. St, . Louis, and U. Mo, For western blot analysis of human proteins, anti-TRAIL-R2 antibody was purchased from Chemicon (Millipore Le Pont de Claix, France), anti-caspase-8 and anti-caspase-10 were from Medical & Biological Laboratories (Clinisciences Murine DR5 was revealed by western blot using the anti-mouse TRAIL-R2 antibody from Leinco Technologies Flow cytometry analysis for murine DR5 was performed using the MD5-1 antibody, with a PE-conjugated anti-armenian hamster secondary antibody from BD Biosciences. For human receptors, anti- TRAIL-R1 (wB-S26) and anti-TRAIL-R2 (B-D37) antibodies were provided by Gen-Probe (Diaclone The secondary antibody was an Alexa- 488-coupled goat anti-mouse from Molecular Probes Tunicamycin and swainsonine were from Sigma-Aldrich For apoptosis measurement, Crosslinking of TRAIL was achieved by incubating the ligand with anti-Flag M2 antibody for 30 min at 4 °C with mixing prior to cell treatment anti-FADD from Transduction Laboratories (BD Biosciences V (556422) and 7AAD (559925) were from BD Biosciences

. Plasmid-constructions, The parental murine full-length TRAIL-R and human TRAIL-R1 or TRAIL-R2 retroviral pMSCV vectors were obtained by subcloning using HindIII/XhoI from the pCR3-mTRAIL-R, pCR3-TRAIL-R1 and pCR3-hTRAIL-R2 vectors. 12,13 Chimeric mouse/human TRAIL receptor constructs were generated as follows. First, a modified version of the full-length hTRAIL-R2 harboring two restriction sites, BglII and BamHI, encompassing the transmembrane domain was obtained by synthesis from, ) and subcloned into the pMSCV retroviral vector using HindIII/XhoI to generate pMSCV-hTRAIL-R2-BglII-TM-BamHI

. Next, . Extracellular, . Intracellular-domains, I. Ecd, A. Respectively et al., were obtained by PCR from pCR3-mTRAIL-R using the following primer sets: mTRAIL-R (ECD) 5?-aaa aga tct, PCR products were digested using BglII/ApaI or HindIII/ BamHI, respectively, and digestion products were inserted

5. Bglii-tm-bamhi, 5. , 5. , 5. , 5. et al., ICD): referred to in the text as h/mTRAIL-R or m/ hTRAIL-R2. Human TRAIL-R1 N156A or N156Q and Mouse TRAIL receptor variants N99A, N122A, N150A mutants were created by routine site-directed mutagenesis from the pMSCV-mTRAIL-R vector using the following sets of primers, p.156

N. , 5. , and 5. Ag, 3? to generate pMSCV-hTRAIL-R1-N156A, pMSCV-hTRAIL-R1-N156Q, pMSCV-mTRAIL-R-N99A; pMSCV-mTRAIL-R-N122A and pMSCV-mTRAIL-R-N150A. Double and triple mutants were obtained as above through successive site-directed mutagenesis to generate pMSCV-mTRAIL-R-N99/122A; pMSCV-mTRAIL-R-N122/150A, pMSCV-mTRAIL-R- N99/150A and pMSCV-mTRAIL-R-N99/122/150A. The UL141-GFP fusion plasmid was generated as described, 5 and the UL141-GPI expression plasmid was generated by PCR amplification of the UL141 ectodomain, FIX strain 5 ) and cloning upstream of the sequence encoding for the addition of the TRAIL-R3 GPI linkage. 14 Sequences of all constructs were confirmed by sequencing

J. Bodmer, P. Schneider, and J. Tschopp, The molecular architecture of the TNF superfamily, Trends in Biochemical Sciences, vol.27, issue.1, pp.19-26, 2002.
DOI : 10.1016/S0968-0004(01)01995-8

F. Gonzalvez and A. Ashkenazi, New insights into apoptosis signaling by Apo2L/TRAIL, Oncogene, vol.173, issue.34, pp.4752-4765, 2010.
DOI : 10.1038/onc.2010.221

