated the therapeutic potential of recombinant OPG in osteolysis 

associated with cancer. Preclinical studies showed that treatment with exogenous recombinant 

OPG inhibits osteolysis in vivo, associated with breast cancer metastasis or multiple myeloma, 

and reduces cancer cell migration in vivo [2]. However, therapeutic use of OPG in bone 

tumours remains controversial due to its ability to bind and inhibit the TNF related apoptosis 

inducing ligand (TRAIL) resulting in the inhibition of tumour cells apoptosis [3]. In these 

circumstances, OPG becomes a survival factor for tumour cells (reviewed in [4]). Hence, 

OPG has been described to be a survival factor of several types of cell tumour including 

osteosarcoma and prostate cancer cells [5]. 

Osteosarcoma, the most common primary malignant bone tumour, is defined as a 

malignant tumour of mesenchymal cells, characterized by the direct formation of malignant 

osteoid. Some are composed of largely fibroblastic cells, some show chondroid 

differentiation, and still others are highly vascular [6]. OPG production by human 

osteosarcoma has been previously reported [7-9]. Prostate cancer cells have been also shown 

to secrete OPG [4] and its is higher in metastatic tumours than in primary tumours [10]. 

Similarly, serum OPG levels have been positively correlated with progression and bone 

metastasis [11] which indicates the significant involvement of OPG in prostate cancer 

progression. 
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Angiogenesis is an important additional process contributing to tumour growth and 

progression. Various angiogenic cytokines, such as vascular endothelial growth factor 

(VEGF) and hepatocyte growth factor (HGF), are potent mitogens with angiogenic activity 

[12]. Hence, tumour angiogenesis has been extensively investigated in solid and 

haematological tumours, as well as in premalignant conditions, and there are a lot of data 

regarding the link between tumour angiogenesis, metastasis, and overall survival (reviewed in 

[13]). OPG can now be added to the growing list of factors affecting tumour angiogenesis, as 

it has been found to be expressed in neovessels associated with malignant tumours and in 

angiogenic microvessels associated with inflammatory osteolytic diseases [14]. Furthermore 

we previously shown that OPG is involved in vasculogenesis induced by endothelial 

progenitor cells (EPCs) in vivo, that suggests a modulatory role in tumour revascularization 

[15]. 

EPCs are bone marrow-derived circulating cells involved in postnatal vasculogenesis. 

These cells are recruited from bone marrow to sites of active revascularization, attracted by 

proangiogenic factors produced by the local inflammatory response [16]. A growing body of 

evidence indicates that neovascularization processes associated with tumour growth are in 

part supported by the recruitment of endogenous EPCs, their functional incorporation into the 

new vasculatures and their paracrine effects (reviewed in [17]). We have already reported that 

OPG markedly enhances functional properties of EPCs and that these effects are correlated 

with overexpression and secretion of the chemokine stromal cell-derived factor-1 (SDF-1), a 

key player in the attraction of tumour cells [15]. Indeed, SDF-1 possesses angiogenic 

properties and is involved in the outgrowth and metastasis of CXCR4-expressing tumours. 

Consequently, CXCR4 inhibitors have been proposed as therapeutic agents to inhibit tumour 

growth and metastasis (reviewed in [18])[19]. 
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Altogether, these data suggest that OPG could also promote tumour growth by 

promoting angiogenesis and inducing chemokines release by EPCs. These chemokines are, 

thereby, able to promote tumour cells spread and consequently, metastasis. So, the purpose of 

this study was to determine whether SDF-1 released by endothelial colony-forming cells 

(ECFCs; a sub-population of EPCs) after OPG treatment can modulate induce human 

osteosarcoma MNNG/HOS and human prostate cancer DU145 cell lines, migration and 

chemotaxis in vitro. Using a nude mouse model of human osteosarcoma xenografts, we also 

investigated the effect of OPG on tumour growth and vascularization in vivo. 
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2. MATERIALS AND METHODS 

2.1. Reagents 

Recombinant human and mouse OPG were from R&D Systems (Lille, France). Mouse basic 

fibroblast growth factor (FGF-2) and stromal cell-derived factor-1 (SDF-1α) were from Abcys 

(Paris, France). AMD3100 and porcine skin gelatine (GEL) were from Sigma-Aldrich (Saint-

Quentin Fallavier, France). DMEM and phosphate buffered saline (PBS) were provided by 

Invitrogen (Saint Aubin, France). Other biochemical reagents were from Sigma-Aldrich 

(Saint-Quentin Fallavier, France).  

