M. I. Aladjem, B. T. Spike, L. W. Rodewald, T. J. Hope, M. Klemm et al., ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage, Current Biology, vol.8, issue.3, pp.145-155, 1998.
DOI : 10.1016/S0960-9822(98)70061-2

K. Blair, J. Wray, and . Smith, The Liberation of Embryonic Stem Cells, PLoS Genetics, vol.6, issue.4, 2011.
DOI : 10.1371/journal.pgen.1002019.g001

T. Boroviak, R. Loos, P. Bertone, A. Smith, and J. Nichols, The ability of inner-cell-mass cells to self-renew as??embryonic stem cells is acquired following epiblast??specification, Nature Cell Biology, vol.115, issue.6, pp.516-528, 2014.
DOI : 10.1093/nar/gks1236

T. Boroviak, R. Loos, P. Lombard, J. Okahara, R. Behr et al., Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis, Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis, pp.366-382, 2015.
DOI : 10.1016/j.devcel.2015.10.011

P. Y. Bourillot, I. Aksoy, V. Schreiber, F. Wianny, H. Schulz et al., Novel STAT3 Target Genes Exert Distinct Roles in the Inhibition of Mesoderm and Endoderm Differentiation in Cooperation with Nanog, Stem Cells, vol.281, issue.pt 2, pp.1760-1771, 2009.
DOI : 10.1002/stem.110

I. G. Brons, L. E. Smithers, M. W. Trotter, P. Rugg-gunn, B. Sun et al., Derivation of pluripotent epiblast stem cells from mammalian embryos, Nature, vol.24, issue.7150, pp.191-195, 2007.
DOI : 10.1038/nature05950

F. A. Brook and R. L. Gardner, The origin and efficient derivation of embryonic stem cells in the mouse, Proceedings of the National Academy of Sciences, vol.94, issue.11, pp.5709-5712, 1997.
DOI : 10.1073/pnas.94.11.5709

M. Buehr, S. Meek, K. Blair, J. Yang, J. Ure et al., Capture of Authentic Embryonic Stem Cells from Rat Blastocysts, Cell, vol.135, issue.7, pp.1287-1298, 2008.
DOI : 10.1016/j.cell.2008.12.007

T. Burdon, C. Stracey, I. Chambers, J. Nichols, and . Smith, Suppression of SHP-2 and ERK Signalling Promotes Self-Renewal of Mouse Embryonic Stem Cells, Developmental Biology, vol.210, issue.1, pp.30-43, 1999.
DOI : 10.1006/dbio.1999.9265

Y. S. Chan, J. Goke, J. H. Ng, X. Lu, K. A. Gonzales et al., Induction of a Human Pluripotent State with Distinct Regulatory Circuitry that Resembles Preimplantation Epiblast, Cell Stem Cell, vol.13, issue.6, pp.663-675, 2013.
DOI : 10.1016/j.stem.2013.11.015

K. H. Chang and M. Li, Clonal Isolation of an Intermediate Pluripotent Stem Cell State, STEM CELLS, vol.138, issue.5, pp.918-927, 2013.
DOI : 10.1002/stem.1330

H. Chen, I. Aksoy, F. Gonnot, P. Osteil, M. Aubry et al., Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency, Nature Communications, vol.6, pp.7095-7111, 2015.
DOI : 10.1038/ncomms8095

Y. Chen, Y. Niu, Y. Li, Z. Ai, Y. Kang et al., Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells, Cell Stem Cell, vol.17, issue.1, pp.116-124, 2015.
DOI : 10.1016/j.stem.2015.06.004

E. Christians, V. H. Rao, and J. P. Renard, Sequential Acquisition of Transcriptional Control during Early Embryonic Development in the Rabbit, Developmental Biology, vol.164, issue.1, pp.160-172, 1994.
DOI : 10.1006/dbio.1994.1188

J. F. Conklin, J. Baker, and J. Sage, The RB family is required for the self-renewal and survival of human embryonic stem cells, Nature Communications, vol.6, p.1244, 2012.
DOI : 10.1038/ncomms2254

