

Vitamin D Bioavailability: State of the Art

Patrick Borel, D. Caillaud, N. J. Cano

▶ To cite this version:

Patrick Borel, D. Caillaud, N. J. Cano. Vitamin D Bioavailability: State of the Art. Critical Reviews in Food Science and Nutrition, 2015, 55 (9), pp.1193 - 1205. 10.1080/10408398.2012.688897. inserm-01478467

HAL Id: inserm-01478467 https://inserm.hal.science/inserm-01478467

Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Vitamin D bioavailability: State of the art
2	
3	P. BOREL ^{1-3*} , D. CAILLAUD ⁴ , N.J. CANO ⁴⁻⁷
4	
5	¹ INSERM, UMR1062, Nutrition, Obesity and Risk of Thrombosis, F-13385, Marseille,
6	France
7	² INRA, UMR1260, F-13385, Marseille, France
8	³ Aix-Marseille Univ, Faculté de Médecine, F-13385, Marseille, France
9	⁴ CHU de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
10	⁵ INRA, UMR1019, Unité de Nutrition Humaine, F-63000, Clermont-Ferrand, France
11	⁶ CRNH Auvergne F-63000, Clermont-Ferrand, France
12	⁷ Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France
13	
14	Author adress:
15	Patrick BOREL, Ph.D.
16	UMR NORT 1260 INRA / 1062 INSERM / Aix-Marseille Université
17	Faculté de Médecine, 27 boulevard Jean-Moulin, 13385 Marseille Cedex 5, FRANCE.
18	Phone number: (+33) 4 91 29 41 11; FAX number: (+33) 4 91 78 21 01
19	E-mail: Patrick.Borel@univ-amu.fr
20	
21	Running title: Vitamin D bioavailability.
22	
23	Key words: cholecalciferol, ergocalciferol, 25-hydroxyvitamin D, bioaccessibility,
24	absorption, intestine.
25	

1 List of abbreviations:

- 2 25OHD: 25-hydroxy vitamin D, i.e. 25-hydroxy cholecalciferol or/and 25-hydroxy
- 3 ergocalciferol
- 4 25OHD₂: 25-hydroxy ergocalciferol
- 5 25OHD₃: 25-hydroxy cholecalciferol
- 6 $1,25(OH)_2D_3$: dihydroxy cholecalciferol
- $7 \quad 1,25(OH)_2D_2: dihydroxy ergocalciferol$
- 8 FSM: fat-soluble microconstituents, e.g. fat soluble vitamins, carotenoids and phytosterols

3 There has been renewed interest in vitamin D since numerous recent studies have suggested 4 that besides its well-established roles in bone metabolism and immunity, vitamin D status is 5 inversely associated with the incidence of several diseases, e.g. cancers, cardio-vascular 6 diseases and neurodegenerative diseases. Surprisingly, there is very little data on factors that 7 affect absorption of this fat-soluble vitamin, although it is acknowledged that dietary 8 vitamin D could help to fight against the sub-deficient vitamin D status that is common in 9 several populations. This review describes the state of the art concerning the fate of vitamin D 10 in the human upper gastrointestinal tract and on the factors assumed to affect its absorption 11 efficiency. The main conclusions are: (i) ergocalciferol (vitamin D_2), the form mostly used in 12 supplements and fortified foods, is apparently absorbed with similar efficiency to 13 cholecalciferol (vitamin D₃, the main dietary form), (ii) 25-hydroxyvitamin D (250HD), the 14 metabolite produced in the liver, and which can be found in foods, is better absorbed than the 15 non-hydroxy vitamin D forms cholecalciferol and ergocalciferol, (iii) the amount of fat with 16 which vitamin D is ingested does not seem to significantly modify the bioavailability of 17 vitamin D_3 , (iv) the food matrix has apparently little effect on vitamin D bioavailability, (v) 18 sucrose polyesters (Olestra) and tetrahydrolipstatin (orlistat) probably diminish vitamin D 19 absorption, and (vi) there is apparently no effect of ageing on vitamin D absorption efficiency. 20 We also find that there is insufficient, or even no data on the following factors suspected of 21 affecting vitamin D: (i) effect of type and amount of dietary fibre, (ii) effect of vitamin D 22 status, and (iii) effect of genetic variation in proteins involved in its intestinal absorption.

In conclusion, further studies are needed to improve our knowledge of factors affecting vitamin D absorption efficiency. Clinical studies with labelled vitamin D, e.g. deuterated or ¹³C, are needed to accurately and definitively assess the effect of various factors on its bioavailability.

3 Vitamin D is the generic name for compounds exhibiting the biological activity of 4 cholecalciferol (vitamin D_3). Cholecalciferol is the main dietary source of vitamin D and it is 5 present mostly in foods of animal origin. A significant fraction of vitamin D₃ (estimated at 6 around 80%, but depending on sun exposure) is produced endogenously in the skin from 7-7 dehydrocholesterol by the action of UV light. Diet can also contain 25-hydroxy cholecalciferol 8 $(25OHD_3)$ and trace amounts of dihydroxy cholecalciferol $(1,25(OH)_2D_3)$. It is assumed that 9 most people need dietary vitamin D to reach the recommended serum level, i.e. greater than 10 30 ng/mL (75 nmol/L) (Wimalawansa, 2012). The chemical structures of these vitamin D 11 forms are recalled in Figure 1. Very few naturally-occurring foods contain vitamin D. The 12 flesh of fatty fish and fish liver oils are among the best sources. Small amounts of vitamin D 13 are found in beef liver, dairy products and egg yolk. Vitamin D in these foods occurs primarily 14 as vitamin D_3 and its metabolite 25OHD₃. Some mushrooms provide vitamin D_2 in variable 15 amounts. In some groups, e.g. infants, elderly persons not sufficiently exposed to sunlight, and 16 patients suffering from fat malabsorption, consumption of vitamin D supplements or vitamin 17 D fortified foods are required to meet the daily need, i.e. approximately 2000 IU/day to maintain serum 25(OH)D levels greater than 30 ng/mL (Wimalawansa, 2012), for vitamin D. 18 19 In supplements and fortified foods, vitamin D can be available as either vitamin D₂ or vitamin 20 D₃. Vitamin D₂ (ergocalciferol) is manufactured by the UV irradiation of ergosterol in yeast, 21 and vitamin D₃ by the irradiation of 7-dehydrocholesterol from lanolin and the chemical 22 conversion of cholesterol. The mechanisms involved in vitamin D absorption and the factors 23 assumed to affect this process have been under-researched. Vitamin D is assumed to follow 24 the fate of lipids in the human upper gastrointestinal tract. It is also assumed that it is secreted 25 in the chylomicrons and then transported to the liver. The absorption efficiency of vitamin D is lower than that of triacylglycerols, and varies widely. Some factors suspected of affecting 26

its absorption efficiency have been extensively studied, while there is scant or even no data on others. After a review on the fate of vitamin D in the upper human gastrointestinal tract and on recent discoveries concerning mechanisms involved in its absorption, factors known or thought to affect its bioavailability, which is acknowledged as the fraction of ingested vitamin D that is recovered in the blood during the postprandial period after absorption of a known dose of vitamin D, are presented.

- 7
- 8

Fate of vitamin D in the human upper gastrointestinal tract

9

10 The fate of vitamin D in the human upper gastrointestinal tract consists of several 11 sequential steps including physicochemical and enzymatic events. It is assumed that vitamin D 12 absorption is governed by the same intraluminal factors as those that have been described for 13 major lipids (triacylglycerols, cholesterol and phospholipids) (Tso and Fujimoto, 1991). These 14 include emulsification, solubilisation in mixed micelles, diffusion across the unstirred water 15 layer and permeation through the enterocyte membrane.

16 Vitamin D metabolism may begin in the stomach, where foods are subjected to acid 17 conditions and gastric enzymes. There is apparently no data on the sensitivity of the main 18 dietary forms of vitamin D (cholecalciferol, ergocalciferol, 25OHD₃) to the acidic pH of the 19 stomach. It can be hypothesised that pepsin plays a role in vitamin D absorption by releasing 20 the fraction of vitamin D associated with proteins. Because vitamin D is fat-soluble it can also 21 be hypothesised that a fraction of dietary vitamin D not incorporated in oils, e.g. vitamin D in 22 fish flesh, transfers to the fat phase of the meal during digestion. This might improve 23 vitamin D bioavailability, assuming that vitamin D in oil is more bioaccessible than vitamin D 24 in a complex matrix. It is reasonable to suggest that the transfer efficiency depends on the 25 characteristics of the food matrix and on the presence of fat, but no data is available on this 26 topic. Finally, there is no data on the role of gastric lipase on vitamin D ester hydrolysis, but it

1 can be suggested that vitamin D esters (Hollis et al., 1996) are at least partially hydrolysed by 2 this lipase. This could be of importance when vitamin D is ingested as vitamin D esters, and when pancreatic lipase activity is not optimal (e.g. neonates and pancreatic insufficiency).

3

4 In the duodenum, digestive enzymes, e.g. proteases, amylases and lipases, continue to 5 release vitamin D from the food matrix. It is assumed that vitamin D not incorporated in oils, i.e. present naturally in dietary fat or transferred from a non-food matrix to the fat phase of the 6 7 meal in the stomach, is transferred from the food matrix to dietary fat and then into micelles, 8 but it is not known whether there is a direct transfer of vitamin D from the food matrix into 9 micelles. In the duodenum, it is assumed that vitamin D esters, if present, are hydrolysed by 10 bile salt stimulated lipase (Lombardo and Guy, 1980), also called carboxyl ester lipase, but it is not known whether other hydrolytic enzymes, such as pancreatic lipase (Mathias et al., 11 12 1981a), pancreatic lipase related proteins (Reboul et al., 2006a), or enzymes of the brush 13 border (Mathias et al., 1981b) are also involved in their hydrolysis. It is assumed that vitamin D₃ is solubilised in mixed micelles (Rautureau and Rambaud, 1981) and absorbed by the 14 15 lymphatic route, while 25OHD₃, being more polar, is less dependent on bile acids, and being 16 water-soluble, is mainly absorbed via the portal route (Maislos et al., 1981). This has been 17 confirmed by an Israeli team who studied the effect of absence of bile salts on the absorption 18 of non-hydroxylated and hydroxylated vitamin D forms. Their results showed that 19 1,25(OH)₂D₃ absorption was unaffected by the lack of biliary salts. Conversely, absorption of 20 25OHD₃ was decreased and that of vitamin D₃ was fully impaired (Maislos and Shany, 1987). 21 Fat-soluble entities can be theoretically solubilised in structures other than micelles in the gut. 22 More precisely, as vesicles have been observed in the human duodenal lumen during digestion 23 (Staggers et al., 1990), it is hypothesised that they can incorporate fat-soluble substances in 24 their phospholipid membranes (Urano et al., 1987; Kirilenko and Gregoriadis, 1993). 25 However, it is not known whether a significant proportion of the different forms of vitamin D 26 is incorporated in vesicles, and whether this has any effect on their absorption.