C. Falschlehner, U. Schaefer, and H. Walczak, Following TRAIL???s path in the immune system, Immunology, vol.199, issue.Suppl. 2, pp.145-154, 2009.
DOI : 10.1111/j.1365-2567.2009.03058.x

D. Merino, N. Lalaoui, A. Morizot, E. Solary, and O. Micheau, TRAIL in cancer therapy: present and future challenges, Expert Opinion on Therapeutic Targets, vol.12, issue.10, pp.1299-1314, 2007.
DOI : 10.1136/gut.2004.056929

URL : https://hal.archives-ouvertes.fr/inserm-00527108

J. Bodmer, N. Holler, R. S. Vinciguerra, P. Schneider, P. Juo et al., TRAIL receptor-2 signals apoptosis through FADD and caspase-8, Nat Cell Biol, vol.2, pp.241-243, 2000.

A. Ashkenazi, Directing cancer cells to self-destruct with pro-apoptotic receptor agonists, Nature Reviews Drug Discovery, vol.14, issue.12, pp.1001-1012, 2008.
DOI : 10.1128/MCB.20.3.929-935.2000

D. Merino, N. Lalaoui, A. Morizot, P. Schneider, E. Solary et al., Differential Inhibition of TRAIL-Mediated DR5-DISC Formation by Decoy Receptors 1 and 2, Molecular and Cellular Biology, vol.26, issue.19, pp.7046-7055, 2006.
DOI : 10.1128/MCB.00520-06

URL : https://hal.archives-ouvertes.fr/inserm-00103839

N. Lalaoui, A. Morle, D. Merino, G. Jacquemin, E. Iessi et al., TRAIL-R4 Promotes Tumor Growth and Resistance to Apoptosis in Cervical Carcinoma HeLa Cells through AKT, PLoS ONE, vol.20, issue.5, p.19679, 2011.
DOI : 10.1371/journal.pone.0019679.s002

URL : https://hal.archives-ouvertes.fr/inserm-00590415

K. Wagner, E. Punnoose, T. Januario, D. Lawrence, R. Pitti et al., Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL, Nature Medicine, vol.280, issue.9, pp.1070-1077, 2007.
DOI : 10.1038/nm1627

W. Britt, Vaccines against human cytomegalovirus: Time to test, Trends in Microbiology, vol.4, issue.1, pp.34-38, 1996.
DOI : 10.1016/0966-842X(96)81503-4

L. Pereira, E. Maidji, S. Mcdonagh, and T. Tabata, Insights into viral transmission at the uterine???placental interface, Trends in Microbiology, vol.13, issue.4, pp.164-174, 2005.
DOI : 10.1016/j.tim.2005.02.009

C. Mohr, L. Cicin-sain, M. Wagner, T. Sacher, M. Schnee et al., Engineering of cytomegalovirus genomes for recombinant live herpesvirus vaccines, International Journal of Medical Microbiology, vol.298, issue.1-2, pp.115-125, 2008.
DOI : 10.1016/j.ijmm.2007.07.008

D. Yu, M. Silva, and T. Shenk, Functional map of human cytomegalovirus AD169 defined by global mutational analysis, Proceedings of the National Academy of Sciences, vol.100, issue.21, pp.12396-12401, 2003.
DOI : 10.1073/pnas.1635160100

C. Benedict, Viruses and the TNF-related cytokines, an evolving battle, Cytokine & Growth Factor Reviews, vol.14, issue.3-4, pp.349-357, 2003.
DOI : 10.1016/S1359-6101(03)00030-3

W. Smith, P. Tomasec, R. Aicheler, A. Loewendorf, I. Nemcovicova et al., Human Cytomegalovirus Glycoprotein UL141 Targets the TRAIL Death Receptors to Thwart Host Innate Antiviral Defenses, Cell Host & Microbe, vol.13, issue.3, pp.324-335, 2013.
DOI : 10.1016/j.chom.2013.02.003

URL : http://doi.org/10.1016/j.chom.2013.02.003

S. Verma, A. Loewendorf, Q. Wang, B. Mcdonald, A. Redwood et al., Inhibition of the TRAIL Death Receptor by CMV Reveals Its Importance in NK Cell-Mediated Antiviral Defense, PLoS Pathogens, vol.3, issue.8, p.1004268, 2014.
DOI : 10.1371/journal.ppat.1004268.s008

