Intestinal Adaptations after Bariatric Surgery: Consequences on Glucose Homeostasis

Jean-Baptiste Cavin, André Bado, Maude Le Gall

To cite this version:

HAL Id: inserm-01480079

https://www.hal.inserm.fr/inserm-01480079

Submitted on 1 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Intestinal Adaptations after Bariatric Surgery: Consequences on Glucose Homeostasis
Jean-Baptiste Cavin, André Bado, Maude Le Gall 1#

To cite this version:
Jean-Baptiste Cavin, André Bado, Maude Le Gall 1#. Intestinal Adaptations after Bariatric Surgery: Consequences on Glucose Homeostasis. Trends in Endocrinology & Metabolism, 2017, <10.1016/j.tem.2017.01.002>. <inserm-01480079>

HAL Id: inserm-01480079
http://www.hal.inserm.fr/inserm-01480079
Submitted on 1 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Intestinal adaptations after bariatric surgery: consequences on glucose homeostasis

Jean-Baptiste CAVIN¹, André BADO¹ and Maude LE GALL¹#

¹Inserm UMR 1149, UFR de Médecine Paris Diderot, Université Paris Diderot, Sorbonne Paris Cité, DHU Unity APHP, F-75890 Paris France

Correspondance: maude.le-gall@inserm.fr
http://www.cri1149.fr/
ABSTRACT

The gastrointestinal (GI) tract can play a direct role in glucose homeostasis by modulating the digestion and absorption of carbohydrates and by producing the incretin hormones. In recent years, numerous studies have focused on intestinal adaptation following bariatric surgeries. Changes in the number of incretin-(GLP-1, GIP) producing cells have been reported which could result in the modified hormonal response seen after surgery. Additionally, the rate of absorption and the intestinal regions exposed to sugars may affect the time course of appearance of glucose in the blood. This review gives new insights into the direct role of the GI tract in the metabolic outcomes of bariatric surgery, in the context of glucose homeostasis.

KEYWORDS

Intestine, Roux-en-Y gastric bypass, Vertical sleeve gastrectomy, Nutrientflow, Enteroendocrine cells, Glucose transport
Introduction

Bariatric surgeries were originally developed to treat patients with severe obesity; they were initially recommended for patients with morbid obesity (body mass index (BMI) > 40 kg/m²) or severe obesity (BMI 35.0–39.9 kg/m²) when they exhibited at least one comorbidity that had the potential of being improved by the intervention[1,2]. Today, the two most commonly performed bariatric surgeries worldwide are the Roux-en-Y gastric bypass (RYGB, Figure 1A) and the vertical sleeve gastrectomy (VSG, Figure 1B)[3]. Bariatric surgeries have consistently resulted in significant improvements on obesity-associated metabolic diseases such as type2 diabetes. This resulted in new recommendations proposing that surgery should be considered for moderately obese diabetic patients (BMI 30.0–34.9 kg/m²) if hyperglycemia is inadequately controlled despite optimal treatment with medication[4,5]. These new recommendations have already been adopted by several medical societies all around the world and should further increase the number of operated patients in the near future. Understanding these surgeries is thus of major clinical and societal importance.

The fact that the GI tract is the direct target of bariatric procedures potentially makes it a key player, although so far underestimated, in the metabolic changes observed after surgery. Indeed, the GI tract can play a direct role in glucose homeostasis by modulating gastric emptying, the digestion of carbohydrates and absorption of glucose during meals, and also by secreting a set of hormones, including incretins that regulate the release of insulin[6].

In this review, we will outline the GI-dependent mechanisms responsible for the alteration of gut hormone secretion after surgery. Then, we will discuss how intestinal glucose transport (the passage of glucose from the intestinal lumen to the blood compartment through intestinal epithelial cells), and intestinal glucose
metabolism are modified after RYGB and VSG, and describe how these changes can affect glucose homeostasis.

Altered gut hormone secretion

After bariatric surgeries, changes in the fasting and postprandial secretion of gut-derived hormones are significant and varied and depend on the type of GI reconstruction [7,8]. These changes are suggested to be key players in the increased postprandial secretion of insulin and improved insulin sensitivity that is reported after bariatric surgery.

