A. Cuenda and S. Rousseau, p38 MAP-Kinases pathway regulation, function and role in human diseases, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1773, issue.8, pp.1358-1375, 2007.
DOI : 10.1016/j.bbamcr.2007.03.010

J. M. Kyriakis and J. Avruch, Protein kinase cascades activated by stress and inflammatory cytokines, BioEssays, vol.270, issue.7, pp.567-577, 1996.
DOI : 10.1002/bies.950180708

L. R. Coulthard, D. E. White, D. L. Jones, M. F. Mcdermott, and S. A. , (MAPK): stress responses from molecular mechanisms to therapeutics, Trends Mol. Med, vol.15, issue.8, pp.38-369, 2009.
DOI : 10.1016/j.molmed.2009.06.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3016890

J. Huot, F. Houle, F. Marceau, and J. Landry, Oxidative Stress??Induced Actin Reorganization Mediated by the p38 Mitogen-Activated Protein Kinase/Heat Shock Protein 27 Pathway in Vascular Endothelial Cells, Circulation Research, vol.80, issue.3, pp.383-392, 1997.
DOI : 10.1161/01.RES.80.3.383

P. Pandey, J. Raingeaud, M. Kaneki, R. Weichselbaum, R. J. Davis et al., Activation of p38 mitogen-activated protein kinase by c-Abl-dependent and -independent mechanisms, J. Biol. Chem, issue.39, pp.271-23775, 1996.

E. Cano, Y. N. Doza, R. Ben-levy, P. Cohen, and L. C. Mahadevan, Identification of anisomycin-activated kinases p45 and p55 in murine cells as MAPKAP ki- nase-2, Oncogene, vol.12, issue.4, pp.805-812, 1996.

I. Corre, M. Guillonneau, and F. Paris, Membrane Signaling Induced by High Doses of Ionizing Radiation in the Endothelial Compartment. Relevance in Radiation Toxicity, International Journal of Molecular Sciences, vol.14, issue.11, pp.22678-22696, 2013.
DOI : 10.3390/ijms141122678

E. Schulz, E. Anter, and J. F. Keaney-jr, Oxidative Stress, Antioxidants, and Endothelial Function, Current Medicinal Chemistry, vol.11, issue.9, pp.1093-1104, 2004.
DOI : 10.2174/0929867043365369

V. M. Victor, M. Rocha, E. Sola, C. Banuls, K. Garcia-malpartida et al., Oxidative Stress, Endothelial Dysfunction and Atherosclerosis, Current Pharmaceutical Design, vol.15, issue.26, pp.2988-3002, 2009.
DOI : 10.2174/138161209789058093

URL : http://doi.org/10.2174/138161209789058093

V. Schini-kerth, Role of polyphenols in improving endothelial dysfunction in diabetes, Free Radic, Biol. Med, vol.75, pp.11-12, 2014.

K. S. Schweitzer, H. Hatoum, M. B. Brown, M. Gupta, M. J. Justice et al., Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides, American Journal of Physiology - Lung Cellular and Molecular Physiology, vol.301, issue.6, pp.836-846, 2011.
DOI : 10.1152/ajplung.00385.2010

T. Borbiev, A. Birukova, F. Liu, S. Nurmukhambetova, W. T. Gerthoffer et al., p38 MAP kinase-dependent regulation of endothelial cell permeability, AJP: Lung Cellular and Molecular Physiology, vol.287, issue.5, pp.911-918, 2004.
DOI : 10.1152/ajplung.00372.2003

J. J. Toutounchian, J. J. Steinle, P. S. Makena, C. M. Waters, M. W. Wilson et al., Modulation of Radiation Injury Response in Retinal Endothelial Cells by Quinic Acid Derivative KZ-41 Involves p38 MAPK, PLoS ONE, vol.15, issue.6, p.100210, 2014.
DOI : 10.1371/journal.pone.0100210.g009

P. Kumar, A. I. Miller, and P. J. Polverini, p38 MAPK mediates gamma-irradiation-induced endothelial cell apoptosis, and vascular endothelial growth factor protects endothelial cells through the phosphoinositide 3-kinase-Akt-Bcl-2 pathway, J. Biol. Chem, issue.41, pp.279-43352, 2004.