 

2.2. Cancer cell lines and treatment 

The human DU145 prostate carcinoma and MNNG/HOS osteosarcoma cell lines purchased 

from American Tissue Cell Collection were maintained in DMEM supplemented with 10% 

foetal calf serum  (FCS, Gibco, France). When required, AMD3100 (10µg/mL) was added 

30min before the treatment with conditioned media from OPG-pre-treated ECFCs. 

 

2.3. ECFCs isolation, culture and pretreatment 

Umbilical cord bloods were collected from consenting mothers. The study was approved by 

local ethics committee of "Hôpital des Instructions et des Armées de Begin 

(France) (201008043234797) and protocol conformed to ethical guidelines of Declaration of 

Helsinki. ECFCs were isolated from human umbilical cord blood, expanded and 

characterized as previously described [20]. The endothelial cell phenotype was shown by 

double positivity for DiI-AcLDL uptake and BS-1 lectin binding. Further endothelial 

characterization was obtained by FACS analysis (FACSCalibur, Becton Dickinson) of 

combined expression of cell-surface antigens of the endothelial lineage, namely CD31, KDR, 
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Tie-2, CD144, CD34 and Flt-1. One day before experiments, ECFCs were growth-arrested 

for 18 hours in EBM2, 3% FCS and released from growth arrest by adding DMEM 5% FCS 

with or without 25ng/ml of OPG at 37°C for 48h. ECFCs conditioned media were then 

collected and centrifuged to be tested for cell migration assay, or kept at -80 °C to be further 

analysed for SDF-1 levels. All assays were performed in triplicate with cells cultured for less 

than 30 days.   

 

2.4. Chemotaxis assay 

Chemotaxis was examined in 24-well Boyden microchemotaxis chambers (Costar, France) 

with 8µm pore-size polyvinylpyrrolidone free polycarbonate Nucleopore filters. HOS and 

DU145 were placed in the upper chambers in their respective culture media (1.5X104 

cells/chamber) and let to migrate toward the control media (DMEM, 5% FCS), control media 

with 100ng/ml of SDF-1 (positive control), OPG (25ng/ml) or supernatants of OPG 

pretreated ECFCs. When required, before seeding, HOS and DU145 were pretreated with 

AMD3100 (10µg/mL) for 30min. Chemoattraction was allowed to proceed for 4h at 37°C, 

5% CO2. Cells remaining on the upper surface of the filters were mechanically removed, and 

the filters were then fixed with 1.1% formaldehyde and stained with Giemsa. The number of 

migrated cells was determined by counting under a high-power microscope.  

 

2.5. Migration assay 

As for chemotaxis assay, migration was examined in 24-well Boyden microchemotaxis 

chambers. HOS and DU145 were pretreated with the control media with or without 100ng/ml 

of SDF-1 (positive control), 25ng/ml of OPG or with supernatants of OPG pretreated ECFCs. 

When required, AMD3100 (10µg/mL) was added 30min before HOS and DU145 treatment. 
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24h later, 1.5X104 control and pretreated-cells in suspension in the control media were placed 

in the upper chambers and let to migrate toward the same media. Migration was allowed to 

proceed for 4h at 37°C, 5% CO2. Number of migrated cells is determined as for the 

chemotaxis assay. 

 

2.6. SDF-1 ELISA  

SDF-1 levels in supernatants of ECFCs were measured with enzyme-linked immunosorbent 

kits from R&D Systems® (France) according to the manufacturer’s instructions.  

