M. Kovac, C. Blattmann, S. Ribi, J. Smida, N. Mueller et al., Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency, Nature Communications, vol.104, p.8940, 2015.
DOI : 10.1038/ncomms9940

C. Hiley, E. De-bruin, N. Mcgranahan, and C. Swanton, Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine, Genome Biology, vol.10, issue.8
DOI : 10.1186/s13059-014-0453-8

K. Kim, H. Lee, H. Lee, S. Kim, Y. Seo et al., Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells Tumour evolution inferred by single-cell sequencing, Genome Biol. Nature, vol.16472, issue.7341, pp.90-94, 2011.

D. Ryu, J. Joung, N. Kim, K. Kim, and W. Park, Deciphering intratumor heterogeneity using cancer genome analysis, Human Genetics, vol.346, issue.6, pp.635-677, 2016.
DOI : 10.1007/s00439-016-1670-x

A. Abarrategi, J. Tornin, L. Martinez-cruzado, A. Hamilton, E. Martinez-campos et al., Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies. Stem cells international, vol.2016, p.3631764, 2016.

J. Tao, M. Jiang, L. Jiang, J. Salvo, H. Zeng et al., Notch Activation as a Driver of Osteogenic Sarcoma, Cancer Cell, vol.26, issue.3, pp.390-401, 2014.
DOI : 10.1016/j.ccr.2014.07.023

L. Chan, W. Wang, W. Yeung, Y. Deng, P. Yuan et al., Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression, Oncogene, vol.56, issue.40, pp.4857-66, 2014.
DOI : 10.1111/j.1048-891x.2004.014314.x

U. Basu-roy, C. Basilico, and A. Mansukhani, Perspectives on cancer stem cells in osteosarcoma, Cancer Letters, vol.338, issue.1, pp.158-67, 2013.
DOI : 10.1016/j.canlet.2012.05.028

A. Halldorsson, S. Brooks, S. Montgomery, and S. Graham, Lung metastasis 21 years after initial diagnosis of osteosarcoma: a case report, Journal of Medical Case Reports, vol.12, issue.2, p.9298, 2009.
DOI : 10.1200/JCO.20.3.776

M. Clarke, J. Dick, P. Dirks, C. Eaves, C. Jamieson et al., Cancer Stem Cells--Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells, Cancer Research, vol.66, issue.19, pp.9339-9383, 2006.
DOI : 10.1158/0008-5472.CAN-06-3126

U. Basu-roy, E. Seo, L. Ramanathapuram, T. Rapp, J. Perry et al., Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas, Oncogene, vol.54, issue.18, pp.312270-82, 2012.
DOI : 10.1101/gad.9.21.2635

U. Basu-roy, N. Bayin, K. Rattanakorn, E. Han, D. Placantonakis et al., Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells, Nature Communications, vol.168, p.6411, 2015.
DOI : 10.1038/ncomms7411

S. He, D. Nakada, and S. Morrison, Mechanisms of stem cell self-renewal, Annu Rev Cell Dev Biol, vol.25, pp.377-406, 2009.

Y. Shiozawa, J. Berry, M. Eber, Y. Jung, K. Yumoto et al., The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer, Oncotarget, 2016.
DOI : 10.18632/oncotarget.9251

D. Heymann and F. , Bone sarcomas: pathogenesis and new therapeutic approaches, IBMS BoneKEy, vol.17, issue.9, pp.402-416, 2011.
DOI : 10.1138/20110531

V. Tirino, V. Desiderio, F. Paino, G. Papaccio, D. Rosa et al., Methods for Cancer Stem Cell Detection and Isolation, Methods Mol Biol, vol.879, pp.513-542, 2012.
DOI : 10.1007/978-1-61779-815-3_32

P. Valent, D. Bonnet, D. Maria, R. Lapidot, T. Copland et al., Cancer stem cell definitions and terminology: the devil is in the details, Nature Reviews Cancer, vol.2, issue.11, pp.767-75, 2012.
DOI : 10.1038/nrc3368

K. Fukuda, Y. Saikawa, M. Ohashi, K. Kumagai, M. Kitajima et al., Tumor initiating potential of side population cells in human gastric cancer, International journal of oncology, vol.34, issue.5, pp.1201-1208, 2009.

L. Moserle, S. Indraccolo, M. Ghisi, C. Frasson, E. Fortunato et al., The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer research, pp.5658-68, 2008.

V. Tirino, V. Desiderio, F. Paino, D. Rosa, A. Papaccio et al., Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization, The FASEB Journal, vol.27, issue.1, pp.13-24, 2013.
DOI : 10.1096/fj.12-218222

M. Murase, M. Kano, T. Tsukahara, A. Takahashi, T. Torigoe et al., Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas, British Journal of Cancer, vol.48, issue.8, pp.1425-1457, 2009.
DOI : 10.1073/pnas.192276999

M. Yang, M. Yan, R. Zhang, J. Li, and Z. Luo, Side population cells isolated from human osteosarcoma are enriched with tumor-initiating cells, Cancer Science, vol.70, issue.10, pp.1774-81, 2011.
DOI : 10.1111/j.1349-7006.2011.02028.x

URL : http://doi.org/10.1111/j.1349-7006.2011.02028.x

K. Honoki, H. Fujii, A. Kubo, A. Kido, T. Mori et al., Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance, Oncology Reports, vol.24, issue.2, pp.501-506, 2010.
DOI : 10.3892/or_00000885

N. Greco, T. Schott, X. Mu, A. Rothenberg, C. Voigt et al., ALDH Activity Correlates with Metastatic Potential in Primary Sarcomas of Bone, Journal of Cancer Therapy, vol.05, issue.04, pp.331-339, 2014.
DOI : 10.4236/jct.2014.54040