F. Marampon, G. L. Gravina, C. Festuccia, V. M. Popov, E. A. Colapietro et al., Vitamin D protects endothelial cells from irradiation-induced senescence and apoptosis by modulating MAPK/SirT1 axis, Journal of Endocrinological Investigation, vol.13, issue.1, pp.411-422, 2016.
DOI : 10.1007/s40618-015-0381-9

M. Guillonneau, F. Paris, S. Dutoit, H. Estephan, E. Beneteau et al., Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response, The FASEB Journal, vol.30, issue.8, 2016.
DOI : 10.1096/fj.201500194R

URL : https://hal.archives-ouvertes.fr/inserm-01312779

S. Marathe, S. L. Schissel, M. J. Yellin, N. Beatini, R. Mintzer et al., Human vascular endothelial cells are a rich and regulatable source of se cretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling, J. Biol. Chem, issue.7, pp.273-4081, 1998.

S. Bonnaud, C. Niaudet, F. Legoux, I. Corre, G. Delpon et al., Sphingosine-1-Phosphate Activates the AKT Pathway to Protect Small Intestines from Radiation-Induced Endothelial Apoptosis, Cancer Research, vol.70, issue.23, pp.9905-9915, 2010.
DOI : 10.1158/0008-5472.CAN-10-2043

S. Bonnaud, C. Niaudet, G. Pottier, M. H. Gaugler, J. Millour et al., Sphingosine-1-Phosphate Protects Proliferating Endothelial Cells from Ceramide-Induced Apoptosis but not from DNA Damage-Induced Mitotic Death, Cancer Research, vol.67, issue.4, pp.1803-1811, 2007.
DOI : 10.1158/0008-5472.CAN-06-2802

F. Paris, Z. Fuks, A. Kang, P. Capodieci, G. Juan et al., Endothelial Apoptosis as the Primary Lesion Initiating Intestinal Radiation Damage in Mice, Science, vol.293, issue.5528, pp.293-297, 2001.
DOI : 10.1126/science.1060191

M. Garcia-barros, F. Paris, C. Cordon-cardo, D. Lyden, S. Rafii et al., Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis, Science, vol.300, issue.5622, pp.1155-1159, 2003.
DOI : 10.1126/science.1082504

B. Stancevic, N. Varda-bloom, J. Cheng, J. D. Fuller, J. A. Rotolo et al., Adenoviral Transduction of Human Acid Sphingomyelinase into Neo-Angiogenic Endothelium Radiosensitizes Tumor Cure, PLoS ONE, vol.112, issue.8, p.69025, 2013.
DOI : 10.1371/journal.pone.0069025.s006

J. Rotolo, B. Stancevic, J. Zhang, G. Hua, J. Fuller et al., Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice, Journal of Clinical Investigation, vol.122, issue.5, pp.1786-1790, 2012.
DOI : 10.1172/JCI59920DS1

P. L. Li and E. Gulbins, Lipid Rafts and Redox Signaling, Antioxidants & Redox Signaling, vol.9, issue.9, pp.1411-1415, 2007.
DOI : 10.1089/ars.2007.1736

A. Simonis, S. Hebling, E. Gulbins, S. Schneider-schaulies, and A. Schubert-unkmeir, Differential Activation of Acid Sphingomyelinase and Ceramide Release Determines Invasiveness of Neisseria meningitidis into Brain Endothelial Cells, PLoS Pathogens, vol.337, issue.6, p.1004160, 2014.
DOI : 10.1371/journal.ppat.1004160.s007

W. M. Kuebler, C. Wittenberg, W. L. Lee, E. Reppien, N. M. Goldenberg et al., Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase, American Journal of Physiology - Lung Cellular and Molecular Physiology, issue.8, pp.310-720, 2016.
DOI : 10.1152/ajplung.00157.2015

H. Y. Chung, D. C. Hupe, G. P. Otto, M. Sprenger, A. C. Bunck et al., Acid Sphingomyelinase Promotes Endothelial Stress Response in Systemic Inflammation and Sepsis, Molecular Medicine, vol.22, issue.1, p.22, 2016.
DOI : 10.2119/molmed.2016.00140