 

2.7. Animal experiments  

Animal care conformed to French guidelines (Services Vétérinaires de la Santé et de la 

Production Animale, Paris, France), and experiments were performed in keeping with the 

guidelines of Université Paris Descartes and the Institutional Committee on Animal Care and 

Use (C75.06.02). Human osteosarcoma MNNG/HOS cells have been previously shown to 

rapidly divide in vivo, forming subcutaneous tumours after implantation into athymic nude 

mice. Eight-week-old athymic nude mice were supplied by Janvier (France). 4.5X106 GFP-

MNNG/HOS cells were injected subcutaneously and three to five days following injection, 

when tumours had reached approximately 3-4mm3 in size, 100µl of either PBS (negative 

control), mouse OPG (2µg/kg), mouse FGF-2 (1.4µg/kg) alone or supplemented with mouse 

OPG (2µg/kg) were administered by direct intra-tumour injection (7 mice per group). This 

procedure was repeated twice a week. Tumour volume was measured thrice per week with 

calipers and each volume (V) was calculated according to the following formula: V=a×b2/2, 

where a and b are the largest and smallest perpendicular tumour diameters. Relative tumour 

volumes (RTV) were calculated from the following formula: RTV=(Vx/V1), where Vx is the 
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tumour volume on day x and V1 is the tumour volume at initiation of treatment (day 1). After 

3 weeks post initiation of treatment, host mice were euthanized, and tumour were excised and 

frozen by dipping for 30s in liquid nitrogen-chilled isopentane, and stored at -80C until 

sectioning and staining.  

 

2.8. Tissue processing and immunofluorescence  

For the analysis of tumour vascularization, frozen tumours were cut at 10-µm thickness. 

Sections were stained at room temperature for 1h with a rat anti-mouse CD31 monoclonal 

antibody (clone MEC 13.3, BD Biosciences), then with a goat anti-rat secondary antibody 

coupled with Alexa555 (Invitrogen, France). The DNA marker, TOPRO-3 (Invitrogen) was 

then applied for 10 min at room temperature. Sections were mounted in glycerol/PBS (90/10: 

v/v) and images were recorded on a Leica TCS SP2 confocal microscope. Eight fields were 

examined per section. The vessel surface area and the number of vessels were quantified with 

Histolab software (Microvision Instruments, Evry France). Results are expressed as the vessel 

surface area (%) and the number of vessels per mm2.  

 

2.9. Statistical analysis 

Data are expressed as means ± SEM of at least three independent experiments. Differences 

between groups were assessed by one-way ANOVA test fallowed by Mann-Whitney test, 

using the statistical software package GraphPad Prism, version 5. Results were considered 

statistically significant at the p-values ≤0.05. 
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3. RESULTS 

3.1. Endogenous SDF-1 released by OPG-pretreated ECFCs strongly attracts tumour 

cells. 

Several studies have described the OPG and CXCR4 expression by HOS cells line [7]. We 

investigated the direct effect of OPG and effect of conditioned media of OPG pretreated 

ECFCs on HOS cells chemotaxis and migration, to determine whether OPG might be 

involved in tumour cell dissemination to sites of metastasis. We first analysed the SDF-1 

levels in cell supernatants of OPG pretreated ECFCs (Figure 1A). As shown on figure 1B, 

HOS cells were maximally attracted by the conditioned media of OPG pretreated ECFCs (P 

<0.001), more strongly than by the SDF-1 (P <0.05). Furthermore, 25ng/mL of OPG 

stimulated HOS cells chemotaxis (P <0.01). By using the AMD3100 (a specific antagonist of 

CXCR), we found that the effect exerted by conditioned media of OPG pretreated ECFCs is 

partly due to the SDF-1 released by these cells under OPG treatment (P <0.01). We show in 

Figure 1C that SDF-1 alone as well as the SDF-1 released by ECFCs under OPG treatment 

are not only able to attract HOS, but can also act directly on these cells and induce their 

spontaneous migration, with a statistically significant effect (P <0.05, P <0.01, respectively).  