D. Coronado, M. Godet, P. Y. Bourillot, Y. Tapponnier, A. Bernat et al., A short G1 phase is an intrinsic determinant of na??ve embryonic stem cell pluripotency, Stem Cell Research, vol.10, issue.1, pp.118-131, 2013.
DOI : 10.1016/j.scr.2012.10.004

T. Doetschman, P. Williams, and N. Maeda, Establishment of hamster blastocyst-derived embryonic stem (ES) cells, Developmental Biology, vol.127, issue.1, pp.224-227, 1988.
DOI : 10.1016/0012-1606(88)90204-7

S. J. Dunn, G. Martello, B. Yordanov, S. Emmott, and A. G. Smith, Defining an essential transcription factor program for naive pluripotency, Science, vol.344, issue.6188, pp.1156-1160, 2014.
DOI : 10.1126/science.1248882

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257066

M. J. Evans and M. H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos, Nature, vol.131, issue.5819, pp.154-156, 1981.
DOI : 10.1038/292154a0

D. C. Factor, O. Corradin, G. E. Zentner, A. Saiakhova, L. Sone et al., Epigenomic Comparison Reveals Activation of ???Seed??? Enhancers during Transition from Naive to Primed Pluripotency, Cell Stem Cell, vol.14, issue.6, pp.854-863, 2012.
DOI : 10.1016/j.stem.2014.05.005

G. Ficz, T. A. Hore, F. Santos, H. J. Lee, W. Dean et al., FGF Signaling Inhibition in ESCs Drives Rapid Genome-wide Demethylation to the Epigenetic Ground State of Pluripotency, Cell Stem Cell, vol.13, issue.3, pp.351-359, 2013.
DOI : 10.1016/j.stem.2013.06.004

A. Filipczyk, A. L. Laslett, C. Mummery, and M. Pera, Differentiation is coupled to changes in the cell cycle regulatory apparatus of human embryonic stem cells, Stem Cell Research, vol.1, issue.1, pp.45-60, 2007.
DOI : 10.1016/j.scr.2007.09.002

B. Fischer, P. Chavatte-palmer, C. Viebahn, N. Santos, A. Duranthon et al., Rabbit as a reproductive model for human health, Reproduction, vol.144, issue.1, pp.1-10, 2012.
DOI : 10.1530/REP-12-0091

URL : https://hal.archives-ouvertes.fr/hal-01019868

A. C. Fluckiger, G. Marcy, M. Marchand, D. Negre, F. L. Cosset et al., Cell Cycle Features of Primate Embryonic Stem Cells, Stem Cells, vol.359, issue.3, pp.547-556, 2006.
DOI : 10.1634/stemcells.2005-0194

URL : https://hal.archives-ouvertes.fr/inserm-00132737

O. Gafni, L. Weinberger, A. A. Mansour, Y. S. Manor, E. Chomsky et al., Derivation of novel human ground state naive pluripotent stem cells, Nature, vol.138, issue.7479, pp.282-286, 2013.
DOI : 10.1038/nature12745

R. L. Gardner and F. A. Brook, Reflections on the biology of embryonic stem (ES) cells, Int. J. Dev. Biol, vol.41, pp.235-243, 1997.

G. Guo and . Smith, A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency, Development, vol.137, issue.19, pp.3185-3192, 2010.
DOI : 10.1242/dev.052753

G. Guo, J. Yang, J. Nichols, J. S. Hall, I. Eyres et al., Klf4 reverts developmentally programmed restriction of ground state pluripotency, Development, vol.136, issue.7, pp.1063-1069, 2009.
DOI : 10.1242/dev.030957

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685927

G. Guo, F. Von-meyenn, F. Santos, Y. Chen, W. Reik et al., Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass, Stem Cell Reports, vol.6, issue.4, pp.437-446, 2016.
DOI : 10.1016/j.stemcr.2016.02.005