Glucagon-like peptide 1 (GLP-1)

GLP-1 is an incretin hormone produced by enteroendocrine cells scattered throughout the intestinal epithelium. The density of these GLP-1 secreting cells increases across a proximal to distal gradient. GLP-1 increases insulin release and decreases glucagon production, delays gastric emptying and intestinal transit and reduces meal size [9]. Although fasting concentrations of GLP-1 do not change markedly after bariatric surgery, postprandial levels of GLP-1 have been shown to increase following most, if not all, bariatric procedures [10–13]. However, studies designed to evaluate the influence of GLP-1 *per se* on glucose regulation and weight loss, have produced varied results. Mice with genetic loss-of-function of the GLP-1 receptor respond normally to VSG [14] and RYGB [15] in terms of both weight loss and improvements in glucose regulation. Conversely, specific deletion of the GLP-1 receptor in beta cells was shown to prevent the improvement of glucose tolerance in VSG-operated mice [16]. Together these studies indicate that GLP-1 alone cannot account for the overall metabolic effect of these two surgeries but may contribute to the altered postprandial glycemic response after VSG in mice. In humans, GLP-1 antagonists (exendin-9-39) failed to impair the otherwise improved glucose tolerance after VSG [17] and had only modest effects on glycemic response after RYGB [18,19].
Glucose-dependent insulino-tropic polypeptide (GIP)

GIP is another incretin hormone secreted by enteroendocrine cells located mostly in the duodenum and proximal jejunum and released in response to nutrients (notably lipids) [9]. GIP promotes the conversion of glucose to fatty acids and their storage in adipose tissues [20]. While some studies report similar enhancements of GIP secretion following RYGB and VSG surgery [21], others have documented GIP levels to be unchanged [10,22] or reduced [23,24] following RYGB surgery. Although not yet formally demonstrated, it is possible that since GIP is produced by cells of the proximal intestine, differences in the length of the intestinal limb bypassed by the surgery could differentially affect meal-induced GIP secretion in patients. Moreover, the presence or the absence of type-2 diabetes in patients before bariatric surgery might affect the alteration of GIP secretion after surgery [25,26]. A recent study investigated the combined and separate effects of endogenously secreted GLP-1 and GIP on glucose tolerance after RYGB [27]. GLP-1 increased insulin and attenuated glucagon secretion in the postprandial state, whereas amplification of the GIP signal aggravated postprandial hyperglucagonemia and did not contribute to the improved glucose tolerance [27]. The role of GIP in the improved glucose tolerance following RYGB is still an open question and also remains to be addressed in detail in the context of VSG.

Ghrelin

Ghrelin is an orexigenic hormone produced mainly in the stomach and duodenum that exerts gluco-regulatory functions [28]. Resection of the fundic region in VSG leads to a decrease in ghrelin-expressing cells and concomitant ghrelin-circulating levels in rats [29,30] and humans [11,31,32]. Body weight and glucose tolerance measurements after VSG, however, showed similar results in ghrelin-deficient and in wild-type mice [33]. Moreover, while postprandial ghrelin levels are reduced after VSG [11,31,32], they have been reported to either decrease [34], increase [32,35] or remain unchanged [11,36] after RYGB.
compared to obese patients. Post-operative modifications of ghrelin levels after surgery are, therefore, unlikely to determine metabolic improvement.

Other digestive hormones

Hormones, such as cholecystokinin[10], PYY[37] and others [7], have also been found to be modulated after some bariatric procedures and have thus been proposed as important factors contributing to the post-surgery metabolic improvement. Hormonal changes are certainly involved in the positive outcomes of surgery, but all simplistic views aiming to identify “the” determinant hormone responsible for the beneficial effect of bariatric surgeries are probably shortsighted and futile, since GI surgeries lead to a profound alteration of the entire gut’s hormonal response, following a meal. After surgery, a new homeostatic state is instituted and thus hormone levels should be considered in relation to each other rather than compared to their pre-operative values. For instance, physiologically, glucagon secretion decreases after a meal, but it has been shown that postprandial glucagon release is increased following RYGB and VSG compared to pre-operative states [21, 38]. Interestingly, one study reported that GIP, GLP-1, and GLP-2 differently affect glucagon responses to orally ingested glucose in patients with diabetes [39]. Indeed, in non-operated diabetic patients, intravenous infusion of GIP increased the glucagon response and thus counteracted the reduction of glucagon secretion associated with intravenous infusion of GLP-1. Since postprandial levels of GLP-1 and GIP are modified after bariatric surgery, these hormonal interactions could explain how postprandial glucagon levels are increased. Understanding how all these hormonal signals act together to mediate the effects of surgery is an important but ambitious research goal, particularly considering that we are far from understanding how they are integrated together, even in physiological conditions.
The origin of these modified hormonal secretions is still debated. Historically, altered nutrient flow, either by foregut exclusion or by accelerated hindgut delivery of nutrients, was considered responsible for the improved hormonal response and the success of derivative procedures like RYGB [40]. The modified postprandial hormonal response observed after VSG, a purely gastric surgery in which the food path is not modified, however, has somewhat weakened these assumptions. More recent studies have nevertheless revealed that gastric emptying rates were indeed very rapid after VSG [41–43].