To determine whether the observed effects were specific to HOS cells line, the same 

culture conditions were tested on another tumour cell line, DU145 (Figure 2). Expression of 

the CXCR4 by prostate cancer DU145 cell line has been reported by several studies. Hence, 

the SDF-1/CXCR4 axis has been described as playing a key role metastasis of prostate cancer 

to bone [21]. OPG is also expressed by DU145 cells, its role in the lifecycle of these cells as 

well as in the communication between prostate cancer cells and bone cells is well established 

[22]. As shown on Figure 2, conditioned media of ECFCs pretreated or not with OPG attract 

tumour cells. However, effect of supernatants of OPG pretreated ECFCs was more important, 

significant and similar to that of SDF-1 alone (p<0.001). This is most likely due to SDF-1 
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released by ECFCs under OPG treatment, since it was reduced by 30% (p<0.05) when the 

SDF-1/CXCR4 interaction was blocked by AMD3100.  Pretreatment of DU145 cells with 

OPG or conditioned media of OPG pretreated ECFCs does not affect their spontaneous 

migration. 

 

3.2. OPG enhances tumour growth in a murine xenograft model of osteosarcoma.  

As described above, OPG showed greater effect on the HOS cell line motility in vitro. We 

further evaluate its effect in vivo in human osteosarcoma tumours developed in nude mice. 

The HOS xenograft showed an appreciable growth starting from the fifth day after cell 

inoculation and doubled its volume in about 3 days (Figure 3). To evaluate the effect of OPG 

in such a preclinical experimental model of osteosarcoma, a treatment protocol was applied 

via the intra-tumour administration, twice a week, of PBS (control), 2µg/kg mouse 

recombinant OPG, or 1.4µg/kg mouse FGF-2 (positive control) when the tumours reached a 

volume of approximately 3 to 4mm3 (Figure 3A). As shown in Figure 3B, no appreciable 

variation in tumour size was observed during the first 6 days of treatment, after what, a 

significant increase in OPG-treated-xenograft growth was observed (p<0.01, at the endpoint 

Figure 3B).  

To investigate the possible synergy of OPG/FGF-2 as previously observed in 

neovascularization assays in vivo (14), we used the same model, injecting each mouse with 

1.4µg/kg of FGF-2 alone or combined with 2µg/kg of OPG. Analysis of the xenograft growth 

showed enhanced tumour volume in OPG/FGF-2 treated mice (p<0.05 Figure 3C) as 

compared with OPG alone (p<0.01 Figure 3C). It should be noted that, no appreciable sign of 

distress or loss of weight in mice was evidenced. This effect is correlated with tumour 

vascularisation. This is not surprising since blood vessels are necessary to tumour growth by 

providing nutrients and oxygen (Figure 4). To evaluate the implication of OPG alone or 
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associated with FGF-2 in tumour neovascularization, mice were sacrificed 24 days after the 

beginning of the treatment, and tumours were collected for immunofluorescent assays. As 

shown on Figure 4B-C, anti-CD31 staining clearly revealed that the vessel density as well as 

the number of tumour microvessels were also increased in the FGF-2/OPG-treated group as 

compared with FGF-2 group (p<0.01) and OPG group (p<0.001). Furthermore, mice treated 

with OPG alone showed enhanced vascularization compared to control mice (PBS, p<0.05, 

52±9 vs 32±3 vessels/ml2) (Figure 4C).  
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4. DISCUSSION 

OPG acts as a key regulator of bone metabolism by blocking osteoclast differentiation. 

Several in vitro and in vivo studies attributed OPG an important role in vascular biology [15, 

24]. Thereby, there is growing evidence that it underlies a possible link between the osseous 

and vascular systems. One of the major discoveries about OPG was its ability to bind to and 

inhibit the activity of TRAIL; a cytotoxic protein inducing apoptosis mostly in tumour cells, 

suggesting that OPG production may provide cells with a survival advantage. In vitro studies 

using a number of different tumour types have supported this hypothesis (reviewed in [25]). 

OPG expression is frequently altered in cancers. Investigations by several groups have shown 

that OPG levels hold promise as markers of cancer progression or as prognostic indicators[4]. 