E. Habibi, A. B. Brinkman, J. Arand, L. I. Kroeze, H. H. Kerstens et al., Whole-Genome Bisulfite Sequencing of Two Distinct Interconvertible DNA Methylomes of Mouse Embryonic Stem Cells, Cell Stem Cell, vol.13, issue.3, pp.360-369, 2013.
DOI : 10.1016/j.stem.2013.06.002

J. Hall, G. Guo, J. Wray, I. Eyres, J. Nichols et al., Oct4 and LIF/Stat3 Additively Induce Kr??ppel Factors to Sustain Embryonic Stem Cell Self-Renewal, Cell Stem Cell, vol.5, issue.6, pp.597-609, 2009.
DOI : 10.1016/j.stem.2009.11.003

URL : http://doi.org/10.1016/j.stem.2009.11.003

J. Hanna, S. Markoulaki, M. Mitalipova, A. W. Cheng, J. P. Cassady et al., Metastable Pluripotent States in NOD-Mouse-Derived ESCs, Metastable pluripotent states in NODmouse-derived ESCs, pp.513-524, 2009.
DOI : 10.1016/j.stem.2009.04.015

URL : http://doi.org/10.1016/j.stem.2009.04.015

B. Hayes, S. R. Fagerlie, A. Ramakrishnan, S. Baran, M. Harkey et al., Derivation, Characterization, and In Vitro Differentiation of Canine Embryonic Stem Cells, Stem Cells, vol.67, issue.2, pp.465-473, 2008.
DOI : 10.1634/stemcells.2007-0640

M. Hirabayashi, M. Kato, T. Kobayashi, M. Sanbo, T. Yagi et al., Establishment of rat embryonic stem cell lines that can participate in germline chimerae at high efficiency, Molecular Reproduction and Development, vol.4, p.94, 2010.
DOI : 10.1002/mrd.21123

A. Honda, M. Hirose, K. Inoue, N. Ogonuki, H. Miki et al., Stable embryonic stem cell lines in rabbits: potential small animal models for human research, Reproductive BioMedicine Online, vol.17, issue.5, pp.706-715, 2008.
DOI : 10.1016/S1472-6483(10)60320-3

A. Honda, M. Hirose, and A. Ogura, Basic FGF and Activin/Nodal but not LIF signaling sustain undifferentiated status of rabbit embryonic stem cells???, Experimental Cell Research, vol.315, issue.12, pp.2033-2042, 2009.
DOI : 10.1016/j.yexcr.2009.01.024

Y. Huang, R. Osorno, A. Tsakiridis, and V. Wilson, In??Vivo Differentiation Potential of Epiblast Stem Cells Revealed by Chimeric Embryo Formation, Cell Reports, vol.2, issue.6, pp.1571-1578, 2012.
DOI : 10.1016/j.celrep.2012.10.022

P. Savatier, Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff, Stem Cell Research, vol.19, pp.104-112, 2017.
DOI : 10.1016/j.scr.2017.01.008

URL : https://hal.archives-ouvertes.fr/inserm-01451139

K. Huang, T. Maruyama, and G. Fan, The Naive State of Human Pluripotent Stem Cells: A Synthesis of Stem Cell and Preimplantation Embryo Transcriptome Analyses, Cell Stem Cell, vol.15, issue.4, pp.410-415, 2014.
DOI : 10.1016/j.stem.2014.09.014

J. Idkowiak, G. Weisheit, J. Plitzner, and C. Viebahn, Hypoblast controls mesoderm generation and axial patterning in the gastrulating rabbit embryo, Development Genes and Evolution, vol.98, issue.15, pp.591-605, 2004.
DOI : 10.1007/s00427-004-0436-y

D. J. Illich, M. Zhang, A. Ursu, R. Osorno, K. Kim et al., Distinct signaling reqirements for the establishment of ESC pluripotency in late-stage EpiSCs, Cell Rep, vol.15, pp.1-14, 2016.