Accelerated nutrient flow and increased intestinal surface exposure

GI remodeling leads to a drastic acceleration of food arrival in the intestine, by pyloric exclusion after RYGB [12,44] and also by an increase in gastric emptying rate after VSG [42,43]. Increasing evidence shows that the modified dynamics of the nutrient flow is likely to contribute to both the modified glycemic response to a meal and the concomitant altered gut hormone secretion in patients.

The total intestinal surface that is almost immediately exposed to a liquid meal is drastically different between operated and control individuals, and affects the entry of glucose into the blood [44]. A study, using radiolabeled tracer, found that only five minutes after a nutrient gavage, the stomachs of RYGB and VSG rats were completely emptied, whereas only 6.1% of the nutrient mixture had emptied from sham animals [41]. The accelerated gastric emptying and food delivery to the intestine increases the total intestinal surface exposed to the luminal content. This could have a direct effect on the rate of glucose entry into the blood during a sugar-rich meal. Indeed, this hypothesis was illustrated by a recent study using multiple intestinal clamp sites in minipigs with RYGB [45]. The study demonstrated a direct relationship between the exposed intestinal area and the transfer of glucose to the blood. More interestingly, the insulin
response and secretion of GLP-1 significantly increased only when the total intestinal surface was accessible by the liquid meal. Even if one cannot discriminate whether the stimulation of the distal intestine by the meal or the increase in blood glucose per se is responsible for the hormonal response, these experiments suggest that the hormonal response to a meal after RYGB is highly dependent on the altered nutrient flow caused by GI reconstruction.

Two human studies confirmed the role of altered nutrient flow in the hormonal response observed after surgery[12,44]. In the first, RYGB patients received either a glucose drink or the same solution infused into the proximal Roux limb at 4 kcal/min, a rate equivalent to physiologic gastric emptying[44]. Blood glucose, insulin, glucagon, GIP and GLP-1 were then measured during the test. The glycemic response was delayed in RYGB patients receiving the solution at 4 kcal/min compared to when the same solution was received orally. Moreover, the infused patients’ hormonal responses were similar to those observed in non-operated subjects receiving the oral drink, thus supporting the effect of rapid nutrient exposure on the exaggerated incretin responses. The second study evaluated GI motility with a scintigraphic technique, and gut hormone secretion in RYGB patients [12]. The authors found a statistically significant association between gastric pouch emptying and hormone responses during a multiple meal test. In contrast, no relation was found between gut hormone release and gastric pouch emptying when they used a solid radiolabeled marker, further strengthening the role of rapid nutrient flow in hormone secretion, since transit of solids is much slower than liquids.

Interestingly, a study in rats showed that intestinal infusion of a glucose solution at an identical rate led to a greater GLP-1 secretion in VSG rats relative to sham-operated controls [41]. This suggests the existence of delivery-independent mechanisms that alter the gut hormonal response, at least in VSG rats.

In summary, the altered glycemic and hormonal response to a liquid meal in RYGB and VSG patients is likely to be mediated by the accelerated nutrient flow.
flow after both surgeries, which increases the surface of contact between the meal and the intestine. However, it is worth noting that a mixed meal test may differ in many ways with the daily diet pattern of patients[46] and that the hormonal responses observed experimentally may not occur during small solid meals[47,48].

The altered nutrient flow and subsequent modified nutritional stimulation of the intestine after surgery could cause the intestinal adaptation that in turn might affect hormonal secretion and the glycemic response to a meal.