URL : http://doi.org/10.2119/molmed.2016.00140

C. E. Chalfant, Z. Szulc, P. Roddy, A. Bielawska, and Y. A. Hannun, The structural requirements for ceramide activation of serine-threonine protein phosphatases, The Journal of Lipid Research, vol.45, issue.3, pp.496-506, 2004.
DOI : 10.1194/jlr.M300347-JLR200

B. M. Castro, M. Prieto, and L. C. Silva, Ceramide: A simple sphingolipid with unique biophysical properties, Progress in Lipid Research, vol.54, pp.53-67, 2014.
DOI : 10.1016/j.plipres.2014.01.004

Y. Zhang, X. Li, K. A. Becker, and E. Gulbins, Ceramide-enriched membrane domains???Structure and function, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.1, pp.178-183, 2009.
DOI : 10.1016/j.bbamem.2008.07.030

URL : http://doi.org/10.1016/j.bbamem.2008.07.030

E. Gulbins and R. Kolesnick, Raft ceramide in molecular medicine, Oncogene, vol.22, issue.45, pp.7070-7077, 2003.
DOI : 10.1038/sj.onc.1207146

S. Jin, F. Yi, F. Zhang, J. L. Poklis, and P. L. Li, Lysosomal Targeting and Trafficking of Acid Sphingomyelinase to Lipid Raft Platforms in Coronary Endothelial Cells, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.11, pp.2056-2062, 2008.
DOI : 10.1161/ATVBAHA.108.172478

M. Xia, Q. Wang, H. Zhu, J. Ma, M. Hou et al., Lipid rafts regulate cellular CD40 receptor localization in vascular endothelial cells, Biochemical and Biophysical Research Communications, vol.361, issue.3, pp.361-768, 2007.
DOI : 10.1016/j.bbrc.2007.07.102

B. Yang and V. Rizzo, TNF-?? potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells, AJP: Heart and Circulatory Physiology, vol.292, issue.2, pp.954-962, 2007.
DOI : 10.1152/ajpheart.00758.2006

K. M. Boini, C. Zhang, M. Xia, W. Q. Han, C. Brimson et al., Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1801, issue.12, pp.1294-1304, 2010.
DOI : 10.1016/j.bbalip.2010.09.001

S. A. Wickstrom, K. Alitalo, and J. Keski-oja, Endostatin Associates with Lipid Rafts and Induces Reorganization of the Actin Cytoskeleton via Down-regulation of RhoA Activity, Journal of Biological Chemistry, vol.278, issue.39, pp.37895-37901, 2003.
DOI : 10.1074/jbc.M303569200

F. Yi, S. Jin, F. Zhang, M. Xia, J. X. Bao et al., Formation of lipid raft redox signalling platforms in glomerular endothelial cells: an early event of homocysteine-induced glomerular injury, Journal of Cellular and Molecular Medicine, vol.19, issue.9b, pp.13-3303, 2009.
DOI : 10.1111/j.1582-4934.2009.00743.x

J. Betz, M. Bielaszewska, A. Thies, H. U. Humpf, K. Dreisewerd et al., Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains, The Journal of Lipid Research, vol.52, issue.4, pp.618-634, 2011.
DOI : 10.1194/jlr.M010819

N. Q. Liu, A. S. Lossinsky, W. Popik, X. Li, C. Gujuluva et al., Hu- man immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway, J. Virol, issue.13, pp.76-6689, 2002.

C. Zhang and P. L. Li, Membrane raft redox signalosomes in endothelial cells, Free Radical Research, vol.43, issue.8, pp.831-842, 2010.
DOI : 10.1161/01.CIR.0000115644.35804.8B

X. Li, W. Q. Han, K. M. Boini, M. Xia, Y. Zhang et al., TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice, Journal of Molecular Medicine, vol.46, issue.1, pp.25-36, 2013.
DOI : 10.1007/s00109-012-0968-y

A. Y. Zhang, F. Yi, S. Jin, M. Xia, Q. Z. Chen et al., Acid Sphingomyelinase and Its Redox Amplification in Formation of Lipid Raft Redox Signaling Platforms in Endothelial Cells, Antioxidants & Redox Signaling, vol.9, issue.7, pp.817-828, 2007.
DOI : 10.1089/ars.2007.1509