L. Wang, P. Park, H. Zhang, L. Marca, F. Lin et al., Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity, International Journal of Cancer, vol.110, issue.Suppl 1, pp.294-303, 2011.
DOI : 10.1002/ijc.25331

V. Tirino, V. Desiderio, R. Aquino, D. Francesco, F. Pirozzi et al., Detection and Characterization of CD133+ Cancer Stem Cells in Human Solid Tumours, PLoS ONE, vol.89, issue.104, p.3469, 2008.
DOI : 10.1371/journal.pone.0003469.t001

V. Tirino, V. Desiderio, F. Paino, D. Rosa, A. Papaccio et al., Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo, The FASEB Journal, vol.25, issue.6, pp.2022-2052, 2011.
DOI : 10.1096/fj.10-179036

A. He, W. Qi, Y. Huang, T. Feng, J. Chen et al., CD133 expression predicts lung metastasis and poor prognosis in osteosarcoma patients: A clinical and experimental study. Experimental and therapeutic medicine, pp.435-476, 2012.

J. Li, X. Zhong, Z. Li, J. Cai, L. Zou et al., CD133 expression in osteosarcoma and derivation of CD133(+) cells. Molecular medicine reports, pp.577-84, 2013.

T. Fujiwara, T. Katsuda, K. Hagiwara, N. Kosaka, Y. Yoshioka et al., Clinical Relevance and Therapeutic Significance of MicroRNA-133a Expression Profiles and Functions in Malignant Osteosarcoma-Initiating Cells, STEM CELLS, vol.65, issue.4, pp.959-73, 2014.
DOI : 10.1002/stem.1618

A. Adhikari, N. Agarwal, B. Wood, C. Porretta, B. Ruiz et al., CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. Cancer research, pp.4602-4614, 2010.
DOI : 10.1158/0008-5472.can-09-3463

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139225

J. Tian, X. Li, M. Si, T. Liu, and J. Li, CD271+ Osteosarcoma Cells Display Stem-Like Properties, PLoS ONE, vol.312, issue.6, p.98549, 2014.
DOI : 10.1371/journal.pone.0098549.t001

URL : http://doi.org/10.1371/journal.pone.0098549

C. Gibbs, V. Kukekov, J. Reith, O. Tchigrinova, O. Suslov et al., Stem-Like Cells in Bone Sarcomas: Implications for Tumorigenesis, Neoplasia, vol.7, issue.11, pp.967-76, 2005.
DOI : 10.1593/neo.05394

H. Fujii, K. Honoki, T. Tsujiuchi, A. Kido, K. Yoshitani et al., Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines, International journal of oncology, vol.34, issue.5, pp.1381-1387, 2009.

S. Martins-neves, A. Lopes, A. Do-carmo, A. Paiva, P. Simoes et al., Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line, BMC Cancer, vol.391, issue.1, p.139, 2012.
DOI : 10.1016/j.bbrc.2009.12.020

I. Bruijn and J. Bovee, Osteosarcoma Stem Cells Have Active Wnt/beta-catenin and Overexpress SOX2 and KLF4, Journal of cellular physiology, vol.231, issue.4, pp.876-86, 2016.

H. Zhang, H. Wu, J. Zheng, P. Yu, L. Xu et al., Transforming Growth Factor ??1 Signal is Crucial for Dedifferentiation of Cancer Cells to Cancer Stem Cells in Osteosarcoma, STEM CELLS, vol.205, issue.162, pp.433-479, 2013.
DOI : 10.1002/stem.1298

A. Lamora, J. Talbot, M. Mullard, B. Brounais-le-royer, F. Redini et al., TGF-?? Signaling in Bone Remodeling and Osteosarcoma Progression, Journal of Clinical Medicine, vol.5, issue.11, 2016.
DOI : 10.3390/jcm5110096

URL : http://doi.org/10.3390/jcm5110096

J. Lu, G. Song, Q. Tang, J. Yin, C. Zou et al., MiR-26a inhibits stem cell-like phenotype and tumor growth of osteosarcoma by targeting Jagged1, Oncogene, vol.31, issue.2, 2016.
DOI : 10.1007/s11060-013-1061-2

L. Yu, S. Liu, C. Zhang, B. Zhang, B. Simoes et al., Enrichment of human osteosarcoma stem cells based on hTERT transcriptional activity, Oncotarget, vol.4, issue.12, pp.2326-2364, 2013.
DOI : 10.18632/oncotarget.1554

S. Martins-neves, D. Paiva-oliveira, P. Wijers-koster, A. Abrunhosa, C. Fontes-ribeiro et al., Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/beta-catenin signaling. Cancer letters, pp.286-95, 2016.

Q. Tang, Y. Liang, X. Xie, J. Yin, C. Zou et al., Enrichment of osteosarcoma stem cells by chemotherapy, Chinese Journal of Cancer, vol.30, issue.6, pp.426-458, 2011.
DOI : 10.5732/cjc.011.10127

R. Tsuchida, B. Das, H. Yeger, G. Koren, M. Shibuya et al., Cisplatin treatment increases survival and expansion of a highly tumorigenic side-population fraction by upregulating VEGF/Flt1 autocrine signaling, Oncogene, vol.50, issue.28, pp.3923-3957, 2008.
DOI : 10.1038/onc.2008.38

L. Yu, Z. Fan, S. Fang, J. Yang, T. Gao et al., Cisplatin selects for stem-like cells in osteosarcoma by activating notch signaling, Oncotarget, 2016.
DOI : 10.18632/oncotarget.8849

P. Penfornis, D. Cai, M. Harris, R. Walker, D. Licini et al., High CD49f expression is associated with osteosarcoma tumor progression: a study using patientderived primary cell cultures. Cancer medicine, pp.796-811, 2014.