Intestinal adaptation and enteroendocrine cell number

Due to the difficulty of directly studying the GI tract of bariatric patients, most of the studies aiming to describe intestinal adaptations after RYGB or VSG procedures have been conducted in experimental models such as rodents. In 2009, Stearns et al. were the first to report changes in intestinal structure and function in a rat model of RYGB [49]. They showed an increased villus size and crypt depth in the Roux limb and common limb of operated rats. This hyperplasia has been confirmed and further characterized by several subsequent studies [50–55].

An important consequence of Roux limb overgrowth after RYGB is an increase in the total number of enteroendocrine cells, including GLP-1-, GIP-, CCK- and PYY-producing cells within the intestinal mucosa[52,54,56,57]. This adaptation was reported in both human and rodent RYGB subjects and could contribute to the modified hormonal profile after surgery. Whether the increased number of enteroendocrine cells due to Roux limb overgrowth is associated with an additional increase in their density, is still a matter of debate[54,57,58].
To date, no study has directly investigated intestinal adaptation after VSG in humans. However, two recent reports using rat models of VSG described an absence of hypertrophy of the jejunum mucosa after this surgery [54,59]. The distribution of enteroendocrine cells producing GLP-1 was also examined in these studies but contradictory results were obtained. The first study reported that GLP-1 cell numbers were not modified at 3 month post-VSG [59]. In contrast, a second study reported an increase in the number and density of GLP-1 cells 14 days after surgery [54]. It remains to be determined whether this discrepancy results from the different time points taken for analysis, or differences in other variables such as post-operative diet or surgical techniques. An increase in the density of GLP-1 cells would, however, be a reasonable explanation for the higher delivery-independent GLP-1 secretion observed after VSG in rats [21,37].

Whether modified numbers of enteroendocrine cells actually affect the release of gut hormone after surgery remains to be determined. An increase in hormone production by or an exacerbated nutrient sensitivity of the enteroendocrine cells after the surgery could also be involved. Assaying the sensitivity of enteroendocrine cells to nutrients before and after surgery will be a challenging task in the future but development of enteroids from human biopsies could offer a unique opportunity to evaluate it [60,61].

Intestinal adaptation and glucose transport

The idea that bariatric surgeries could lead to alterations in intestinal glucose transport has been the subject of several studies. To be absorbed by the intestine, polysaccharides must be hydrolyzed into their monosaccharide components (glucose, galactose and fructose) by saccharidases. Glucose and galactose are transported across the apical membrane into the enterocyte by the sodium/glucose cotransporter 1 (SGLT1) [62], whereas fructose is taken up by
the fructose transporter 5 (GLUT5)[63]. Monosaccharides are partly
metabolized in the enterocytes but most of them exit the cells via glucose
transporter 2 (GLUT2) in the basolateral membrane, a process that delivers them
to the blood before reaching the liver for further metabolism and regulation of
glucose production[64]. During sugar-rich meals or in the case of insulin
resistance, monosaccharide absorption might be exacerbated after translocation
of GLUT2 to the apical membrane [65]. Thus, the appearance of glucose in the
blood follows a time course that is affected by the intestinal surface exposed to
nutrients, but also by the number of functional enterocytes and the expression of
their glucose transporters.
Molecular analyses have produced heterogeneous results regarding the
expression pattern of intestinal sugar transporters after RYGB in
rats[49,51,53,54]. SGLT1, GLUT2 and GLUT5 mRNA or protein levels were
reported to be increased[51], decreased [49,51,53] or not modified[54][53] in the
alimentary Roux limb of RYGB animals, compared to the jejunum of sham
animals. The heterogeneity of these molecular analyses could be due to
experimental differences such as different postoperative time points, variable
surgical procedures or pre- and post-operative diets. Additionally, the presence of
different steps in the adaptive process[54], or alterations in expression levels
following diurnal rhythms [49] also likely influence the results. One study
reported no difference for SGLT1, GLUT2 or GLUT5 mRNA levels between
the Roux limb, the biliopancreatic limb or the common limb of a RYGB minipig
model [45]. In humans, increased mRNA expression of SGLT1 and GLUT2 has
been reported more than a year after surgery[66]. Thus, species-related
differences might also exist.
It is worth highlighting that the activity of SGLT1 does not always correlate with
its mRNA expression [49,54]. The growth of the intestinal mucosa, following
RYGB, and therefore the increased numbers of enterocytes could affect the total
absorptive capacity of the intestine, beyond the expression of sugar transporters.
In fact, it is hard to demonstrate the relationship between transporter expression and the glycemic response to an oral glucose tolerance test \textit{in vivo}. Accordingly, differences in the glycemic response of rats between 14 and 40 days post-RYGB have not been observed despite significant variation in the expression of their intestinal sugar transporters [30]. Direct assessments of intestinal glucose transport capacity before and after surgery are, therefore, still needed to evaluate the existing functional changes.