The first aim of this study was to determine whether OPG may modulate the behaviour of  

cancer cells and especially human osteosarcoma cells. So, we first examined a direct effect of 

OPG and effect of media conditioned by OPG pretreated ECFCs compared to SDF-1 on 

spontaneous migration and chemotaxis of HOS cells in vitro. Media conditioned by OPG 

pretreated ECFCs attracted HOS cells more strongly than SDF-1 treatment. OPG alone 

induced significantly HOS cells chemotaxis, raising the possibility that OPG can intervene 

both directly and indirectly to modulate osteosarcoma cells attraction. It should be noted that 

OPG pretreated ECFCs, in addition to SDF-1, may release other factors that can modulate 

cells chemotaxis, since HOS cells treatment with AMD3100 not totally abolished the effect of 

supernatants of OPG pretreated ECFCs on cells chemotaxis. The other new element of this 

study is that the SDF-1 released by ECFCs under OPG treatment, at similar levels as a SDF-1 

treatment, can act directly on the HOS cells and induce their spontaneous migration. We also 

found that SDF-1 released by ECFCs under OPG treatment significantly induces DU145 cells 

chemotaxis. Indicating that, the observed effects on HOS cells line can be heard on other 

tumour cell types. 
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Metastasis are the leading cause of cancer-related death, around 13–27% of the 

osteosarcoma patients have detectable metastasis at diagnosis, whereas 40% will develop 

metastases at a later stage (reviewed in [26]). Molecular pathways contributing to 

osteosarcoma development and progression have recently been described and the role of 

several cytokines and chemokines was detailed (reviewed in [27]). Although the role of OPG 

and SDF-1 was not detailed in this revue, the significance of CXCR4 in metastasis 

development in osteosarcoma has been reported. In a mouse model, the tumour cells with 

CXCR4 receptor were chemoattracted by SDF-1, migrated through the lymphatic and 

vascular system, and arrested in SDF-1 rich organs like the bone and lungs [28]. A higher 

CXCR4 expression in metastasis compared with primary osteosarcoma was also reported 

[29]. In an analysis of Ewing sarcoma, another bone cancer, and in chondrosarcoma of bone, 

CXCR4 correlated with metastasis [30]. Taken together with the present study, these findings 

support the increasing evidence of the role of SDF-1/CXCR4 axis in osteosarcoma metastasis.  

Furthermore, Namløs et al report that infiltrating stroma (macrophages) can be the major 

source of chemokine expression in osteosarcoma [31]. ECFCs are found to be recruited into 

tumour environment as they are actively involved in tumour vascularization [17]. OPG, 

previously described to be released in osteosarcoma [7], is therefore able to induce the SDF-1 

release by ECFCs in osteosarcoma environment. Suggesting that, like macrophages, ECFCs 

can also represent a source of chemokines and actively participate in tumour cells migration 

and evidencing that OPG can clearly be, directly or indirectly, involved in osteosarcoma 

metastasis development. The same role of OPG has been reported in gastric cancer by the 

Reiko team's, which showed that strong expression of OPG in cancer tissue was closely 

associated with deep invasion, nodal metastasis, advanced stage and poor prognosis [32]. 

We and others have previously described the effect of OPG on new blood vessel 

formation which may occur through angiogenesis, defined as the sprouting of endothelium 
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from pre-existing vasculature and involves the mature endothelial cells, or vasculogenesis in 

which entirely new vessels develop from ECFCs which circulate and ultimately contribute to 

tumour development and metastasis [33]. OPG has been shown to promote both angiogenesis 

[34, 35] and vasculogenesis since it mediates the mobilization and differentiation of ECFC 

[15, 24]. Therefore, it may ultimately have implications for tumour angiogenesis, a key 

process in cancer development. Studies conducted on the OPG involvement in osteosarcoma 

are limited to found the best therapy permitting to benefit of its role on osteoclastogenesis 

inhibition and eliminate its effect on tumour cells survival [8, 32, 36, 37]. To our knowledge, 

none of these studies have considered the possible involvement of OPG in tumour 

angiogenesis. So, in our in vivo study, using a xenograft model of osteosarcoma in nude 

mouse, was undertaken to evaluate the biological effects of OPG on osteosarcoma growth and 

vascularization. We confirmed that OPG alone or associated with FGF-2; a growth factor 

previously described to potentiate the OPG proangiogenic effect in vivo [15], induces 

xenograft growth and angiogenesis.  