1 The main site of vitamin D absorption in humans is not accurately known, but in the 2 rat, uptake was observed in both jejunum and ileum (Hollander et al., 1978; Reboul et al., 3 2011), the ileum being the main site of absorption (Reboul et al., 2011). Absorption efficiency 4 of vitamin D₃ given in peanut oil was found to range between 55 % and 99 % (mean 78%) in 5 healthy subjects (Thompson et al., 1966). These rates are similar to those from animal 6 experiments, where rates between 66% and 75% were reported. Vitamin D is detected in the 7 bile. However, the significance of a conservative enterohepatic circulation of vitamin D is 8 controversial. Figure 2 summarises current knowledge on the fate of vitamin D in the human 9 upper gastrointestinal tract. In addition, although the metabolism of vitamin D lies outside the 10 scope of this review, we need to know how vitamin D metabolism modifies the forms of 11 vitamin D that circulate in the blood; a figure is therefore presented that summarises the 12 current knowledge of vitamin D metabolism in the human body (Figure 3).

13

14 Absorption mechanisms of vitamin D

15

16 From early studies using everted rat gut sacs (Hollander and Truscott, 1976) and 17 perfusion of rat small intestinal loops (Hollander et al., 1978), the mechanism of absorption of 18 the non-hydroxylated forms of vitamin D, i.e. cholecalciferol and ergocalciferol, had been 19 assumed to be a non-saturable passive diffusion process. However, recent results using the 20 human intestinal cell line Caco-2 and HEK transfected cells have shown that intestinal cell 21 membrane proteins are involved in the uptake of these non-hydroxylated forms at the apical 22 side of the enterocyte (Reboul et al., 2011). These proteins are SR-BI (Scavenger Receptor 23 class B type 1), CD36 (Cluster Determinant 36) and NPC1L1 (Niemann-Pick C1-Like 1), also 24 involved in apical uptake of cholesterol and of other lipidic micronutrients: vitamin E (Reboul 25 et al., 2006b; Narushima et al., 2008) and carotenoids (Reboul et al., 2005; van Bennekum et 26 al., 2005; Moussa et al., 2008). The results of Reboul et al. (Reboul et al., 2011) also suggest

1 that vitamin D uptake is mainly protein-mediated at low, dietary concentrations of vitamin D, 2 while it is also passive at high, pharmacological concentrations. Finally, the fact that 3 cholecalciferol uptake was higher in the rat jejunum than in the duodenum suggests that 4 another transporter specifically expressed in the jejunum might play an important role in 5 vitamin D uptake (Reboul et al., 2011). There is no data concerning absorption mechanisms of 6 the hydroxylated forms of vitamin D. However, it can be hypothesised that the mechanisms 7 are different, because these entities $(250HD_3 \text{ and } 1,25(OH)_2D_3)$ are less dependent on bile 8 acids for absorption, and their absorption efficiency is considerably higher, about three times 9 that of the non-hydroxylated forms (Compston et al., 1981). Figure 4 shows the current 10 knowledge on proteins involved in absorption of vitamin D by human intestinal cells.

11

12 **Possible factors affecting absorption**

13

14 Before it can be absorbed, vitamin D has to be released from the food matrix, 15 e.g. fish oil, fish flesh, or mushrooms, in which it is embedded, and be presented to the brushborder in a state such that it can be absorbed by intestinal cells. It is assumed that absorption 16 17 efficiency depends on an array of variables including: (i) the food matrix, (ii) the composition 18 of the meal, (iii) the activities of digestive enzymes, and (iv) the efficiency of transport across 19 the enterocyte. The mnemonic "SLAMENGHI", listing the factors thought to govern 20 carotenoid absorption (de Pee and West, 1996), was used to review the factors suspected to 21 affect vitamin D absorption. Each letter stands for a factor: Species (molecular forms) of 22 vitamin D, molecular Linkage of vitamin D (e.g. esterification), Amount of vitamin D 23 consumed in a meal, Matrix in which vitamin D is incorporated, Effectors of absorption and 24 bioconversion, Nutrient status of the host, Genetic factors, Host-related factors, and 25 mathematical Interactions. Each SLAMENGHI factor was reviewed by querying the on-line US National Library of Medicine (last review January 31, 2012). It appeared that some factors 26

1 had been extensively studied, e.g. the effect of ageing or the effect of diseases that lead to fat 2 malabsorption, while there is no data on other factors, e.g. effect of gender or genetic factors. 3 Results from the available literature are presented here.

4

5 a. Species of vitamin D

6

7 Although cholecalciferol is the main dietary form of vitamin D, foods can also contain 8 ergocalciferol and 25OHD₃. Several studies have compared the bioavailabilities of these two 9 vitamin D species with that of vitamin D_3 .

10

• Ergocalciferol vs. cholecalciferol: In a first study, bioavailability was evaluated 11 by administering single doses of 50,000 IU of either cholecalciferol or ergocalciferol to 20 12 healthy male subjects. The two forms produced similar initial rises in serum 25OHD over the 13 first 3 days, suggesting equivalent intestinal absorption (Armas et al., 2004). In a second study 14 (Holick et al., 2008), healthy subjects received either placebo, or 1000 IU vitamin D₃, or 1000 15 IU vitamin D₂, or a mixture of 500 IU vitamin D₃ and 500 IU vitamin D₂. 250HD increased 16 similarly in all the vitamin D supplemented groups, again suggesting similar bioavailabilities of the two forms. A consistent result was obtained recently when vitamin D₂ and vitamin D₃, 17 18 incorporated in orange juice or in a supplement, gave similar serum 25OHD responses 19 (Biancuzzo et al., 2010). However, two clinical studies (Romagnoli et al., 2008; Khazai et al., 20 2009a) suggested a higher bioavailability of vitamin D₃ than of vitamin D₂. However, there 21 was a confounding variable in the study of Khazai et al. (Khazai et al., 2009a): vitamin D₃ was 22 in a powder-based supplement while vitamin D₂ was in oil. Furthermore, the subjects had 23 cystic fibrosis, and the effect of the vehicle in which vitamin D is solubilised can be more 24 critical, especially when it is oil, in subjects with fat malabsorption than in healthy subjects. 25 The study of Romagnoli et al. (Romagnoli et al., 2008) found that vitamin D₃ was apparently

1 almost twice as potent as vitamin D₂ in increasing serum 25OHD after 60 d. However, as 2 discussed by the authors themselves, the 25OHD increased in parallel, suggesting a 3 comparative absorption. Thus the difference in 25OHD levels after 60 d was attributed to a 4 more rapid metabolism/clearance of vitamin D_2 than of vitamin D_3 metabolites (see below). 5 The best way to avoid the effect of liver and kidney metabolism on blood vitamin D concentration is to compare absorption in cultures of human intestinal cell. This was recently 6 7 done (Reboul et al., 2011) and it was shown that vitamin D₃ and vitamin D₂ were absorbed 8 with similar efficiencies by Caco-2 cells.

9 The biological equivalence between vitamin D_3 and vitamin D_2 is still a matter of debate (Armas et al., 2004; Khazai et al., 2009b; Binkley et al., 2012; Youssef et al., 2012). 10 11 Thus the fact that absorption efficiencies of vitamin D_3 and vitamin D_2 are apparently similar 12 contrasts with the finding in the clinical study by Armas et al. (Armas et al., 2004) that serum 13 250HD continued to rise in the vitamin D₃-treated subjects, peaking at 14 d, while 250HD 14 fell rapidly in the vitamin D₂-treated subjects and was not different from baseline at 14 d. 15 Consequently, area under the curve (AUC) to day 28 was 151 nmol.d/L for vitamin D₂ and 16 512 for vitamin D_3 . It was concluded that vitamin D_2 potency was less than one third that of 17 vitamin D_3 . This conclusion is supported by three studies from another team who showed that 18 treatment with vitamins D₂ and D₃ in the same doses produced considerably different serum 19 concentrations of vitamin D metabolites (Tjellesen et al., 1985b; Tjellesen et al., 1986), and 20 not the same action of the two vitamins on bone metabolism (Tjellesen et al., 1985a), and also 21 by the results of a study with very large doses of vitamin D_2 and D_3 given to elderly subjects 22 (Romagnoli et al., 2008). The mechanisms explaining the different biological effects of 23 vitamin D_2 and D_3 are apparently not linked to their first hydroxylation by the liver, as similar 24 increases in serum 25OHD levels were observed after intravenous injection of either vitamin 25 D_2 or D_3 . Other mechanisms have been suggested, e.g. different affinities of $1,25(OH)_2D_2$ and 1,25OHD₃ for the VDR nuclear receptor, but these hypotheses remain to be addressed in
 dedicated studies.