I. Nemcovicova, C. Benedict, and D. Zajonc, Structure of Human Cytomegalovirus UL141 Binding to TRAIL-R2 Reveals Novel, Non-canonical Death Receptor Interactions, PLoS Pathogens, vol.37, issue.3, p.1003224, 2013.
DOI : 10.1371/journal.ppat.1003224.s010

G. Wu, T. Burns, E. Mcdonald, . Iii, R. Meng et al., Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest, Oncogene, vol.18, issue.47, pp.6411-6418, 1999.
DOI : 10.1038/sj.onc.1203025

J. Chauhan, A. Rao, and G. Raghava, In silico Platform for Prediction of N-, O- and C-Glycosites in Eukaryotic Protein Sequences, PLoS ONE, vol.27, issue.2, p.67008, 2013.
DOI : 10.1371/journal.pone.0067008.s021

S. Hymowitz, H. Christinger, G. Fuh, M. Ultsch, O. Connell et al., Triggering Cell Death, Molecular Cell, vol.4, issue.4, pp.563-571, 1999.
DOI : 10.1016/S1097-2765(00)80207-5

URL : http://doi.org/10.1016/s1097-2765(00)80207-5

O. Shatnyeva, A. Kubarenko, C. Weber, A. Pappa, R. Schwartz-albiez et al., Modulation of the CD95-Induced Apoptosis: The Role of CD95 N-Glycosylation, PLoS ONE, vol.18, issue.5, p.19927, 2011.
DOI : 10.1371/journal.pone.0019927.s006

C. Reis, A. Van-der-sloot, A. Natoni, E. Szegezdi, R. Setroikromo et al., Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants, Cell Death and Disease, vol.277, issue.10, p.83, 2010.
DOI : 10.1038/cddis.2010.61

URL : http://doi.org/10.1038/cddis.2010.61

V. Pavet, J. Beyrath, C. Pardin, A. Morizot, M. Lechner et al., Multivalent DR5 Peptides Activate the TRAIL Death Pathway and Exert Tumoricidal Activity, Cancer Research, vol.70, issue.3, pp.1101-1110, 2010.
DOI : 10.1158/0008-5472.CAN-09-2889

URL : https://hal.archives-ouvertes.fr/hal-00451170

G. Jacquemin, V. Granci, A. Gallouet, N. Lalaoui, A. Morlé et al., Quercetin-mediated Mcl-1 and survivin downregulation restores TRAIL-induced apoptosis in non-Hodgkin's lymphoma B cells, Haematologica, vol.97, issue.1, pp.38-46, 2012.
DOI : 10.3324/haematol.2011.046466

A. Zakaria, F. Picaud, T. Rattier, M. Pudlo, F. Dufour et al., Nanovectorization of TRAIL with Single Wall Carbon Nanotubes Enhances Tumor Cell Killing, Nano Letters, vol.15, issue.2, pp.891-895, 2015.
DOI : 10.1021/nl503565t

URL : https://hal.archives-ouvertes.fr/inserm-01113419

F. Dufour, T. Rattier, A. Constentinescu, L. Zischler, A. Morlé et al., TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress, Oncotarget
URL : https://hal.archives-ouvertes.fr/inserm-01423110

K. Takeda, N. Yamaguchi, H. Akiba, Y. Kojima, Y. Hayakawa et al., Induction of Tumor-specific T Cell Immunity by Anti-DR5 Antibody Therapy, The Journal of Experimental Medicine, vol.62, issue.4, pp.437-448, 2004.
DOI : 10.1074/jbc.M210665200

S. Shirley, A. Morizot, and O. Micheau, Regulating TRAIL Receptor-Induced Cell Death at the Membrane: A Deadly Discussion, Recent Patents on Anti-Cancer Drug Discovery, vol.6, issue.3, pp.311-323, 2011.
DOI : 10.2174/157489211796957757

URL : https://hal.archives-ouvertes.fr/inserm-00609574

O. Micheau, S. Shirley, and F. Dufour, Death receptors as targets in cancer, British Journal of Pharmacology, vol.8, issue.15s, pp.1723-1744, 2013.
DOI : 10.1111/bph.12238