R. Eguchi, A. Suzuki, S. Miyakaze, K. Kaji, and T. Ohta, Hypoxia induces apoptosis of HUVECs in an in vitro capillary model by activating proapoptotic signal p38 through suppression of ERK1/2, Cellular Signalling, vol.19, issue.6, pp.1121-1131, 2007.
DOI : 10.1016/j.cellsig.2006.12.004

C. Chipoy, B. Brounais, V. Trichet, S. Battaglia, M. Berreur et al., Sensitization of osteosarcoma cells to apoptosis by oncostatin M depends on STAT5 and p53, Oncogene, vol.54, issue.46, pp.6653-6664, 2007.
DOI : 10.1074/jbc.M502974200

G. Silva, A. Cunha, I. P. Gregoire, M. P. Seldon, and M. P. Soares, The Antiapoptotic Effect of Heme Oxygenase-1 in Endothelial Cells Involves the Degradation of p38?? MAPK Isoform, The Journal of Immunology, vol.177, issue.3, pp.1894-1903, 2006.
DOI : 10.4049/jimmunol.177.3.1894

S. S. Castillo, M. Levy, J. V. Thaikoottathil, and T. Goldkorn, Reactive nitrogen and oxygen species activate different sphingomyelinases to induce apoptosis in airway epithelial cells, Experimental Cell Research, vol.313, issue.12, pp.2680-2686, 2007.
DOI : 10.1016/j.yexcr.2007.04.002

M. Rousseau, M. H. Gaugler, A. Rodallec, S. Bonnaud, F. Paris et al., RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration, Biochemical and Biophysical Research Communications, vol.414, issue.4, pp.750-755, 2011.
DOI : 10.1016/j.bbrc.2011.09.150

K. A. Dressler and R. N. Kolesnick, Ceramide 1-phosphate, a novel phospholipid in human leukemia (HL-60) cells. Synthesis via ceramide from sphingomyelin, J. Biol. Chem, vol.265, issue.25, pp.14917-14921, 1990.

J. Kornhuber, P. Tripal, M. Reichel, C. Muhle, C. Rhein et al., Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): A Novel Pharmacological Group of Drugs with Broad Clinical Applications, Cellular Physiology and Biochemistry, vol.26, issue.1, pp.9-20, 2010.
DOI : 10.1159/000315101

M. Raman, S. Earnest, K. Zhang, Y. Zhao, and M. H. Cobb, TAO kinases mediate activation of p38 in response to DNA damage, The EMBO Journal, vol.4, issue.8, pp.2005-2014, 2007.
DOI : 10.1038/sj.emboj.7601668

H. C. Reinhardt, A. S. Aslanian, J. A. Lees, and M. B. , p53-Deficient Cells Rely on ATM- and ATR-Mediated Checkpoint Signaling through the p38MAPK/MK2 Pathway for Survival after DNA Damage, Cancer Cell, vol.11, issue.2, pp.175-189, 2007.
DOI : 10.1016/j.ccr.2006.11.024

B. Stancevic and R. Kolesnick, Ceramide-rich platforms in transmembrane signaling, FEBS Letters, vol.11, issue.9, pp.1728-1740, 2010.
DOI : 10.1016/j.febslet.2010.02.026

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440589

A. Haimovitz-friedman, C. C. Kan, D. Ehleiter, R. S. Persaud, M. Mcloughlin et al., Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis, Journal of Experimental Medicine, vol.180, issue.2, pp.525-535, 1994.
DOI : 10.1084/jem.180.2.525

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191598

S. Willaime, P. Vanhoutte, J. Caboche, Y. Lemaigre-dubreuil, J. Mariani et al., Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation, European Journal of Neuroscience, vol.275, issue.11, pp.13-2037, 2001.
DOI : 10.1006/excr.2000.4939

H. Shimizu, Y. Banno, N. Sumi, T. Naganawa, Y. Kitajima et al., Activation of p38 Mitogen-Activated Protein Kinase and Caspases in UVB-Induced Apoptosis of Human Keratinocyte HaCaT Cells, Journal of Investigative Dermatology, vol.112, issue.5, pp.769-774, 1999.
DOI : 10.1046/j.1523-1747.1999.00582.x