P. Intawicha, Y. W. Ou, N. W. Lo, S. C. Zhang, Y. Z. Chen et al., Characterization of Embryonic Stem Cell Lines Derived from New Zealand White Rabbit Embryos, Cloning and Stem Cells, vol.11, issue.1, pp.27-38, 2009.
DOI : 10.1089/clo.2008.0040

A. Jouneau, C. Ciaudo, O. Sismeiro, V. Brochard, L. Jouneau et al., Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles, RNA, vol.18, issue.2, pp.253-264, 2012.
DOI : 10.1261/rna.028878.111

URL : https://hal.archives-ouvertes.fr/hal-01001312

M. Kawamata and T. Ochiya, Generation of genetically modified rats from embryonic stem cells, Proceedings of the National Academy of Sciences, vol.107, issue.32, pp.14223-14228, 2010.
DOI : 10.1073/pnas.1009582107

Y. Kojima, K. Kaufman-francis, J. B. Studdert, K. A. Steiner, M. D. Power et al., The Transcriptional and Functional Properties of Mouse Epiblast Stem Cells Resemble the Anterior Primitive Streak, Cell Stem Cell, vol.14, issue.1, pp.107-120, 2013.
DOI : 10.1016/j.stem.2013.09.014

A. A. Kolodziejczyk, J. K. Kim, J. C. Tsang, T. Ilicic, J. Henriksson et al., Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation, Cell Stem Cell, vol.17, issue.4, pp.471-485, 2015.
DOI : 10.1016/j.stem.2015.09.011

H. G. Leitch, K. R. Mcewen, A. Turp, V. Encheva, T. Carroll et al., Naive pluripotency is associated with global DNA hypomethylation, Nature Structural & Molecular Biology, vol.125, issue.3, pp.311-316, 2013.
DOI : 10.1073/pnas.0506580102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591483

M. E. Levenstein, T. E. Ludwig, R. H. Xu, R. A. Llanas, K. Vandenheuvel-kramer et al., Basic Fibroblast Growth Factor Support of Human Embryonic Stem Cell Self-Renewal, Stem Cells, vol.268, issue.3, pp.568-574, 2005.
DOI : 10.1634/stemcells.2005-0247

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615709

M. Li, M. Sendtner, and . Smith, Essential function of LIF receptor in motor neurons, Nature, vol.6, issue.6558, pp.724-727, 1995.
DOI : 10.1038/378724a0

P. Li, C. Tong, R. Mehrian-shai, L. Jia, N. Wu et al., Germline Competent Embryonic Stem Cells Derived from Rat Blastocysts, Cell, vol.135, issue.7, pp.1299-1310, 2008.
DOI : 10.1016/j.cell.2008.12.006

URL : http://doi.org/10.1016/j.cell.2008.12.006

T. E. Ludwig, M. E. Levenstein, J. M. Jones, W. T. Berggren, E. R. Mitchen et al., Derivation of human embryonic stem cells in defined conditions, Nature Biotechnology, vol.213, issue.2, pp.185-187, 2006.
DOI : 10.1038/nbt922

Y. S. Manor, R. Massarwa, and J. H. Hanna, Establishing the human na??ve pluripotent state, Current Opinion in Genetics & Development, vol.34, pp.35-45, 2015.
DOI : 10.1016/j.gde.2015.07.005

G. Martello and . Smith, The Nature of Embryonic Stem Cells, Annual Review of Cell and Developmental Biology, vol.30, issue.1, pp.647-675, 2014.
DOI : 10.1146/annurev-cellbio-100913-013116

G. Martello, T. Sugimoto, E. Diamanti, A. Joshi, R. Hannah et al., Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal, Cell Stem Cell, vol.11, issue.4, pp.491-504, 2012.
DOI : 10.1016/j.stem.2012.06.008

G. Martello, P. Bertone, and . Smith, Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor, The EMBO Journal, vol.264, issue.19, pp.2561-2574, 2013.
DOI : 10.1038/emboj.2013.177

G. R. Martin, Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells., Proceedings of the National Academy of Sciences, vol.78, issue.12, pp.7634-7638, 1981.
DOI : 10.1073/pnas.78.12.7634