URL : https://hal.archives-ouvertes.fr/inserm-00823459

M. Macfarlane, S. Kohlhaas, M. Sutcliffe, M. Dyer, and G. Cohen, TRAIL Receptor-Selective Mutants Signal to Apoptosis via TRAIL-R1 in Primary Lymphoid Malignancies, Cancer Research, vol.65, issue.24, pp.11265-11270, 2005.
DOI : 10.1158/0008-5472.CAN-05-2801

J. Rak, F. Basolo, J. Elliott, J. Russo, and F. Miller, Cell surface glycosylation changes accompanying immortalization and transformation of normal human mammary epithelial cells, Cancer Letters, vol.57, issue.1, pp.27-36, 1991.
DOI : 10.1016/0304-3835(91)90059-Q

C. Rillahan, A. Antonopoulos, C. Lefort, R. Sonon, P. Azadi et al., Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome, Nature Chemical Biology, vol.179, issue.7, pp.661-668, 2012.
DOI : 10.1080/10739680500466376

Y. Liu, H. Yen, C. Chen, C. Chen, P. Cheng et al., Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells, Proceedings of the National Academy of Sciences, vol.108, issue.28, pp.11332-11337, 2011.
DOI : 10.1073/pnas.1107385108

A. Swindall and S. Bellis, Sialylation of the Fas Death Receptor by ST6Gal-I Provides Protection against Fas-mediated Apoptosis in Colon Carcinoma Cells, Journal of Biological Chemistry, vol.286, issue.26, pp.22982-22990, 2011.
DOI : 10.1074/jbc.M110.211375

K. Moriwaki, S. Shinzaki, and E. Miyoshi, GDP-mannose-4,6-dehydratase (GMDS) Deficiency Renders Colon Cancer Cells Resistant to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Receptor- and CD95-mediated Apoptosis by Inhibiting Complex II Formation, Journal of Biological Chemistry, vol.286, issue.50, pp.43123-43133, 2011.
DOI : 10.1074/jbc.M111.262741

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234837

N. Mazurek, J. Sun, Y. , F. Liu, K. Gilcrease et al., Phosphorylated Galectin-3 Mediates Tumor Necrosis Factor-related Apoptosis-inducing Ligand Signaling by Regulating Phosphatase and Tensin Homologue Deleted on Chromosome 10 in Human Breast Carcinoma Cells, Journal of Biological Chemistry, vol.282, issue.29, pp.21337-21348, 2007.
DOI : 10.1074/jbc.M608810200

N. Mazurek, J. Byrd, Y. Sun, M. Hafley, K. Ramirez et al., Cell-surface galectin-3 confers resistance to TRAIL by impeding trafficking of death receptors in metastatic colon adenocarcinoma cells, Cell Death and Differentiation, vol.55, issue.3, pp.523-533, 2012.
DOI : 10.1016/j.immuni.2004.08.017

N. Mazurek, J. Byrd, Y. Sun, S. Ueno, and R. Bresalier, A galectin-3 sequence polymorphism confers TRAIL sensitivity to human breast cancer cells, Cancer, vol.121, issue.pt 3, pp.4375-4380, 2011.
DOI : 10.1002/cncr.26078

A. Varki, R. Kannagi, B. Toole, A. Varki, R. Cummings et al., Glycosylation changes in cancer Essentials of Glycobiology, 2009.

E. Parco, I. Gendronneau, G. Dang, T. Delacour, D. Thijssen et al., Genetic assessment of the importance of galectin-3 in cancer initiation, progression, and dissemination in mice, Glycobiology, vol.19, issue.1, pp.68-75, 2009.
DOI : 10.1093/glycob/cwn105

URL : https://hal.archives-ouvertes.fr/hal-00332592

A. Harduin-lepers, M. Krzewinski-recchi, F. Colomb, F. Foulquier, S. Groux-degroote et al., Sialyltransferases functions in cancers, Frontiers in Bioscience, vol.4, issue.1, pp.499-515, 2012.
DOI : 10.2741/e396

URL : https://hal.archives-ouvertes.fr/hal-00656027