3 • 25OHD₃ vs. cholecalciferol and ergocalciferol: The relative bioavailability of vitamin D₃ and 25OHD₃ is well-documented. In healthy subjects, the total amount of 4 5 [3H]vitamin D₃ recovered in plasma 6 h after [3H]25OHD₃ intake was considerably higher 6 after [3H]25OHD₃ than after [3H]cholecalciferol intake. Conversely, a much higher 7 percentage of [3H]vitamin D₃ was found in the chylomicron fraction after ingestion of 8 [3H]vitamin D₃ than after ingestion of [3H]25OHD₃ (Compston et al., 1981). This apparent 9 discrepancy was explained by the fact that vitamin D_3 absorption occurs via chylomicrons, 10 while that of 25OHD₃ occurs *via* the portal route. However it is also possible that a significant 11 fraction of newly absorbed cholecalciferol and ergocalciferol is quickly stored in adipose 12 tissue leading to lower blood concentrations of these forms as compared to 25OHD₃. The 13 higher bioavailability of 25OHD₃ than of vitamin D_2 and D_3 was confirmed in another study in 14 which ten times more vitamin D, either as ergocalciferol or as cholecalciferol, than $250HD_3$ 15 was required to produce equivalent plasma 25OHD₃ concentrations (Stamp et al., 1977). As 16 patients suffering from diseases that lead to fat malabsorption also malabsorb vitamin D (Lo 17 et al., 1985; Heubi et al., 1989; Lark et al., 2001), several studies were dedicated to assessing 18 whether 25OHD₃ could be used to improve vitamin D absorption in these patients: the results 19 were positive. The absorption of cholecalciferol and 25OHD₃ was compared in normal 20 subjects and in patients with mild and severe cholestatic liver disease. Results showed that 21 absorption of 25OHD₃ was greater than that of cholecalciferol in all three groups (Sitrin and 22 Bengoa, 1987). In another study in patients with Crohn's disease and resections of the small 23 bowel, it was also observed that 25OHD₃ was better absorbed than cholecalciferol 24 (Leichtmann et al., 1991).

In conclusion, 250HD is better absorbed than the non-hydroxylated forms cholecalciferol and ergocalciferol. These forms are apparently absorbed with the same efficiency, but metabolism and biological activities of the hydroxylated metabolites of vitamin D₂ and D₃ are apparently different, and lead to an apparent lower biological activity of vitamin D₂ compared with vitamin D₃.

6

7	<i>b</i> .	Molecular	<u>L</u> inkage
---	------------	-----------	-----------------

8

9 Dietary vitamin D is non-esterified, but because some supplements may contain 10 vitamin D esters (Hollis et al., 1996), the question arises of whether esterification affects vitamin D bioavailability. Only one study is dedicated to comparing the relative absorption 11 12 efficiency of free vitamin D and vitamin D esters (Hollis et al., 1996). In this study, performed 13 at various postnatal ages, the abilities of vitamin D_3 -palmitate and non-esterified vitamin D_2 to 14 elevate circulating vitamin D₃ and vitamin D₂, respectively, were compared. It was concluded 15 that the two forms approached equivalence when the gastrointestinal tract was mature. 16 Conversely, vitamin D₃-palmitate bioavailability was lower below age 10 days, probably due 17 to the lack of maturation of the digestive tract. This confirms the need for an efficient 18 digestion of lipids to efficiently absorb vitamin D, in particular vitamin D esters.

19

20 c.<u>A</u>mount consumed in a meal

21

It is generally assumed that like other vitamins, the absorption efficiency of vitamin D decreases with increasing dose. The effect of the dose of vitamin D on its absorption efficiency was studied in the rat. In both the jejunum and ileum, a linear relationship was found between the absorption rate of the vitamin and its intraluminal concentration (Hollander et al., 1978). This suggests that at least in the range of the studied concentrations, vitamin D

1 absorption efficiency does not significantly decrease with dose. This result is supported by the 2 result of a clinical study in which 116 subjects were placed in nine treatment groups that 3 ingested vitamin D_3 (25, 250 or 1250 µg/d for 8 weeks), 25OHD₃ (10, 20 or 50 µg/d for 4 4 weeks) or 1,25(OH)₂D₃ (0.5, 1.0 or 2.0 µg/d for 2 weeks). Results showed that serum levels of 5 all three forms increased linearly with the dietary dose, showing a similar efficiency of 6 absorption, at least in the range of doses studied (Barger-Lux et al., 1998). A recent study, 7 performed in the human intestinal cell line Caco-2, has shown that at low concentrations of vitamin D₃ in micelles, i.e. between 0.1 and 2-3 µmole/L, higher than the physiological 8 9 concentration in the human duodenum, calculated to be about 0.01 µmole/L (Reboul et al., 10 2011), the uptake of both vitamin D_3 and D_2 was saturable, while it was linear at high 11 pharmacological concentrations, i.e. up to 10 µmole/L. This result supports the involvement 12 of intestinal proteins in vitamin D absorption at dietary concentrations and a passive diffusion 13 that becomes preponderant at pharmacological concentrations.

14

15 *d.* <u>*Matrix in which vitamin D is incorporated*</u>

16

This factor is thought to be important because it is assumed that vitamin D needs to be extracted from its food or supplement matrix to become bioaccessible, i.e. to become solubilised in micelles and available for absorption.

Vitamin D bioavailability in foods was measured in some foods only, i.e. meat, mushrooms, orange juice, milk and fortified cheese. This was done in different studies and it is therefore difficult to compare the values obtained. In a clinical study, the relative bioavailability of vitamin D_2 from pig meat sources was estimated to be about 60% compared with a vitamin D_2 supplement (van den Berg, 1997). In two studies, performed in the rat, it was concluded that vitamin D_2 from UV-irradiated mushrooms (*Agaricus bisporus* or *Lentinula edodes*) was bioavailable (Jasinghe et al., 2005; Koyyalamudi et al., 2009), but there

1 was no comparison of the bioavailability with any other matrix. The bioavailability of vitamin 2 D₂ from mushrooms (Cantharellus tubaeformis) was confirmed in a clinical study involving 3 27 volunteers. The volunteers were randomly divided up into three groups of nine persons. 4 For 3 weeks, group 1 received mushrooms providing 14 µg ergocalciferol/d with their lunch, 5 group 2 received an ergocalciferol supplement providing 14 µg/d, and group 3 received no 6 supplementation. Serum 25OHD concentrations at 3 weeks were higher in groups 1 and 2 than 7 in group 3, and did not significantly differ between groups 1 and 2, suggesting that the vitamin 8 D_2 in mushrooms had the same bioavailability as the vitamin D_2 in supplement (Outila et al., 9 1999). A recent controlled trial confirmed this finding, showing that vitamin D₂ from UV-B-10 irradiated button mushrooms had the same bioavailability as that of a vitamin D₂ supplement 11 (Urbain et al., 2011). A clinical study found similar bioavailabilities of 25000 UI vitamin D₂ 12 ingested with either milk (whole or skimmed) or 0.1 mL corn oil on toast (Tangpricha et al., 13 2003), suggesting no effect of milk nutrients on vitamin D bioavailability. Four years ago, a 14 clinical study compared the bioavailability of vitamin D₃ from fortified wheat bread, fortified 15 rye bread and a supplement (Natri et al., 2006). Both fortified breads increased serum 25OHD 16 as effectively as the supplement. It was concluded that bread matrix did not significantly 17 affect vitamin D bioavailability. The bioavailability of vitamin D in bread was confirmed 18 recently in a study that showed that vitamin D2-rich yeast baked into bread was bioavailable 19 and improved bone quality in vitamin D-deficient rats (Hohman et al., 2011). Recently, a 20 clinical study involving 80 subjects was dedicated to comparing the bioavailability of vitamin 21 D_3 between fortified cheeses and a supplement (liquid vitamin D_3). It was concluded (from 22 measurement of blood 25OHD) that vitamin D_3 was equally bioavailable from both sources 23 (Wagner et al., 2008). Finally, a recent study showed that vitamins D2 and D3 were equally 24 bioavailable in orange juice and in supplement (Biancuzzo et al., 2010).

Concerning vitamin D bioavailability in supplements, the effect of the vehicle
 substance used in vitamin D supplements on vitamin D bioavailability was recently reviewed

1 (Grossmann and Tangpricha, 2010). It is concluded that although limited studies are available, 2 vitamin D in an oil vehicle is more bioavailable than when incorporated in a powder-based 3 vehicle (cellulose or lactose) or in ethanol. However, a recent clinical trial has concluded that 4 vitamin D is more bioavailable from a lactose capsule than from an oily drop formulation 5 (Coelho et al., 2010).

6

In summary, most data suggest that food matrix has no marked effect on vitamin D 7 bioavailability. The effect of supplement matrix is less clear.

8

9 e. Effectors of absorption

10

11 A very recent study found that taking vitamin D supplement with the largest meal of 12 the day improved vitamin D absorption (Mulligan and Licata). This suggests that one or more 13 components of the meal, or gut enzymes secreted after meal intake, improve vitamin D 14 absorption. However, another study did not confirm this finding, showing no significant 15 difference in blood 25OHD levels between subjects consuming a vitamin D supplement with 16 or without food (Wagner et al., 2008). As foods contain a multitude of substances (nutrients, 17 micronutrients, fibre, phytochemicals, etc.) it is likely that the different results of these two 18 studies were due to the different composition of the meals. To evaluate whether food 19 components can affect vitamin D bioavailability, it is necessary to perform dedicated 20 experiments to study the effect of each food component. Some studies presented here have 21 used this approach.

22

23 I. Dietary lipids

24

25 Lipids are assumed to improve absorption of fat-soluble microconstituents (FSM) by several mechanisms. First, they can facilitate the release of FSM from food matrices by 26

1 providing a hydrophobic phase where FSM can be solubilised. Second, because lipids 2 stimulate biliary secretion, and consequently micelle production, they can increase the 3 proportion of micellarised FSM, i.e. of FSM available for absorption. Third, lipid digestion 4 products, e.g. fatty acids, monoglycerides and lysophospholipids, are micelle components and 5 so the more lipids digested, the more micelles are available to solubilise FSM (Hofmann, 6 1963). Finally, by inducing chylomicron synthesis, lipids can enhance FSM transport outside 7 the enterocytes and thus prevent the accumulation of vitamin D in enterocytes. This in turn 8 will theoretically increase FSM absorption. Several characteristics of dietary lipids are thought 9 to affect FSM absorption: (i) the amount of triacylglycerols ingested with vitamin D, (ii) the 10 species of fatty acids that constitute triacylglycerols (iii) the amounts of phospholipids, d) the 11 species of phospholipids, and (iv) the emulsification of lipids. However, data on the effect of 12 only two of these characteristics is available.