H. Masaki, M. Kato-itoh, A. Umino, H. Sato, S. Hamanaka et al., Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells, Development, vol.142, issue.18, pp.3222-3230, 2015.
DOI : 10.1242/dev.124016

V. L. Mascetti and R. A. Pedersen, Human-Mouse Chimerism Validates Human Stem Cell Pluripotency, Cell Stem Cell, vol.18, issue.1, pp.67-72, 2016.
DOI : 10.1016/j.stem.2015.11.017

URL : http://doi.org/10.1016/j.stem.2015.11.017

A. G. Menzorov, N. M. Matveeva, M. N. Markakis, V. S. Fishman, K. Christensen et al., Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes, BMC Genomics, vol.16, issue.Suppl 13, p.6, 2015.
DOI : 10.1186/1471-2164-16-S13-S6

S. Mitalipov, H. C. Kuo, J. Byrne, L. Clepper, L. Meisner et al., Isolation and Characterization of Novel Rhesus Monkey Embryonic Stem Cell Lines, Stem Cells, vol.60, issue.(suppl 1, pp.2177-2186, 2006.
DOI : 10.1634/stemcells.2006-0125

O. Momcilovic, S. Choi, S. Varum, C. Bakkenist, G. Schatten et al., Cell Cycle Arrest in Pluripotent Human Embryonic Stem Cells, Stem Cells, vol.27, issue.40, pp.1822-1835, 2009.
DOI : 10.1002/stem.123

F. J. Najm, J. G. Chenoweth, P. D. Anderson, J. H. Nadeau, R. W. Redline et al., Isolation of Epiblast Stem Cells from Preimplantation Mouse Embryos, Cell Stem Cell, vol.8, issue.3, pp.318-325, 2011.
DOI : 10.1016/j.stem.2011.01.016

T. Nakamura, I. Okamoto, K. Sasaki, Y. Yabuta, C. Iwatani et al., A developmental coordinate of pluripotency among mice, monkeys and humans, Nature, vol.29, issue.7618, pp.57-62, 2016.
DOI : 10.1038/nature19096

K. Nakashima, S. Wiese, M. Yanagisawa, H. Arakawa, N. Kimura et al., Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation, J. Neurosci, vol.19, pp.5429-5434, 1999.

J. Nichols and . Smith, Naive and Primed Pluripotent States, Cell Stem Cell, vol.4, issue.6, pp.487-492, 2009.
DOI : 10.1016/j.stem.2009.05.015

URL : http://doi.org/10.1016/j.stem.2009.05.015

J. Nichols, I. Chambers, T. Taga, and . Smith, Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines, Development, vol.128, pp.2333-2339, 2001.

J. Nichols, K. Jones, J. M. Phillips, S. A. Newland, M. Roode et al., Validated germline-competent embryonic stem cell lines from nonobese diabetic mice, Nature Medicine, vol.21, issue.7, pp.814-818, 2009.
DOI : 10.1038/nm.1996

H. Niwa, T. Burdon, I. Chambers, and . Smith, Self-renewal of pluripotent embryonic stem cells is mediated via activation of??STAT3, Genes & Development, vol.12, issue.13, pp.2048-2060, 1998.
DOI : 10.1101/gad.12.13.2048

H. Niwa, K. Ogawa, D. Shimosato, and K. Adachi, A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells, Nature, vol.120, issue.7251, pp.118-122, 2009.
DOI : 10.1038/nature08113

E. Notarianni, C. Galli, S. Laurie, R. M. Moor, and M. J. Evans, Derivation of pluripotent, embryonic cell lines from the pig and sheep, J. Reprod. Fertil, pp.255-260, 1991.