Initially, tumour growth relies on diffusion of oxygen and nutrients from the 

surrounding tissues, and don’t need new blood vessels formation. Under these conditions, a 

tumour can grow to a size of 2–3 mm3. Thereafter, the growing metabolic demands associated 

with tumour growth are satisfied through growth and establishment of new blood vessels. So, 

tumour cells undergo the angiogenic switch, where they acquire an angiogenic phenotype that 

changes the local equilibrium between positive and negative regulators of angiogenesis, and 

stimulates the formation of new vasculatures necessary for sustainable tumour growth 

(reviewed in [17]). In the present study, we noticed that tumours grow slowly during the first 

5 days after cell inoculation, to attain a size of 3 to 4 mm3, approximately. Thereafter, 

tumours size doubled in just 3 days. This would probably correspond to a beginning of 

vasculature development. Surprisingly, no significant difference was observed between the 
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different groups during the first 6 days of treatment, after what the FGF-2/OPG treated 

xenografts showed exponential growth, followed by the FGF-2 and OPG treated ones. The 

apoptosis inhibitory effect, survival extension of endothelial cells and neoangiogenesis 

induced by OPG alone or associated with FGF-2 have therefore established suitable 

environment for tumour cells proliferation and consequently tumour growth. This hypothesis 

is supported by the Anti-CD31 staining which clearly revealed that xenografts treated with 

OPG alone or associated with FGF-2 displayed a greater number of blood vessels, than those 

injected with only the vehicle. 

In summary, our findings suggest that OPG may participate in tumour growth and 

invasion, possibly through inhibition of tumour cell apoptosis but also by promoting tumour 

angiogenesis. The effects of OPG on tumour neovascularization include augmented 

chemotaxis of ECFCs [15, 24]. The maintain of ECFCs in the tumour environment can not 

only promote the vasculature and consequently the tumour growth, but also the release of 

cytokines and chemokines permitting potentially the tumour cells spread and metastasis.  
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FIGURE LEGENDS 

 

Figure 1: SDF-1 released by ECFCs after OPG exerts a strong chemoattraction on 

osteosarcoma cells.  (A) OPG markedly increased SDF-1 release by ECFCs: SDF-1 levels 

were detected by ELISA in supernatants of ECFCs pretreated or not with OPG (25ng/ml) for 

48h. (B) This SDF-1 strongly attracts HOS cells: Before the migration assay, HOS cells were 

pretreated or not with AMD3100 (10µg/ml) for 30min, placed in the upper Boyden chambers 

in RPMI, 5% FCS than let to migrate toward the control media (RPMI, 5% FCS), control 

media with 100ng/ml of SDF-1 (positive control), OPG (25ng/ml) or supernatants of OPG 

pretreated (or untreated) ECFCs during 4h.  HOS cells were maximally attracted by the 

conditioned media of OPG pretreated ECFCs (P<0.001), more strongly than by the SDF-1 

(P<0.01). This effect was strongly reduced, by 50%, after HOS treatment with AMD3100 (P 

<0.01). 25ng/mL of OPG stimulated HOS cells chemotaxis (P <0.01). (C) SDF-1 released in 

the supernatants of OPG pretreated ECFCs induces HOS cell migration: HOS cells were 

pretreated with RPMI, 5% FCS with or without 100ng/ml of SDF-1 (positive control), 

25ng/ml of OPG or with supernatants of OPG pretreated ECFCs. When required, AMD3100 

(10µg/mL) was added 30min before HOS treatment. 24h later, control and pretreated- cells in 

suspension in RPMI, 5% FCS were placed in the upper chambers and let to migrate toward 

the same media. Migration was allowed to proceed for 4h. SDF-1 alone (P <0.05) and SDF-1 

released by ECFCs under OPG treatment (P <0.01) induce HOS cells spontaneous migration. 

Effect of supernatants of OPG pretreated ECFCs was reduced by 30% (p<0.05) when the 

SDF-1/CXCR4 interaction was blocked by AMD3100. 