\textit{Ex vivo}, glucose transport can be measured by radioactive methods with isolated intestinal segments from rats that have undergone bariatric surgery. Entry of glucose into the enterocytes (from the mucosal or serosal side) is referred to as intestinal glucose uptake but is often misnamed as intestinal glucose transport, which is actually the passage of glucose from the intestinal lumen to the blood compartment through enterocytes. Of note, in a recent study, no alteration in glucose transport in the Roux limb of RYGB rats compared to the jejunum of sham rats was observed, whereas glucose uptake was markedly increased in RYGB rats regardless of the entry site (mucosal or serosal side) [54]. After RYGB, some studies report a reduction in intestinal glucose uptake [45, 49] whereas others report no changes [54, 67]. It has also been reported that RYGB may abolish the diurnal rhythm associated SGLT1-mediated glucose uptake, with a 63\% reduction specifically prior to the onset of feeding [49]. Finally, a study in humans reported that RYGB was followed by an increase in SGLT-1 expression and showed a positive association between SGLT-1 expression and glucose absorption [66]. Once again, the methods used to evaluate the glucose uptake, the intestinal segments, and the exact time-points at which measurements were made after surgery differed widely among studies, probably contributing to the heterogeneity of the results.

To the best of our knowledge, only one group has evaluated glucose transport and uptake after VSG [54]. In this study, glucose transport from the luminal to the serosal side was markedly decreased in the jejunum of VSG rats, compared
to sham-operated rats. Expression of the sugar transporters SGLT1, GLUT2 or GLUT5 did not reflect the modification in intestinal transport capacity. The mechanism of this regulation is still unknown, but VSG could improve glucose tolerance by delaying the entry of alimentary glucose. This would be in agreement with the delayed glycemic response observed after an oral load of glucose in rats [54] or in VSG subjects compared to RYGB subjects [68].

It is difficult to transpose these *ex vivo* findings upon what actually happens during a glucose gavage or a meal, since the dynamic aspect of nutrient flow is lost. In addition, whilst intestinal glucose transport may be reflected by the early slope of an oral tolerance test, glucose clearance after the peak is the reflection of glucose disposal by peripheral organs such as liver, muscles and adipose tissue but also, as described below, the intestine itself.

Intestinal adaptation and glucose disposal

It has been shown recently that hyperplasia in the Roux limb after RYGB is associated with a reprogramming of glucose metabolism towards increased intestinal glucose uptake and consumption by intestinal cells [53, 54]. The remodeled intestine could thus increase wholebody glucose disposal and contribute to the glucose lowering effect of derivative bariatric procedures. The reprogramming of glucose metabolism is characterized by increased mRNA and protein levels of enzymes involved in glycolysis, and by the appearance of the glucose transporter GLUT1 at the basolateral membrane of enterocytes [53, 59, 54]. The GLUT1 transporter is widely expressed during development but its expression is decreased in adults and becomes very low in mature jejunum [69]. The overexpression of intestinal GLUT1 after RYGB might be a consequence of the increased energy demand to support the intestinal hyperplasia that occurs very early after surgery. Accordingly, there is no reprogramming of glucose metabolism and no overexpression of GLUT1 in the jejunum of VSG-operated rats that does not display any hyperplasia [54, 59].
In vivo, using positron emission tomography-computed tomography (PET-CT) scanning and intravenous administration of $[^{18}F]$-FDG, it has been demonstrated that RYGB surgery increases intestinal glucose disposal in rats [53]. Similarly, another study reported increased metabolic activity in the Roux limb of humans following bariatric surgery using the same techniques[54]. Considering the contribution of increased intestinal glucose disposal to the glucose lowering effect of RYGB surgery, a study on rats using PET-CT scanning reported a 90% higher $[^{18}F]$-FDG uptake by the intestine of RYGB-treated rats and a 30% reduction in $[^{18}F]$-FDG signal in the blood, compared to sham animals [53]. This suggests that intestinal glucose utilization is key to the improvement of wholebody glucose disposal in rats. To date, intestinal blood glucose disposal has not been quantified in human patients, but a recent study measured GI retention and presumably metabolism of ingested glucose in obese subjects before and after RYGB [70]. Using a mixed meal containing labeled $[^{6,6-2}\text{H}_2]$-glucose, the authors demonstrated that GI clearance of ingested glucose is increased after RYGB surgery. However, the difference effected by the bariatric procedure was low (from 10% ± 8% before to 15% ± 9% after surgery), showing that intestinal glucose diversion during meals is not likely to largely contribute to the postprandial improvement in glycemic control. Studies directly measuring the intestinal clearance of intravenously administered glucose are needed to evaluate whether the reprogramming of glucose metabolism and subsequent increase in intestinal glucose disposal makes a real contribution to the glucose lowering effect of RYGB surgery in humans.