B. Brenner, U. Koppenhoefer, C. Weinstock, O. Linderkamp, F. Lang et al., Fas- or Ceramide-induced Apoptosis Is Mediated by a Rac1-regulated Activation of Jun N-terminal Kinase/p38 Kinases and GADD153, Journal of Biological Chemistry, vol.272, issue.35, pp.272-22173, 1997.
DOI : 10.1074/jbc.272.35.22173

C. Bionda, E. Hadchity, G. Alphonse, O. Chapet, R. Rousson et al., Radioresistance of human carcinoma cells is correlated to a defect in raft membrane clustering, Free Radic, Biol. Med, vol.43, issue.5, pp.681-694, 2007.

S. Paillas, R. Ladjohounlou, C. Lozza, A. Pichard, V. Boudousq et al., Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects, Antioxidants & Redox Signaling, vol.25, issue.8, 2016.
DOI : 10.1089/ars.2015.6309

A. Cuadrado and A. R. Nebreda, Mechanisms and functions of p38 MAPK signalling, Biochemical Journal, vol.180, issue.3, pp.403-417, 2010.
DOI : 10.2174/138161209788682299

K. Moissoglu, V. Kiessling, C. Wan, B. D. Hoffman, A. Norambuena et al., Regulation of Rac1 translocation and activation by membrane domains and their boundaries, Journal of Cell Science, vol.127, issue.11, pp.2565-2576, 2014.
DOI : 10.1242/jcs.149088

M. Saitoh, H. Nishitoh, M. Fujii, K. Takeda, K. Tobiume et al., Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1, The EMBO Journal, vol.17, issue.9, pp.2596-2606, 1998.
DOI : 10.1093/emboj/17.9.2596

H. Qiu, T. Edmunds, J. Baker-malcolm, K. P. Karey, S. Estes et al., Activation of Human Acid Sphingomyelinase through Modification or Deletion of C-terminal Cysteine, Journal of Biological Chemistry, vol.278, issue.35, pp.278-32744, 2003.
DOI : 10.1074/jbc.M303022200

B. Torocsik and J. Szeberenyi, Anisomycin uses multiple mechanisms to stimulate mitogen-activated protein kinases and gene expression and to inhibit neuronal differentiation in PC12 phaeochromocytoma cells, European Journal of Neuroscience, vol.94, issue.2, pp.527-532, 2000.
DOI : 10.1046/j.1460-9568.2000.00933.x

S. Grethe, N. Coltella, M. F. Di-renzo, and M. I. , p38 MAPK downregulates phosphorylation of Bad in doxorubicin-induced endothelial apoptosis, Biochemical and Biophysical Research Communications, vol.347, issue.3, pp.781-790, 2006.
DOI : 10.1016/j.bbrc.2006.06.159

W. L. Liu, X. Guo, and Z. G. Guo, Effects of p38 and p42/p44 CCDPK signaling on H 2 O 2 -induced apoptosis in bovine aortic endothelial cells, Acta Pharmacol. Sin, vol.21, issue.11, pp.991-996, 2000.

K. Nakamura-ishizu, T. Otsu, Y. Suda, and . Kubota, Pathological neoangiogenesis depends on oxidative stress regulation by ATM, Nat. Med, vol.18, issue.8, pp.1208-1216, 2012.

Y. M. Wei, X. Li, J. Xiong, J. M. Abais, M. Xia et al., Attenuation by Statins of Membrane Raft-Redox Signaling in Coronary Arterial Endothelium, Journal of Pharmacology and Experimental Therapeutics, vol.345, issue.2, pp.170-179, 2013.
DOI : 10.1124/jpet.112.201442

J. Greenwood and J. C. Mason, Statins and the vascular endothelial inflammatory response, Trends in Immunology, vol.28, issue.2, pp.88-98, 2007.
DOI : 10.1016/j.it.2006.12.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839264

P. Mdel, C. Squiban, R. Tamarat, F. Milliat, and M. Benderitter, Pravastatin limits radiation-induced vascular dysfunction in the skin, J. Invest. Dermatol, vol.129, issue.5, pp.1280-1291, 2009.