13

• Amount of fat (triacylglycerols)

15 Surprisingly, adding 2.5 mM fatty acids of varying chain length and degree of saturation resulted in a decrease in the rate of vitamin D₃ absorption in rats (Hollander et al., 16 1978). This suggests that conversely to what is observed for other fat-soluble vitamins 17 18 (vitamin E and β -carotene), fat may diminish vitamin D absorption. However, four clinical 19 studies did not find any significant effect of fat on vitamin D bioavailability. The first one, 20 mainly designed to compare the bioavailability of vitamin D in two beverages (orange juice 21 and milk), showed that the fat content of milk did not significantly affect vitamin D_2 22 bioavailability in 18 adults (Tangpricha et al., 2003). The second study did not find any 23 difference between vitamin D_3 fortified cheddar cheese (~33% fat) and vitamin D_3 fortified 24 low-fat cheese (~7% fat) in their ability to increase blood 25OHD (Wagner et al., 2008). The 25 third study found no difference between vitamin D in multivitamin tablets and vitamin D in 26 fish oil in their ability to increase serum 25OHD (Holvik et al., 2007). In the fourth trial,

1 consumption of vitamin D with 2 g fish oil once weekly did not improve vitamin D absorption 2 (Korkor and Bretzmann, 2009). We note that in a recent clinical study (Raimundo et al., 3 2011), it was concluded that a high-fat meal (25.6 g fat/meal) increased vitamin D absorption 4 compared with a low fat meal (1.7 g). However, a close look at the results obtained reveals 5 that there was no effect of either the low fat or high fat meals, which contained 50000 UI 6 vitamin D₃, on serum 250HD 7 days after intake. Furthermore, it was not a crossover study 7 and the authors acknowledged that some of the subjects may have had secondary 8 hyperparathyroidism. Thus the available data suggests that the amount of fat ingested with 9 vitamin D has no major effect on vitamin D bioavailability.

10

11 • Type of fatty acid (within triacylglycerols)

12 The pioneering work on this topic was performed by Hollander's team (Hollander et 13 al., 1978). It was shown in rat perfusate intestine that addition of fatty acids of varying chain 14 length and degrees of saturation, i.e. butyric, octanoic, oleic and linoleic, resulted in a 15 decrease in the rate of vitamin D₃ absorption. More precisely, the inhibitory effects of the 16 oleic and linoleic acids were higher than that of octanoic acid in the distal part of the intestine. 17 The authors suggested that unlike medium-chain fatty acids, which are not incorporated in 18 micelles, long-chain fatty acids hinder vitamin D absorption by causing enlargement of the 19 micellar size, thereby slowing their diffusion towards the enterocyte. However, this result was 20 not confirmed in a clinical trial: absorption of a pharmacological dose of vitamin D₃ was compared when ingested with either medium-chain triacylglycerols or long-chain 21 22 triacylglycerols (peanut oil). Results showed that the serum levels of vitamin D_3 were 23 significantly higher after administration in peanut oil (long-chain triglycerides) than after 24 administration in medium-chain triglycerides. (Holmberg et al., 1990). Concerning the 25 comparison between different types of fatty acids, a recent clinical study has concluded that 1 diets rich in monounsaturated fatty acids may improve the effectiveness of vitamin D_3 2 supplements in healthy older adults, while those rich in polyunsaturated fatty acids may 3 reduce it (Niramitmahapanya et al., 2011).

4 Taken together, these results suggest that the type of fatty acid can affect vitamin D 5 bioavailability. However, further studies are required to draw firm conclusions on the 6 compared effects of each type of fatty acid on vitamin D bioavailability.

7

8 II. <u>Dietary Fibre</u>

9

10 Dietary fibre has been suspected of affecting FSM absorption by several mechanisms: 11 (i) by affecting micelle formation; (ii) by altering emulsification and triacylglycerol lipolysis 12 (Pasquier et al., 1996) and thus affecting the release of FSM embedded in fat droplets, and 13 (iii) by increasing the viscosity of the chyme and thus limiting the diffusion of FSM 14 containing micelles to the brush border. Compston suggested that the high dietary fibre intake 15 of Asian immigrants caused vitamin D bioavailability to diminish, thus explaining the higher 16 incidence of rickets and osteomalacia in this population (Compston, 1979). However, there 17 are only two clinical studies on the effect of fibre on vitamin D absorption. The first study compared the rate of plasma disappearance of radiolabelled 25OHD in healthy volunteers on 18 19 either normal or high-fibre diets (20 g/d). The authors observed that the mean plasma half-life 20 of 3H-25OHD₃ in the high-fibre group was 19.2 ± 1.7 d, significantly shorter than in the group 21 on normal diet (27.5 \pm 2.1 d). They suggested that fibre enhanced elimination of 25OHD by 22 an action in the intestinal lumen (Batchelor and Compston, 1983). However, a recent clinical 23 study did not find any significant differences between vitamin D fortified low-fiber wheat 24 bread (3 g/100 g) and high-fiber rye bread (12 g/100 g) consumed for 3 weeks, in their ability to increase blood 250HD in 41 healthy subjects (Natri et al., 2006). However, the authors 25

acknowledged that there was no significant difference in daily total fiber intake among the
 two groups of subjects, because they were allowed to eat other breads. In conclusion, there is
 too little data to conclude on the effect of this factor on vitamin D bioavailability.

4

5 <u>III. Inhibitors of lipid absorption</u>

6

7 Since obesity is a major health problem, several antiobesity drugs have been proposed 8 to diminish the absorption of triacylglycerols and cholesterol. Because of the closely similar 9 fate of lipids and vitamin D in the gastrointestinal lumen, it has been hypothesised that these 10 drugs can also impair vitamin D absorption. It has been shown that tetrahydrolipstatin 11 (orlistat), a non-absorbed inhibitor of gastric and pancreatic lipases, and olestra, a sucrose 12 polyester used as a fat substitute, reduce absorption of vitamin D (Schlagheck et al., 1997; 13 McDuffie et al., 2002). Phytosterols, the plant sterols used to diminish cholesterol absorption, 14 might also impair vitamin D absorption by impairing its solubilisation in mixed micelles. This 15 hypothesis was supported both by results obtained in rats that showed a decrease in both 16 blood and liver vitamin D levels after dietary levels of stanol esters for 13 wks (Turnbull et 17 al., 1999), and by recent results obtained in vitro and in mice that showed that phytosterols 18 compete with vitamin D₃ for incorporation into mixed micelles as well as for apical uptake 19 (Goncalves et al., 2011). Surprisingly, phytosterols were claimed to have no effect on vitamin 20 D status in different clinical trials [32, 33]. However, in all these studies, vitamin D status 21 was evaluated as plasma 25OHD, which is highly variable depending on factors such as 22 season and sun exposure. As a consequence, 250HD levels can display a high variability 23 between the beginning and end of the study or between the different groups (Gylling et al., 24 2010). In addition, the intervention periods may have been too short to reveal a significant 25 effect on vitamin D homeostasis. Finally, we note that a close look at one of these studies 26 reveals a significant lowering effect of a sitostanol ester enriched margarine on vitamin D plasma level after a long-term treatment (Gylling et al., 1999). We note that the negative effect of inhibitors of lipid absorption on absorption of fat soluble vitamins can be offset by adding vitamin supplements to the diet. This was demonstrated in a clinical study in 102 subjects in whom serum concentrations of vitamin E and 25OHD₂ were restored to control concentrations by adding 2.1 mg d- α -tocopheryl acetate and 0.06 µg ergocalciferol per gram of olestra, respectively, to the diet (Schlagheck et al., 1997).

7

8 IV. Microconstituents

9

10 As the main dietary source of vitamin D, i.e. cholecalciferol, can be ingested together 11 with other vitamin D species (vitamin D₂, vitamin D esters, etc.) and other lipid 12 micronutrients (other fat-soluble vitamins, carotenoids and phytosterols), and because 13 common mechanisms of absorption are involved (Reboul and Borel, 2011), it has been 14 hypothesised that interactions can occur that affect their absorption (Reboul and Borel, 2011). 15 A study performed in our laboratory in Caco-2 cells supports this hypothesis by showing that 16 high concentrations of vitamin D₂ significantly impair cholecalciferol absorption (Reboul et 17 al., 2011). However, this competition should be re-assessed in vivo, as conflicting results have 18 been published: in a first clinical study, oral administration of 400 IU/d of vitamin D₂ for 1 19 week led to very small variations of plasma vitamin D₃ and its metabolites (Matsuoka et al., 20 1989). Furthermore, in a recent study, a mixture of 500 IU of vitamin D₃ and 500 IU of 21 vitamin D₂ led to a similar rise in 25OHD as 1000 IU of vitamin D₃ (Holick et al., 2008), 22 suggesting no inhibition of D_3 absorption by D_2 at relatively low doses. Conversely, in another 23 study, vitamin D₂ treatment (4000 IU/d for 8 weeks) decreased blood 25OHD₃ and 24 1,25(OH)₂D₃ (Tjellesen et al., 1986). Finally, a recent study in cows has shown that vitamin D_3 , given as an oral bolus of 250 mg (1.0 x 10⁷ IU) after vitamin D_2 , is less efficient in 25 increasing the plasma status of $25OHD_3$ than the same dose of vitamin D_3 given without 26

previous vitamin D_2 administration (Hymoller and Jensen, 2011). Thus high doses of vitamin D_2 supplements might decrease vitamin D_3 absorption, but available data are in different species and therefore further studies are needed to definitely conclude on the effect of high doses vitamin D_2 on vitamin D_3 absorption in humans.

5

6 <u>V. Milk and milk-derived products</u>

7

8 The bioavailability of vitamin D naturally present in milk has never been measured, 9 probably owing to the low concentration of the vitamin in it (about 25 IU of vitamin D/L 10 human milk). By contrast, studies were performed to measure bioavailability of vitamin D in 11 fortified milk or cheeses. In a first study in 18 subjects, it was shown that milk, either whole 12 or skimmed, did not significantly modify vitamin D₂ bioavailability compared with its intake 13 without milk (Tangpricha et al., 2003). In a second study in young and older adults, it was 14 observed that vitamin D bioavailability was higher when incorporated in cheese than when 15 solubilised in water (Johnson et al., 2005). In a third study, dedicated to comparing vitamin D 16 bioavailability between fortified cheeses and supplement, it was concluded that vitamin D was 17 equally absorbed between fortified cheese and water (Wagner et al., 2008). In conclusion, it 18 appears that milk or cheese do not significantly affect vitamin D bioavailability.