I. Okamoto, C. Patrat, D. Thepot, N. Peynot, P. Fauque et al., Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development, Nature, vol.104, issue.7343, pp.370-374, 2011.
DOI : 10.1038/nature09872

URL : https://hal.archives-ouvertes.fr/hal-01019321

R. Osorno, A. Tsakiridis, F. Wong, N. Cambray, C. Economou et al., The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression, Development, vol.139, issue.13, pp.2288-2298, 2012.
DOI : 10.1242/dev.078071

P. Osteil, Y. Tapponnier, S. Markossian, M. Godet, B. Schmaltz-panneau et al., Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naive pluripotency, Biology Open, vol.2, issue.6, pp.613-628, 2013.
DOI : 10.1242/bio.20134242

URL : https://hal.archives-ouvertes.fr/hal-01000957

P. Osteil, J. Studdert, E. Wilkie, N. Fossat, and P. P. Tam, Generation of genome-edited mouse epiblast stem cells via a detour through ES cell-chimeras, Differentiation, vol.91, issue.4-5, pp.119-125, 2016.
DOI : 10.1016/j.diff.2015.10.004

M. Ozawa, E. Kawakami, R. Sakamoto, T. Shibasaki, A. Goto et al., Development of FGF2-dependent pluripotent stem cells showing naive state characteristics from murine preimplantation inner cell mass, Stem Cell Research, vol.13, issue.1, pp.75-87, 2014.
DOI : 10.1016/j.scr.2014.04.012

T. A. Pelton, S. Sharma, T. C. Schulz, J. Rathjen, and P. D. Rathjen, Transient pluripotent cell populations during primitive ectoderm formation: correlation of in vivo and in vitro pluripotent cell development, J. Cell Sci, vol.115, pp.329-339, 2002.

D. Qiu, S. Ye, B. Ruiz, X. Zhou, D. Liu et al., Klf2 and Tfcp2l1, Two Wnt/??-Catenin Targets, Act Synergistically to Induce and Maintain Naive Pluripotency, Stem Cell Reports, vol.5, issue.3, pp.314-322, 2015.
DOI : 10.1016/j.stemcr.2015.07.014

URL : http://doi.org/10.1016/j.stemcr.2015.07.014

J. Rathjen, J. A. Lake, M. D. Bettess, J. M. Washington, G. Chapman et al., Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors, J. Cell Sci, vol.112, pp.601-612, 1999.

R. Silva, A. R. Adenot, P. Daniel, N. Archilla, C. Peynot et al., Dynamics of DNA methylation levels in maternal and paternal rabbit genomes after fertilization, Epigenetics, vol.6, issue.8, pp.987-993, 2011.
DOI : 10.4161/epi.6.8.16073

URL : https://hal.archives-ouvertes.fr/hal-01000297

J. Rossant and P. P. Tam, Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse, Development, vol.136, issue.5, pp.701-713, 2009.
DOI : 10.1242/dev.017178

P. Savatier, H. Lapillonne, L. A. Van-grunsven, B. B. Rudkin, and J. Samarut, Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells, Oncogene, vol.12, pp.309-322, 1996.

B. Schmaltz-panneau, L. Jouneau, P. Osteil, Y. Tapponnier, M. Afanassieff et al., Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo, Animal Reproduction Science, vol.149, issue.1-2, pp.67-79, 2014.
DOI : 10.1016/j.anireprosci.2014.05.014

J. Silva, J. Nichols, T. W. Theunissen, G. Guo, A. L. Van-oosten et al., Nanog Is the Gateway to the Pluripotent Ground State, Cell, vol.138, issue.4, pp.722-737, 2009.
DOI : 10.1016/j.cell.2009.07.039

C. R. Simerly, C. S. Navara, C. A. Castro, J. C. Turpin, C. J. Redinger et al., Establishment and characterization of baboon embryonic stem cell lines: An Old World Primate model for regeneration and transplantation research, Stem Cell Research, vol.2, issue.3, pp.178-187, 2009.
DOI : 10.1016/j.scr.2009.02.004

M. Sims and N. L. First, Production of calves by transfer of nuclei from cultured inner cell mass cells., Proceedings of the National Academy of Sciences, vol.91, issue.13, pp.6143-6147, 1994.
DOI : 10.1073/pnas.91.13.6143