Concluding Remarks and Future Perspectives
Glucose excursion after a meal depends on intestinal transport of glucose to the blood, secretion of gut hormones and glucose handling by peripheral organs. The remodeled GI tract after bariatric surgery plays a major role in altering all
these processes. Complementing the associated accelerated nutrient flow and
increased intestinal surface exposure, the two main types of bariatric surgeries,
RYGB and VSG, differently alter gut morphology, gut hormone secretions, and
intestinal glucose transport and metabolism (Key Figure) and these factors may
all contribute to glucose homeostasis. The biggest challenge now is to evaluate
the relative contribution of all these mechanisms (Outstanding questions box)
and to find a way to recapitulate the important ones in non-surgical or less
invasive treatments.

FIGURES AND KEY FIGURE

Figure 1: Two common types of bariatric surgeries
(A) The Roux-en-Y gastric bypass (RYGB) consists of creating a small
gastric pouch below the esophagus (25-50mL in humans) that is connected
directly to the middle portion of the jejunum, bypassing the rest of the stomach,
the pylorus and the upper portion of the small intestine (duodenum and proximal
jejunum), which is anastomosed distally. The operation creates three
anatomically distinct gut segments: an alimentary limb (or Roux limb), which
receives only undigested food (red arrows); a biliopancreatic limb, which drains
gastric secretions, bile and pancreatic enzymes (blue arrows); and a common
limb that connects the two aforementioned limbs together. This operation is very
efficient, with an important and sustained weight loss accompanied by a
reduction in obesity-associated comorbidities such as hypertension,
hyperlipidemia and type 2 diabetes in most patients. (B) The vertical sleeve
gastrectomy (VSG) involves a longitudinal resection of the stomach starting
from the antrum and ending at the fundus close to the cardia; the remaining
volume of the gastric compartment is about 150 mL in humans. This
intervention has been proven to be an effective procedure at middle term with an
important weight loss accompanied by a reduction in obesity-associated
comorbidities such as hypertension, hyperlipidemia and type 2 diabetes in many patients.

Figure 2, Key Figure: Differential intestinal adaptations after RYGB versus VSG and their putative contributions to the resulting altered hormone secretion and improved glucose tolerance.

Both bariatric surgeries reduce the transit time of the meal and increase the exposure of the intestinal mucosa that acts to modify secretion by enteroendocrine cells and also glucose entry. In response to RYGB, the Roux limb becomes hyperplasic, with the number of incretin secreting cells increasing. Additionally, a shift in glucose metabolism increases the intestinal glucose consumption. In response to VSG, despite no intestinal hyperplasia, the number of GLP-1 positive cells may increase due to increased cell density. Moreover, studies in rats suggest that glucose transport from the lumen to the blood decreases delaying alimentary glucose absorption. To date, no study has directly investigated intestinal adaptation after VSG in humans.
REFERENCES

Submitted to Sleeve Gastrectomy Compared to Normal Subjects.

2 diabetes mellitus.

on small bowel transit time and gastric emptying half

and GLP

Lund, A.

diabetes remission and role of gut hormones.

Nannipieri, M.

are not determined by weight loss or changes in insulinemia.