19

20 <u>VI. Absorption enhancers</u>

21

22 Some substances, e.g. β-cyclodextrine, nanoparticles and compounds able to form 23 micelles, are used to improve absorption efficiency of liposoluble drugs or fat-soluble 24 vitamins. Their ability to enhance absorption efficiency of vitamin D was assessed in some 25 studies. The first absorption enhancer studied was a water-soluble form of vitamin E 26 (tocopheryl succinate polyethylene glycol 1000 (TPGS). This substance was a good candidate for improving vitamin D absorption as it is able to form micelles that can solubilise lipophilic compounds including vitamin D. This was assessed in a clinical study with eight children (aged 5 mo to 19 y) suffering from severe chronic cholestasis. Results showed a significantly higher absorption of vitamin D administered in a mixture with TPGS (Argao et al., 1992). The ability of β -cyclodextrine to enhance absorption of vitamin D was studied in rats. Results showed a 2.5-fold increase in absorption compared with vitamin D alone (Szejtli et al., 1983).

- 7
- 8 f. <u>N</u>utrient status of the host
- 9

As vitamin D has numerous biological effects, and as large amounts of vitamin D can be toxic, it can be hypothesised that as observed for vitamin A (Lobo et al., 2010), vitamin D absorption is regulated by vitamin D status. Surprisingly, only one study in rats has been dedicated to testing this hypothesis. In this study it was observed that the intestinal absorption of vitamin D₃ and its hydroxylation in the liver were higher in vitamin D-deficient rats than in vitamin D-treated ones (Apukhovskaia et al., 1990). This very interesting finding requires support from further experiments.

17

19

A line of results has suggested that genetic variants play a key role in modulating 250HD blood concentrations (Orton et al., 2008; Fu et al., 2009; Sinotte et al., 2009; Ahn et 22 al., 2010; Karohl et al., ; McGrath et al., 2010). The fact that proteins are involved in cellular 23 uptake of vitamin D raises the question of the impact of modulations in the expression or 24 activity of these proteins on blood and tissue concentrations of vitamin D. The expression and 25 activity of proteins can be modulated by several factors, including genetic ones. Genetic 26 variations in or near genes that encode proteins may affect protein expression, e.g. a genetic

¹⁸ g. <u>G</u>enetic factors

variation that affects the binding of a transcription factor in the promoter region of a gene
(Hernandez-Romano et al., 2009), or protein activity, e.g. a genetic variation that leads to a
functional modification in the amino acid sequence of the protein, and in turn the ability of
these proteins to accurately perform their function in the metabolism (Lindqvist et al., 2007;
Borel, 2011). However, no result has been published on this exciting topic.

6

7 h. Host-related factors

8

9 A line of evidence suggests that host-related factors (mainly age and diseases) can 10 have an effect on vitamin D absorption. Thus several studies have been performed to assess 11 their effect in order to optimise RDA as a function of age and disease.

- 12
- 13 I. <u>Age</u>
- 14

Ageing, by affecting numerous physiological processes, may directly or indirectly affect vitamin D absorption. More precisely, age-related alterations of gastrointestinal tract functions (Vellas et al., 1991; Russell, 1992; Ikuma et al., 1996) may modify the efficiency of vitamin D absorption, as suggested for vitamin E (Borel et al., 1997). As most elderly people have a low vitamin D status, it has been hypothesised that absorption efficiency of vitamin D is less efficient in elderly persons than in young adults.

The first study dedicated to testing this hypothesis was performed in 20 elderly women, most of whom were vitamin D-depleted. Because the plasma [3H]cholecalciferol response after oral ingestion was significantly lower than that of a group of younger female subjects, it was suggested that there was a defect in intestinal absorption of cholecalciferol in the elderly (Barragry et al., 1978). However, subsequent studies on this topic did not confirm this finding: a study in rats pointed to a normal absorption of vitamin D₃ in ageing animals

1 (Hollander and Tarnawski, 1984). In another study, serum vitamin D₂ concentrations were 2 compared after oral administration of 50,000 IU of vitamin D₂ in both healthy vitamin D-3 sufficient elderly subjects and young adults. Again, no evidence of malabsorption of vitamin 4 D in the elderly subjects was observed (Clemens et al., 1986). In a third study, involving four 5 young (23 to 50 yr) and four older (72 to 84 yr) subjects, peak serum 250HD and 250HD 6 areas under the curve were not significantly different between the younger and older adults 7 (Johnson et al., 2005). Finally, a study by Harris and coworkers involving 25 young men (18 to 35 yr) and 25 older men (62 to 79 yr) supplemented with 800 IU of vitamin D₃ per day 8 9 (Harris and Dawson-Hughes, 2002), found that the magnitude of blood 25OHD increase was 10 identical between the two age groups. In conclusion, there is apparently no significant effect 11 of ageing on vitamin D absorption efficiency. The frequent lower vitamin D status in elderly 12 than in young subjects may be due to lower dietary intakes, lower exposure to sunlight, lower 13 efficiency of vitamin D synthesis in the skin or lower hydroxylation of vitamin D by the liver.

14

15 <u>II. Diseases/digestive tube surgery</u>

16

17 The intestinal absorption of vitamin D requires normal digestive functions, and so 18 subjects with impaired fat absorption caused by any of several diseases (obstructive jaundice, 19 pancreatic insufficiency, cystic fibrosis or adult coeliac disease) have been suspected of 20 impairing vitamin D absorption. This is supported by the results of several studies: serum 21 vitamin D₂ and D₃ were undetectable in infants and children (age 4-22 mo) with extrahepatic 22 biliary atresia, whose portoenterostomy failed to produce bile flow, despite supplements of 23 2500-5000 IU/day (Heubi et al., 1990). Also, serum vitamin D₂ concentrations were 24 undetectable despite oral supplementation with 2,500 to 50,000 IU per day of vitamin D_2 in 25 children with cholestasis since infancy (Heubi et al., 1989). Finally, cystic fibrosis patients 26 absorbed less than one third (Farraye et al.), or one half (Lark et al., 2001) the amount of oral 1 vitamin D_2 that was absorbed by healthy subjects. However, we note that the negative effect 2 of these diseases on vitamin D bioavailability can be partially corrected by sun exposure 3 (Robberecht et al.) or by using hydroxylated vitamin D. Patients with intestinal fat 4 malabsorption syndromes have a relatively well-preserved absorption of 250HD₃, which is 5 absorbed directly *via* the portal vein (Leichtmann et al., 1991).

6 The effect of gastric surgery on vitamin D bioavailability has been studied by Aarts et
7 al. (Aarts et al., 2011). This team showed that peak serum cholecalciferol levels were about
30% lower after Roux-en-Y gastric bypass than before.

- 9
- 10 <u>III. Obesity</u>
- 11

12 As obesity is usually associated with vitamin D insufficiency, a study was dedicated to 13 assessing the effect of obesity on the cutaneous production of vitamin D_3 and on vitamin D 14 bioavailability, evaluated by the blood response in vitamin D after a vitamin D-rich meal. 15 Obese and matched lean control subjects received either whole-body ultraviolet radiation or a 16 pharmacologic dose of vitamin D₂ orally. Results showed that body mass index was inversely 17 correlated with serum vitamin D₃ concentrations after irradiation, and with peak serum vitamin D₂ concentrations after vitamin D₂ intake. It was concluded that obese subjects had 18 19 lower blood concentrations of vitamin D (coming either from the skin or the food) because of 20 its deposition in the body fat compartment (Wortsman et al., 2000), and not because of lower 21 skin synthesis or bioavailability. This was supported by a very recent study suggesting that 22 dilution of ingested or cutaneously synthesised vitamin D in the large fat mass of obese 23 patients explains their typically low vitamin D status (Drincic et al., 2012).

24

25 *i. Mathematical Interactions*

26

1 These are the interactions that can occur when several factors are involved (West and 2 Castenmiller, 1998). One recent study (Khazai et al., 2009a) shows a good example of 3 interactions between factors: in this clinical study, bioavailability of vitamin D_3 was better 4 than that of vitamin D_2 , but this was probably not due to any difference in absorption 5 efficiency of the two forms of vitamin D (see chapter on the S factor), but rather to an effect 6 of the vehicle in which vitamin D was incorporated (M factor), an effect probably exacerbated 7 in patients with fat malabsorption (H factor).

8

9 Conclusions

10

This review shows that the intraluminal fate of vitamin D and the fundamental mechanisms involved in vitamin D absorption are far from fully understood. It also shows that although the effects of some factors on vitamin D bioavailability are well documented, little data is available on numerous factors that may affect vitamin D bioavailability, e.g. genetic factors, effect of dietary fibre, and effect of vitamin D status. Clinical studies with labelled vitamin D (deuterated or ¹³C) are needed to accurately and definitively assess the effects of these factors on vitamin D bioavailability.

- 1 Figures
- 2
- 3 Figure 1

- 5 Chemical structures of natural dietary forms of vitamin D: (I) ergocalciferol (vitamin D₂), (II)
- 6 cholecalciferol (vitamin D₃), (III) 25-hydroxy-cholecalciferol.
- 7
- 8 Figure 2

- 1 Some important knowledge and lack of knowledge, on the fate of vitamin D in the human
- 2 upper gastro-intestinal tract lumen.
- 4 Figure 3

- $25(OH)D_2$: 25-hydroxy ergocalciferol. $1,25(OH)_2D_3$: dihydroxy cholecalciferol, DBP:
- 8 vitamin D binding protein. CYPxyzw: cytochrome P450, family x, subfamily y, polypeptide
- 9 zw.

- 4 Figure 4

Current knowledge on vitamin D absorption by human intestinal cells. From the paper of
Reboul et al. (Reboul and Borel, 2011). SR-BI: scavenger receptor class B type 1. CD36:
Cluster Determinant 36. NPC1L1: Niemann-Pick C1-like 1. The dashed arrow means that
there is no data on the molecular mechanisms involved in absorption of the hydroxy
metabolites of vitamin D. It has been hypothesized (Reboul and Borel, 2011) that protein
mediated uptake takes place at dietary doses of vitamin D while passive diffusion probably
occurs at high, non-physiological doses.