 



	

21	
	

Figure 2: SDF-1 released in the supernatants of OPG pretreated ECFCs modulates the 

motility of prostate cancer cells. Before the migration assay, DU145 cells were pretreated or 

not with AMD3100 (10µg/ml) for 30min, placed in the upper Boyden chambers in DMEM, 

5% FCS than let to migrate toward the control media (DMEM, 5% FCS), control media with 

100ng/ml of SDF-1, OPG (25ng/ml) or supernatants of OPG pretreated (or untreated) ECFCs 

during 4h.  Conditioned media of ECFCs pretreated with OPG strongly attract tumour cells 

(p<0.001). This effect was reduced by 30% (p<0.05) when the SDF-1/CXCR4 interaction was 

blocked by AMD3100. OPG alone has no effect on the DU145 cells chemotaxis. Mean ± 

SEM, n=3, *p<0.05, **p<0.01, ***p<0.001 

 

Figure 3: OPG alone or associated with FGF-2 induces tumour growth in a xenograft 

osteosarcoma model.  HOS cells were injected subcutaneously into mice. When tumours had 

reached approximately 3-4mm3 in size, 100µl of either PBS (negative control), mouse OPG 

(2µg/Kg), mouse FGF-2 (1.4µg/Kg) alone or supplemented with mouse OPG (2µg/Kg) were 

administered by direct intra-tumour injection. This procedure was repeated twice a week. 

Tumour volume was measured thrice per week and each volume (V) was calculated according 

to the following formula: V=a×b2/2 (a and b are the largest and smallest perpendicular 

tumour diameters). Relative tumour volumes (RTV) were calculated from the following 

formula: RTV=(Vx/V1); Vx is the tumour volume on day x and V1 is the tumour volume at 

initiation of treatment (day 1). (A) Example photographs of tumours excised from mice of 

each group at the endpoint. (B) Tumour growth curves as a function of time in peri-tumour 

treated with OPG (2µg/Kg) or control vehicle: a significant increase in OPG-treated-xenograft 

growth was observed from day 7 after injection (about 90% with respect to control at the 

endpoint, P <0.01). (C) Tumour growth curves as a function of time, peri-tumour treated with 

OPG (2µg/Kg), FGF-2 (1.4µg/Kg) or OPG+FGF-2: administration of OPG associated with 
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FGF-2 showed a more important effect on xenograft growth than the injection of FGF-2 alone 

(P <0.05) and the OPG alone (P <0.01). Mean ± SEM, n = 7, *p<0.05, **p<0.01, ***p<0.001. 

 

Figure 4: OPG increases tumour vascularization. A 10µm thickness sections from frozen 

tumours were stained with an anti-mouse CD31 monoclonal antibody and TOPRO-3. Images 

were recorded on a Leica TCS SP2 confocal microscope. Eight fields were examined per 

section. The vessel surface area and the number of vessels were quantified. (A) 

Representative photomicrographs of cryosections of xenograft tumours from CTRL, OPG, 

FGF-2 and OPG/FGF-2 mice. Vessels were stained in red with an anti-CD31 antibody and 

with a secondary antibody coupled to alexa-555. Nuclei were stained with TOPRO-3. (B) 

Quantitative analysis of the vessel surface area (%, vs CTRL), showed an increase in tumour 

angiogenesis in OPG/FGF-2 group (p<0.001) fallowed by the FGF-2 (p<0.05) and the OPG 

(p=0.059) ones. (C) Analysing the number of vessels per mm2 confirmed the results of the 

vessel surface analysis. Mean ± SEM, n=4, *p<0.05, **p<0.01, ***p<0.001. 

 

Figure 5: SDF-1 plays a key role in the biological activity of OPG in tumour 

development. OPG secreted by cancer cells (1) increases SDF-1 release by endothelial 

colony-forming cells located in the tumour microenvironment (2) which binds to CRCX4 

expressed by cancer cells and in turn exerts a chemoattractant activity on cancer cells (3). 

Concomitantly, OPG in close collaboration with endothelial colony-forming cells contributes 

to the formation of new blood vessels (4) and to an increase of intra-tumour vasculature and 

then to an increase of tumour development (5). 
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