Frühbeck, G.

of morbidly obese patients

Goitein, D.

blood pressure in d

Rodríguez, A.

Y gastric bypass surgery.

–

Y gastric bypass –

Y gastric bypass

–

Y gastric bypass surgery.

–

Y gastric bypass and sleeve gastrectomy.

on Glucose Homeostasis and Incretin Hormones in Obese Type 2 Diabetic Patients: A One-Year

Prospective Study.

Laferrière, B. et al. (2007) Incretin Levels and Effect Are Markedly Enhanced 1 Month After Roux-

en-Y Gastric Bypass Surgery in Obese Patients With Type 2 Diabetes.

Diabetes Care 30, 1709–1716

Mingrone, G. et al. (2009) Circadian rhythms of GIP and GLP1 in glucose-tolerant and in type 2

diabetic patients after biliopancreatic diversion.

Diabetologia 52, 873–881

Svane, M.S. et al. (2016) Effects of endogenous GLP-1 and GIP on glucose tolerance after Roux-

en-Y gastric bypass surgery.

Am. J. Physiol. Endocrinol. Metab. 310, E505-514

Peptides 32, 2309–2318

Arapis, K. et al. (2015) Remodeling of the Residual Gastric Mucosa after Roux-En-Y Gastric Bypass

or Vertical Sleeve Gastrectomy in Diet-Induced Obese Rats.

PloS ONE 10, e0121414

Rodríguez, A. et al. (2012) Short-term effects of sleeve gastrectomy and caloric restriction on

blood pressure in diet-induced obese rats.

Obes. Surg. 22, 1481–1490

Goitein, D. et al. (2012) Mapping of ghrelin gene expression and cell distribution in the stomach

of morbidly obese patients--a possible guide for efficient sleeve gastrectomy construction.

Obes. Surg. 22, 617–622

Kalinowski, P. et al. (2016) Ghrelin, leptin, and glycemic control after sleeve gastrectomy versus

Roux-en-Y gastric bypass-results of a randomized clinical trial.

Chambers, A.P. et al. (2013) The Effects of Vertical Sleeve Gastrectomy in Rodents Are Ghrelin

Independent.

Gastroenterology 144, 50–52.e5

Frühbeck, G. et al. (2004) Fasting plasma ghrelin concentrations 6 months after gastric bypass

are not determined by weight loss or changes in insulinemia.

Obes. Surg. 14, 1208–1215

Holdstock, C. et al. (2003) Ghrelin and Adipose Tissue Regulatory Peptides: Effect of Gastric

Bypass Surgery in Obese Humans.

J. Clin. Endocrinol. Metab. 88, 3177–3183

Dimitriadis, E. et al. (2013) Alterations in gut hormones after laparoscopic sleeve gastrectomy: a

prospective clinical and laboratory investigatory study.

Ann. Surg. 257, 647–654

diabetes remission and role of gut hormones.

J. Clin. Endocrinol. Metab. 98, 4391–4399

Lund, A. et al. (2011) The separate and combined impact of the intestinal hormones, GIP, GLP-1,

and GLP-2, on glucagon secretion in type 2 diabetes.

Am. J. Physiol. Endocrinol. Metab. 300, E1038–1046

resolution.

J. Clin. Endocrinol. Metab. 89, 2608–2615

Chambers, A.P. et al. (2014) Regulation of gastric emptying rate and its role in nutrient-induced

GLP-1 secretion in rats after vertical sleeve gastrectomy.

Shah, S. et al. (2010) Prospective controlled study of effect of laparoscopic sleeve gastrectomy

on small bowel transit time and gastric emptying half-time in morbidity obese patients with type

2 diabetes mellitus.

Braghetto, I. et al. (2009) Scintigraphic Evaluation of Gastric Emptying in Obese Patients

Submitted to Sleeve Gastrectomy Compared to Normal Subjects.

Obes. Surg. 19, 1515
Nguyen, N.Q. et al. (2014) Rapid gastric and intestinal transit is a major determinant of changes in blood glucose, intestinal hormones, glucose absorption and postprandial symptoms after gastric bypass. Obesity 22, 2003–2009

Baud, G. et al. (2016) Bile Diversion in Roux-en-Y Gastric Bypass Modulates Sodium-Dependent Glucose Intestinal Uptake. Cell Metab. 23, 547–553

Figure 1A,B
Figure 2