1 **References**

2

3	Aarts, E., van Groningen, L., Horst, R., Telting, D., van Sorge, A., Janssen, I., and de Boer, H.
4	(2011). Vitamin D absorption: consequences of gastric bypass surgery. Eur. J.
5	Endocrinol. 164: 827-832.
6	Ahn, J., Yu, K., Stolzenberg-Solomon, R., Simon, K.C., McCullough, M.L., Gallicchio, L.,
7	Jacobs, E.J., Ascherio, A., Helzlsouer, K., Jacobs, K.B., Li, Q., Weinstein, S.J.,
8	Purdue, M., Virtamo, J., Horst, R., Wheeler, W., Chanock, S., Hunter, D.J., Hayes,
9	R.B., Kraft, P., and Albanes, D. (2010). Genome-wide association study of circulating
10	vitamin D levels. Hum. Mol. Genet. 19: 2739-2745.
11	Apukhovskaia, L.I., Khrestovaia, N.L., Antonenko, L.V., Omel'chenko, L.I., and Dotsenko,
12	L.A. (1990). [Effect of varying vitamin D status in the body on intestinal absorption
13	and metabolism of vitamin D in the rat liver]. Ukr. Biokhim. Zh. 62: 88-92.
14	Argao, E.A., Heubi, J.E., Hollis, B.W., and Tsang, R.C. (1992). d-Alpha-tocopheryl
15	polyethylene glycol-1000 succinate enhances the absorption of vitamin D in chronic
16	cholestatic liver disease of infancy and childhood. Pediatr. Res. 31: 146-150.
17	Armas, L.A., Hollis, B.W., and Heaney, R.P. (2004). Vitamin D2 is much less effective than
18	vitamin D3 in humans. J. Clin. Endocrinol. Metab. 89: 5387-5391.
19	Barger-Lux, M.J., Heaney, R.P., Dowell, S., Chen, T.C., and Holick, M.F. (1998). Vitamin D
20	and its major metabolites: serum levels after graded oral dosing in healthy men.
21	Osteoporos. Int. 8: 222-230.
22	Barragry, J.M., France, M.W., Corless, D., Gupta, S.P., Switala, S., Boucher, B.J., and Cohen,
23	R.D. (1978). Intestinal cholecalciferol absorption in the elderly and in younger adults.
24	<i>Clin. Sci. Mol. Med.</i> 55: 213-220.

1	Batchelor, A.J., and Compston, J.E. (1983). Reduced plasma half-life of radio-labelled 25-
2	hydroxyvitamin D3 in subjects receiving a high-fibre diet. Br. J. Nutr. 49: 213-216.
3	Biancuzzo, R.M., Rachael, M., Young, A., Bibuld, D., Cai, M., Winter, M.R., Klein, E.K.,
4	Ameri, A., Reitz, R., Salameh, W., Chen, T.C., and Holick, M.F. (2010). Fortification
5	of orange juice with vitamin $D(2)$ or vitamin $D(3)$ is as effective as an oral supplment
6	in maintaining vitamin D status in adults. Am. J. Clin. Nutr. 91: 1621-1626.
7	Binkley, N., Gemar, D., Engelke, J., Gangnon, R., Ramamurthy, R., Krueger, D., and
8	Drezner, M.K. (2012). Evaluation of ergocalciferol or cholecalciferol dosing, 1,600 IU
9	daily or 50,000 IU monthly in older adults. J. Clin. Endocrinol. Metab. 96: 981-988.
10	Borel, P. (2011). Genetic variations involved in interindividual variability in carotenoid
11	status. Mol. Nutr. Food Res. Sep 29: doi: 10.1002/mnfr.201100322.
12	Borel, P., Mekki, N., Boirie, Y., Partier, A., Grolier, P., Alexandre-Gouabau, M.C.,
13	Beaufrere, B., Armand, M., Lairon, D., and Azais-Braesco, V. (1997). Postprandial
14	chylomicron and plasma vitamin E responses in healthy older subjects compared with
15	younger ones. Eur. J. Clin. Invest. 27: 812-821.
16	Clemens, T.L., Zhou, X.Y., Myles, M., Endres, D., and Lindsay, R. (1986). Serum vitamin D2
17	and vitamin D3 metabolite concentrations and absorption of vitamin D2 in elderly
18	subjects. J. Clin. Endocrinol. Metab. 63: 656-660.
19	Coelho, I.M., Andrade, L.D., Saldanha, L., Diniz, E.T., Griz, L., and Bandeira, F. (2010).
20	Bioavailability of vitamin D3 in non-oily capsules: the role of formulated compounds
21	and implications for intermittent replacement. Arq. Bras. Endocrinol. Metabol. 54:
22	239-243.
23	Compston, J. (1979). Rickets in Asian immigrants. Br. Med. J. 2: 612.
24	Compston, J.E., Merrett, A.L., Hammett, F.G., and Magill, P. (1981). Comparison of the
25	appearance of radiolabelled vitamin D3 and 25-hydroxy- vitamin D3 in the

2

chylomicron fraction of plasma after oral administration in man. *Clin Sci (Lond)* **60:** 241-243.

- de Pee, S., and West, C. (1996). Dietary carotenoids and their role in combating vitamin A 3 deficiency : a review of the litterature. Eur. J. Clin. Nutr. 50: S38-S53. 4 5 Drincic, A.T., Armas, L.A., Van Diest, E.E., and Heaney, R.P. (2012). Volumetric Dilution, 6 Rather Than Sequestration Best Explains the Low Vitamin D Status of Obesity. 7 Obesity (Silver Spring): Jan 19. doi: 10.1038/oby.2011.1404. [Epub ahead of print]. 8 Farraye, F.A., Nimitphong, H., Stucchi, A., Dendrinos, K., Boulanger, A.B., Vijjeswarapu, 9 A., Tanennbaum, A., Biancuzzo, R., Chen, T.C., and Holick, M.F. (2011). Use of a 10 novel vitamin D bioavailability test demonstrates that vitamin D absorption is 11 decreased in patients with quiescent Crohn's disease. Inflamm. Bowel Dis. 17: 2116-12 2121. 13 Fu, L., Yun, F., Oczak, M., Wong, B.Y., Vieth, R., and Cole, D.E. (2009). Common genetic variants of the vitamin D binding protein (DBP) predict differences in response of 14 15 serum 25-hydroxyvitamin D [25(OH)D] to vitamin D supplementation. Clin. Biochem. 42: 1174-1177. 16 17 Goncalves, A., Gleize, B., Bott, R., Nowicki, M., Amiot, M.J., Lairon, D., Borel, P., and 18 Reboul, E. (2011). Phytosterols can impair vitamin D intestinal absorption in vitro and 19 in mice. Mol. Nutr. Food Res. 55 Suppl 2: S303-311. 20 Grossmann, R.E., and Tangpricha, V. (2010). Evaluation of vehicle substances on vitamin D 21 bioavailability: A systematic review. Mol. Nutr. Food Res. 54: 1055-1061.
- Gylling, H., and Miettinen, T.A. (1999). Cholesterol reduction by different plant stanol
 mixtures and with variable fat intake. *Metabolism.* 48: 575-580.

1	Gylling, H., Puska, P., Vartiainen, E., and Miettinen, T.A. (1999). Retinol, vitamin D,
2	carotenes and alpha-tocopherol in serum of a moderately hypercholesterolemic
3	population consuming sitostanol ester margarine. Atherosclerosis 145: 279-285.
4	Gylling, H., Hallikainen, M., Nissinen, M.J., and Miettinen, T.A. (2010). The effect of a very
5	high daily plant stanol ester intake on serum lipids, carotenoids, and fat-soluble
6	vitamins. Clin. Nutr. 29: 112-118.
7	Harris, S.S., and Dawson-Hughes, B. (2002). Plasma vitamin D and 25OHD responses of
8	young and old men to supplementation with vitamin D3. J. Am. Coll. Nutr. 21: 357-
9	362.
10	Hernandez-Romano, J., Martinez-Barnetche, J., and Valverde-Garduno, V. (2009).
11	Polymorphisms in gene regulatory regions and their role in the physiopathology of
12	complex disease in the post-genomic era. Salud Publica Mex. 51 Suppl 3: S455-462.
13	Heubi, J.E., Hollis, B.W., and Tsang, R.C. (1990). Bone disease in chronic childhood
14	cholestasis. II. Better absorption of 25-OH vitamin D than vitamin D in extrahepatic
15	biliary atresia. Pediatr. Res. 27: 26-31.
16	Heubi, J.E., Hollis, B.W., Specker, B., and Tsang, R.C. (1989). Bone disease in chronic
17	childhood cholestasis. I. Vitamin D absorption and metabolism. Hepatology 9: 258-
18	264.
19	Hofmann, A.F. (1963). The function of bile salts in fat absorption. The solvent properties of
20	dilute micellar solutions of conjugated bile salts. Biochem. J. 89: 57-68.
21	Hohman, E.E., Martin, B.R., Lachcik, P.J., Gordon, D.T., Fleet, J.C., and Weaver, C.M.
22	(2011). Bioavailability and efficacy of vitamin D2 from UV-irradiated yeast in
23	growing, vitamin D-deficient rats. J. Agric. Food Chem. 59: 2341-2346.
24	Holick, M.F., Biancuzzo, R.M., Chen, T.C., Klein, E.K., Young, A., Bibuld, D., Reitz, R.,
25	Salameh, W., Ameri, A., and Tannenbaum, A.D. (2008). Vitamin D-2 is as effective