A. G. Smith, J. K. Heath, D. D. Donaldson, G. G. Wong, J. Moreau et al., Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides, Nature, vol.336, issue.6200, pp.688-690, 1988.
DOI : 10.1038/336688a0

R. O. Stephenson, J. Rossant, and P. P. Tam, Intercellular Interactions, Position, and Polarity in Establishing Blastocyst Cell Lineages and Embryonic Axes, Cold Spring Harbor Perspectives in Biology, vol.4, issue.11, 2012.
DOI : 10.1101/cshperspect.a008235

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536338

H. Suemori, T. Tada, R. Torii, Y. Hosoi, K. Kobayashi et al., Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI, Developmental Dynamics, vol.336, issue.2, pp.273-279, 2001.
DOI : 10.1002/dvdy.1191

C. I. Tai and Q. L. Ying, Gbx2, a LIF/Stat3 target, promotes reprogramming to and retention of the pluripotent ground state, Journal of Cell Science, vol.126, issue.5, pp.1093-1098, 2013.
DOI : 10.1242/jcs.118273

Y. Takashima, G. Guo, R. Loos, J. Nichols, G. Ficz et al., Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human, Cell, vol.158, issue.6, pp.1254-1269, 2014.
DOI : 10.1016/j.cell.2014.08.029

K. Takeda, K. Noguchi, W. Shi, T. Tanaka, M. Matsumoto et al., Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality, Proceedings of the National Academy of Sciences, vol.94, issue.8, pp.3801-3804, 1997.
DOI : 10.1073/pnas.94.8.3801

P. J. Tesar, Snapshots of Pluripotency, Stem Cell Reports, vol.6, issue.2, pp.163-167, 2016.
DOI : 10.1016/j.stemcr.2015.12.011

P. J. Tesar, J. G. Chenoweth, F. A. Brook, T. J. Davies, E. P. Evans et al., New cell lines from mouse epiblast share defining features with human embryonic stem cells, Nature, vol.12, issue.7150, pp.196-199, 2007.
DOI : 10.1038/nature05972

T. W. Theunissen, B. E. Powell, H. Wang, M. Mitalipova, D. A. Faddah et al., Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency, Cell Stem Cell, vol.15, issue.4, pp.471-487, 2014.
DOI : 10.1016/j.stem.2014.07.002

P. Savatier, Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff, Stem Cell Research, vol.19, pp.104-112, 2017.
DOI : 10.1016/j.scr.2017.01.008

URL : https://hal.archives-ouvertes.fr/inserm-01451139

T. W. Theunissen, M. Friedli, Y. He, E. Planet, R. C. O-'neil et al., Molecular Criteria for Defining the Naive Human Pluripotent State, Molecular criteria for defining the naive human pluripotent state, pp.502-515, 2016.
DOI : 10.1016/j.stem.2016.06.011

J. A. Thomson, J. Kalishman, T. G. Golos, M. Durning, C. P. Harris et al., Pluripotent Cell Lines Derived from Common Marmoset (Callithrix jacchus) Blastocysts1, Biology of Reproduction, vol.55, issue.2, pp.254-259, 1996.
DOI : 10.1095/biolreprod55.2.254

J. A. Thomson, J. Itskovitz-eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel et al., Embryonic Stem Cell Lines Derived from Human Blastocysts, Science, vol.282, issue.5391, pp.1145-1147, 1998.
DOI : 10.1126/science.282.5391.1145

A. K. Vaags, S. Rosic-kablar, C. J. Gartley, Y. Z. Zheng, A. Chesney et al., Derivation and Characterization of Canine Embryonic Stem Cell Lines with In Vitro and In Vivo Differentiation Potential, Stem Cells, vol.16, issue.23, pp.329-340, 2009.
DOI : 10.1634/stemcells.2008-0433

L. Vallier, M. Alexander, and R. A. Pedersen, Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells, Journal of Cell Science, vol.118, issue.19, pp.4495-4509, 2005.
DOI : 10.1242/jcs.02553