1	as vitamin D-3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J
2	<i>Clin Endocr Metab</i> 93: 677-681.
3	Hollander, D., and Truscott, T.C. (1976). Mechanism and site of small intestinal uptake of
4	vitamin D3 in pharmacological concentrations. Am. J. Clin. Nutr. 29: 970-975.
5	Hollander, D., and Tarnawski, H. (1984). Influence of aging on vitamin D absorption and
6	unstirred water layer dimensions in the rat. J. Lab. Clin. Med. 103: 462-469.
7	Hollander, D., Muralidhara, K.S., and Zimmerman, A. (1978). Vitamin D-3 intestinal
8	absorption in vivo: influence of fatty acids, bile salts, and perfusate pH on absorption.
9	<i>Gut</i> 19: 267-272.
10	Hollis, B.W., Lowery, J.W., Pittard, W.B.r., Guy, D.G., and Hansen, J.W. (1996). Effect of
11	age on the intestinal absorption of vitamin D3-palmitate and nonesterified vitamin D2
12	in the term human infant. J. Clin. Endocrinol. Metab. 81: 1385-1388.
13	Holmberg, I., Aksnes, L., Berlin, T., Lindback, B., Zemgals, J., and Lindeke, B. (1990).
14	Absorption of a pharmacological dose of vitamin D3 from two different lipid vehicles
15	in man: comparison of peanut oil and a medium chain triglyceride. Biopharm. Drug
16	<i>Dispos.</i> 11: 807-815.
17	Holvik, K., Madar, A.A., Meyer, H.E., Lofthus, C.M., and Stene, L.C. (2007). A randomised
18	comparison of increase in serum 25-hydroxyvitamin D concentration after 4 weeks of
19	daily oral intake of 10 mu g cholecalciferol from multivitamin tablets or fish oil
20	capsules in healthy young adults. Brit J Nutr 98: 620-625.
21	Hymoller, L., and Jensen, S.K. (2011). Vitamin D impairs utilization of vitamin D in high-
22	yielding dairy cows in a cross-over supplementation regimen. J. Dairy Sci. 94: 3462-
23	3466.
24	Ikuma, M., Hanai, H., Kaneko, E., Hayashi, H., and Hoshi, T. (1996). Effects of aging on the
25	microclimate pH of the rat jejunum. Biochim. Biophys. Acta 1280: 19-26.

1	Jasinghe, V.J., Perera, C.O., and Barlow, P.J. (2005). Bioavailability of vitamin D2 from
2	irradiated mushrooms: an in vivo study. Br. J. Nutr. 93: 951-955.

- Johnson, J.L., Mistry, V.V., Vukovich, M.D., Hogie-Lorenzen, T., Hollis, B.W., and Specker,
 B.L. (2005). Bioavailability of vitamin D from fortified process cheese and effects on
 vitamin D status in the elderly. *J. Dairy Sci.* 88: 2295-2301.
- Karohl, C., Su, S., Kumari, M., Tangpricha, V., Veledar, E., Vaccarino, V., and Raggi, P.
 (2010). Heritability and seasonal variability of vitamin D concentrations in male
 twins. *Am. J. Clin. Nutr.* 92: 1393-1398.
- 9 Khazai, N.B., Judd, S.E., Jeng, L., Wiolfenden, L.L., Stecenko, A., Ziegler, T.R., and
 10 Tangpricha, V. (2009a). Treatment and prevention of vitamin D insufficiency in cytic
 11 fibrosis patients: comparative efficacy of ergocalciferol, cholecalciferol, and UV light.
 12 *J Clin Endocr Metab* 94: 2037-2043.
- Khazai, N.B., Judd, S.E., Jeng, L., Wolfenden, L.L., Stecenko, A., Ziegler, T.R., and
 Tangpricha, V. (2009b). Treatment and prevention of vitamin D insufficiency in cystic
 fibrosis patients: comparative efficacy of ergocalciferol, cholecalciferol, and UV light.
- 16 J. Clin. Endocrinol. Metab. 94: 2037-2043.
- Kirilenko, V.N., and Gregoriadis, G. (1993). Fat soluble vitamins in liposomes: studies on
 incorporation efficiency and bile salt induced vesicle disintegration. *J. Drug Target.* 1:
 361-368.
- Korkor, A.B., and Bretzmann, C. (2009). Effect of fish oil on vitamin D absorption. *Am J Kidney Diseases* 53: 356.
- Korpela, R., Tuomilehto, J., Hogstrom, P., Seppo, L., Piironen, V., Salo-Vaananen, P., Toivo,
 J., Lamberg-Allardt, C., Karkkainen, M., Outila, T., Sundvall, J., Vilkkila, S., and
 Tikkanen, M.J. (2006). Safety aspects and cholesterol-lowering efficacy of low fat
 dairy products containing plant sterols. *Eur. J. Clin. Nutr.* 60: 633-642.

1	Koyyalamudi, S.R., Jeong, S.C., Song, C.H., Cho, K.Y., and Pang, G. (2009). Vitamin D2
2	formation and bioavailability from Agaricus bisporus button mushrooms treated with
3	ultraviolet irradiation. J. Agric. Food Chem. 57: 3351-3355.
4	Lark, R.K., Lester, G.E., Ontjes, D.A., Blackwood, A.D., Hollis, B.W., Hensler, M.M., and
5	Aris, R.M. (2001). Diminished and erratic absorption of ergocalciferol in adult cystic
6	fibrosis patients. Am. J. Clin. Nutr. 73: 602-606.
7	Leichtmann, G.A., Bengoa, J.M., Bolt, M.J., and Sitrin, M.D. (1991). Intestinal absorption of
8	cholecalciferol and 25-hydroxycholecalciferol in patients with both Crohn's disease
9	and intestinal resection. Am. J. Clin. Nutr. 54: 548-552.
10	Lindqvist, A., Sharvill, J., Sharvill, D.E., and Andersson, S. (2007). Loss-of-function
11	mutation in carotenoid 15,15'-monooxygenase identified in a patient with
12	hypercarotenemia and hypovitaminosis A. J. Nutr. 137: 2346-2350.
13	Lo, C.W., Paris, P.W., Clemens, T.L., Nolan, J., and Holick, M.F. (1985). Vitamin D
14	absorption in healthy subjects and in patients with intestinal malabsorption syndromes.
15	Am. J. Clin. Nutr. 42: 644-649.
16	Lobo, G.P., Hessel, S., Eichinger, A., Noy, N., Moise, A.R., Wyss, A., Palczewski, K., and
17	von Lintig, J. (2010). ISX is a retinoic acid-sensitive gatekeeper that controls intestinal
18	beta, beta-carotene absorption and vitamin A production. FASEB J. 24: 1656-1666.
19	Lombardo, D., and Guy, O. (1980). Studies on the substrate specificity of a carboxyl ester
20	hydrolase from human pancreatic juice. II. Action on cholesterol esters and lipid-
21	soluble vitamin esters. Biochim. Biophys. Acta 611: 147-155.
22	Maislos, M., and Shany, S. (1987). Bile salt deficiency and the absorption of vitamin D
23	metabolites. In vivo study in the rat. Isr. J. Med. Sci. 23: 1114-1117.

1	Maislos, M., Silver, J., and Fainaru, M. (1981). Intestinal absorption of vitamin D sterols:
2	differential absorption into lymph and portal blood in the rat. Gastroenterology 80:
3	1528-1534.
4	Mathias, P.M., Harries, J.T., and Muller, D.P. (1981a). Optimization and validation of assays
5	to estimate pancreatic esterase activity using well-characterized micellar solutions of
6	cholesteryl oleate and tocopheryl acetate. J. Lipid Res. 22: 177-184.
7	Mathias, P.M., Harries, J.T., Peters, T.J., and Muller, D.P. (1981b). Studies on the in vivo
8	absorption of micellar solutions of tocopherol and tocopheryl acetate in the rat:
9	demonstration and partial characterization of a mucosal esterase localized to the
10	endoplasmic reticulum of the enterocyte. J. Lipid Res. 22: 829-837.
11	Matsuoka, M., Otsuka, H., Masuda, S., Okano, T., Kobayashi, T., Takeuchi, T., and Itokawa,
12	Y. (1989). Changes in the concentrations of vitamin D and its metabolites in the
13	plasma of healthy subjects orally given physiological doses of vitamin D2 by
14	multivitamin or vitamin D preparations. J. Nutr. Sci. Vitaminol. (Tokyo) 35: 253-266.
15	McDuffie, J.R., Calis, K.A., Booth, S.L., Uwaifo, G.I., and Yanovski, J.A. (2002). Effects of
16	orlistat on fat-soluble vitamins in obese adolescents. <i>Pharmacotherapy</i> 22: 814-822.
17	McGrath, J.J., Saha, S., Burne, T.H., and Eyles, D.W. (2010). A systematic review of the
18	association between common single nucleotide polymorphisms and 25-
19	hydroxyvitamin D concentrations. J. Steroid Biochem. Mol. Biol. 121: 471-477.
20	Moussa, M., Landrier, J.F., Reboul, E., Ghiringhelli, O., Comera, C., Collet, X., Frohlich, K.,
21	Bohm, V., and Borel, P. (2008). Lycopene absorption in human intestinal cells and in
22	mice involves scavenger receptor class B type I but not Niemann-Pick C1-like 1. J.
23	Nutr. 138: 1432-1436.

1	Mulligan, G.B., and Licata, A. (2010). Taking vitamin D with the largest meal improves
2	absorption and results in higher serum levels of 25-hydroxyvitamin D. J. Bone Miner.
3	<i>Res.</i> 25: 928-930.
4	Narushima, K., Takada, T., Yamanashi, Y., and Suzuki, H. (2008). Niemann-pick C1-like 1
5	mediates alpha-tocopherol transport. Mol. Pharmacol. 74: 42-49.
6	Natri, A.M., Salo, P., Vikstedt, T., Palssa, A., Huttunen, M., Karkkainen, M.U., Salovaara,
7	H., Piironen, V., Jakobsen, J., and Lamberg-Allardt, C.J. (2006). Bread fortified with
8	cholecalciferol increases the serum 25-hydroxyvitamin D concentration in women as
9	effectively as a cholecalciferol supplement. J. Nutr. 136: 123-127.
10	Nguyen, T.T., Dale, L.C., von Bergmann, K., and Croghan, I.T. (1999). Cholesterol-lowering
11	effect of stanol ester in a US population of mildly hypercholesterolemic men and
12	women: a randomized controlled trial. Mayo Clin. Proc. 74: 1198-1206.
13	Niramitmahapanya, S., Harris, S.S., and Dawson-Hughes, B. (2011). Type of dietary fat is
14	associated with the 25-hydroxyvitamin D3 increment in response to vitamin D
15	supplementation. J. Clin. Endocrinol. Metab. 96: 3170-3174.
16	Orton, S.M., Morris, A.P., Herrera, B.M., Ramagopalan, S.V., Lincoln, M.R., Chao, M.J.,
17	Vieth, R., Sadovnick, A.D., and Ebers, G.C. (2008). Evidence for genetic regulation of
18	vitamin D status in twins with multiple sclerosis. Am. J. Clin. Nutr. 88: 441-447.
19	Outila, T.A., Mattila, P.H., Piironen, V.I., and Lambergallardt, C.J.E. (1999). Bioavailability
20	of vitamin D from wild edible mushrooms (Cantharellus tubaeformis) as measured
21	with a human bioassay. Am. J. Clin. Nutr. 69: 95-98.
22	Pasquier, B., Armand, M., Castelain, C., Guillon, F., Borel, P., Lafont, H., and Lairon, D.
23	(1996). Emulsification and lipolysis of triacylglycerols are altered by viscous soluble
24	dietary fibres in acidic gastric medium in vitro. Biochem. J. 314: 269-275.

1	Raimundo, F.V., Faulhaber, G.A., Menegatti, P.K., Marques Lda, S., and Furlanetto, T.W.
2	(2011). Effect of High- versus Low-Fat Meal on Serum 25-Hydroxyvitamin D Levels
3	after a Single Oral Dose of Vitamin D: A Single-Blind, Parallel, Randomized Trial.
4	Int J Endocrinol 2011: 809069.
5	Rautureau, M., and Rambaud, J.C. (1981). Aqueous solubilisation of vitamin D3 in normal
6	man. <i>Gut</i> 22: 393-397.
7	Reboul, E., and Borel, P. (2011). Proteins involved in uptake, intracellular transport and
8	basolateral secretion of fat-soluble vitamins and carotenoids by mammalian
9	enterocytes. Prog. Lipid Res. 50: 388-402.
10	Reboul, E., Berton, A., Moussa, M., Kreuzer, C., Crenon, I., and Borel, P. (2006a). Pancreatic
11	lipase and pancreatic lipase-related protein 2, but not pancreatic lipase-related protein
12	1, hydrolyze retinyl palmitate in physiological conditions. Biochim. Biophys. Acta
13	1761: 4-10.
14	Reboul, E., Abou, L., Mikail, C., Ghiringhelli, O., Andre, M., Portugal, H., Jourdheuil-
15	Rahmani, D., Amiot, M.J., Lairon, D., and Borel, P. (2005). Lutein transport by Caco-
16	2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor
17	class B type I (SR-BI). Biochem. J. 387: 455-461.
18	Reboul, E., Klein, A., Bietrix, F., Gleize, B., Malezet-Desmoulins, C., Schneider, M.,
19	Margotat, A., Lagrost, L., Collet, X., and Borel, P. (2006b). Scavenger receptor class
20	B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J. Biol.
21	<i>Chem.</i> 281: 4739-4745.
22	Reboul, E., Goncalves, A., Comera, C., Bott, R., Nowicki, M., Landrier, J.F., Jourdheuil-
23	Rahmani, D., Dufour, C., Collet, X., and Borel, P. (2011). Vitamin D intestinal
24	absorption is not a simple passive diffusion: Evidences for involvement of cholesterol
25	transporters. Mol. Nutr. Food Res. 55: 691-702.

1	Robberecht, E., Vandewalle, S., Wehlou, C., Kaufman, J.M., and De Schepper, J. (2011).
2	Sunlight is an important determinant of vitamin D serum concentrations in cystic
3	fibrosis. Eur. J. Clin. Nutr. 65: 574-579.
4	Romagnoli, E., Mascia, M.L., Cipriani, C., Fassino, V., Mazzei, F., D'Erasmo, E., Carnevale,
5	V., Scillitani, A., and Minisola, S. (2008). Short and long-term variations in serum
6	calciotropic hormones after a single very large dose of ergocalciferol (vitamin D-2) or
7	cholecalciferol (vitamin D-3) in the elderly. J Clin Endocr Metab 93: 3015-3020.
8	Russell, R.M. (1992). Changes in gastrointestinal function attributed to aging. Am. J. Clin.
9	Nutr. 55: 1203s-1207s.
10	Schlagheck, T.G., Kesler, J.M., Jones, M.B., Zorich, N.L., Dugan, L.D., Davidson, M.H., and
11	Peters, J.C. (1997). Olestra's effect on vitamins D and E in humans can be offset by
12	increasing dietary levels of these vitamins. J. Nutr. 127: 1666S-1685S.
13	Sinotte, M., Diorio, C., Berube, S., Pollak, M., and Brisson, J. (2009). Genetic
14	polymorphisms of the vitamin D binding protein and plasma concentrations of 25-
15	hydroxyvitamin D in premenopausal women. Am. J. Clin. Nutr. 89: 634-640.
16	Sitrin, M.D., and Bengoa, J.M. (1987). Intestinal absorption of cholecalciferol and 25-
17	hydroxycholecalciferol in chronic cholestatic liver disease. Am. J. Clin. Nutr. 46:
18	1011-1015.
19	Staggers, J.E., Hernell, O., Stafford, R.J., and Carey, M.C. (1990). Physical-chemical
20	behavior of dietary and biliary lipids during intestinal digestion and absorption. 1.
21	Phase behavior and aggregation states of model lipid systems patterned after aqueous
22	duodenal contents of healthy adult human beings. Biochemistry (Mosc.) 29: 2028-
23	2040.

1	Stamp, T.C., Haddad, J.G., and Twigg, C.A. (1977). Comparison of oral 25-
2	hydroxycholecalciferol, vitamin D, and ultraviolet light as determinants of circulating
3	25-hydroxyvitamin D. Lancet 1: 1341-1343.
4	Szejtli, J., Gerloczy, A., and Fonagy, A. (1983). Improvement of the absorption of 3H-
5	Cholecalciferol by formation of its cyclodextrin complex. <i>Pharmazie</i> 38: 100-101.
6	Tangpricha, V., Koutkia, P., Rieke, S.M., Chen, T.C., Perez, A.A., and Holick, M.F. (2003).
7	Fortification of orange juice with vitamin D: a novel approach for enhancing vitamin
8	D nutritional health. Am. J. Clin. Nutr. 77: 1478-1483.
9	Thompson, G.R., Lewis, B., and Booth, C.C. (1966). Absorption of vitamin D3- ³ H in control
10	subjects and patients with intestinal malabsorption. J. Clin. Invest. 45: 94-102.
11	Tjellesen, L., Gotfredsen, A., and Christiansen, C. (1985a). Different actions of vitamin D2
12	and D3 on bone metabolism in patients treated with phenobarbitone/phenytoin. Calcif.
13	<i>Tissue Int.</i> 37: 218-222.
14	Tjellesen, L., Christiansen, C., Rodbro, P., and Hummer, L. (1985b). Different metabolism of
15	vitamin D2 and vitamin D3 in epileptic patients on carbamazepine. Acta Neurol.
16	Scand. 71: 385-389.
17	Tjellesen, L., Hummer, L., Christiansen, C., and Rodbro, P. (1986). Serum concentration of
18	vitamin D metabolites during treatment with vitamin D2 and D3 in normal
19	premenopausal women. Bone Miner. 1: 407-413.
20	Tso, P., and Fujimoto, K. (1991). The absorption and transport of lipids by the small intestine.
21	Brain Res. Bull. 27: 477-482.
22	Turnbull, D., Whittaker, M.H., Frankos, V.H., and Jonker, D. (1999). 13-week oral toxicity
23	study with stanol esters in rats. Regul. Toxicol. Pharmacol. 29: 216-226.

1	Urano, S., Iida, M., Otani, I., and Matsuo, M. (1987). Membrane Stabilization of Vitamin E;
2	Interactions of a-Tocopherol with Phospholipids in bilayer liposomes. Biochem.
3	Biophys. Res. Comm. 146: 1413-1418.
4	Urbain, P., Singler, F., Ihorst, G., Biesalski, H.K., and Bertz, H. (2011). Bioavailability of
5	vitamin D from UV-B-irradiated button mushrooms in healthy adults deficient in
6	serum 25-hydroxyvitamin D: a randomized controlled trial. Eur. J. Clin. Nutr. 65:
7	965-971.
8	van Bennekum, A., Werder, M., Thuahnai, S.T., Han, C.H., Duong, P., Williams, D.L.,
9	Wettstein, P., Schulthess, G., Phillips, M.C., and Hauser, H. (2005). Class B
10	scavenger receptor-mediated intestinal absorption of dietary beta-carotene and
11	cholesterol. Biochemistry (Mosc.) 44: 4517-4525.
12	van den Berg, H. (1997). Bioavailability of vitamin D. Eur. J. Clin. Nutr. 51 Suppl 1: S76-
13	79.
14	Vellas, B.J., Balas, D., and Albarede, J.L. (1991). Effects of aging process on digestive
15	functions. Compr. Ther. 17: 46-52.
16	Wagner, D., Sidhom, G., Whiting, S.J., Rousseau, D., and Vieth, R. (2008). The
17	bioavailability of vitamin D from fortified cheeses and supplements is equivalent in
18	adults. J. Nutr. 138: 1365-1371.
19	West, C.E., and Castenmiller, J.J.J.M. (1998). Quantification of the "SLAMENGHI" factors
20	for carotenoid bioavailability and bioconversion. Internat. J. Vit. Nutr. Res. 68: 371-
21	377.
22	Wimalawansa, S.J. (2012). Vitamin D in the New Millennium. Curr. Osteoporos. Rep.: Jan
23	17. [Epub ahead of print].
24	Wortsman, J., Matsuoka, L.Y., Chen, T.C., Lu, Z., and Holick, M.F. (2000). Decreased
25	bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 72: 690-693.

1	Youssef, D., Bailey, B., Atia, A., El-Abbassi, A., Manning, T., and Peiris, A.N. (2012).
2	Differences in outcomes between cholecalciferol and ergocalciferol supplementation
3	in veterans with inflammatory bowel disease. Geriatr Gerontol Int: Jan 10. doi:
4	10.1111/j.1447-0594.2011.00798.x. [Epub ahead of print].
5	
6	