L. Vallier, T. Touboul, S. Brown, C. Cho, B. Bilican et al., Signaling Pathways Controlling Pluripotency and Early Cell Fate Decisions of Human Induced Pluripotent Stem Cells, STEM CELLS, vol.4, issue.11, pp.2655-2666, 2009.
DOI : 10.1002/stem.199

S. Wang, X. Tang, Y. Niu, H. Chen, B. Li et al., Generation and Characterization of Rabbit Embryonic Stem Cells, Stem Cells, vol.267, issue.2, pp.481-489, 2006.
DOI : 10.1634/stemcells.2006-0226

S. Wang, Y. Shen, X. Yuan, K. Chen, X. Guo et al., Dissecting Signaling Pathways That Govern Self-renewal of Rabbit Embryonic Stem Cells, Journal of Biological Chemistry, vol.283, issue.51, pp.35929-35940, 2008.
DOI : 10.1074/jbc.M804091200

C. B. Ware, M. C. Horowitz, B. R. Renshaw, J. S. Hunt, D. Liggit et al., Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death, Development, vol.121, pp.1283-1299, 1995.

L. Weinberger, M. Ayyash, N. Novershtern, and J. H. Hanna, Dynamic stem cell states: naive to primed pluripotency in rodents and humans, Nature Reviews Molecular Cell Biology, vol.4, issue.3, pp.155-169, 2016.
DOI : 10.1038/nature13551

F. Wianny, A. Bernat, G. Marcy, C. Huissoud, S. Markossian et al., Derivation and Cloning of a Novel Rhesus Embryonic Stem Cell Line Stably Expressing Tau-Green Fluorescent Protein, Stem Cells, vol.143, issue.6, pp.1444-1453, 2008.
DOI : 10.1634/stemcells.2007-0953

URL : https://hal.archives-ouvertes.fr/inserm-00409448

R. H. Xu, R. M. Peck, D. S. Li, X. Feng, T. Ludwig et al., Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells, Nature Methods, vol.4, issue.3, pp.185-190, 2005.
DOI : 10.1101/gad.1153603

L. Yan, M. Yang, H. Guo, L. Yang, J. Wu et al., Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells, Nature Structural & Molecular Biology, vol.57, issue.9, pp.1131-1139, 2013.
DOI : 10.1038/nprot.2008.211

J. Yang, A. L. Van-oosten, T. W. Theunissen, G. Guo, J. C. Silva et al., Stat3 Activation Is Limiting for Reprogramming to Ground State Pluripotency, Cell Stem Cell, vol.7, issue.3, pp.319-328, 2010.
DOI : 10.1016/j.stem.2010.06.022

J. Yang, C. Gao, L. Chai, and Y. Ma, A Novel SALL4/OCT4 Transcriptional Feedback Network for Pluripotency of Embryonic Stem Cells, PLoS ONE, vol.133, issue.15, 2010.
DOI : 10.1371/journal.pone.0010766.s001

S. Ye, P. Li, C. Tong, and Q. L. Ying, Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1, The EMBO Journal, vol.453, issue.19, pp.2548-2560, 2013.
DOI : 10.1038/emboj.2013.175

J. C. Yeo, J. Jiang, Z. Y. Tan, G. R. Yim, J. H. Ng et al., Klf2 Is an Essential Factor that Sustains Ground State Pluripotency, Cell Stem Cell, vol.14, issue.6, pp.864-872, 2014.
DOI : 10.1016/j.stem.2014.04.015

URL : http://doi.org/10.1016/j.stem.2014.04.015

Q. L. Ying, J. Nichols, I. Chambers, and . Smith, BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3, Cell, vol.115, issue.3, pp.281-292, 2003.
DOI : 10.1016/S0092-8674(03)00847-X

Q. L. Ying, J. Wray, J. Nichols, L. Batlle-morera, B. Doble et al., The ground state of embryonic stem cell self-renewal, Nature, vol.113, issue.7194, pp.519-523, 2008.
DOI : 10.1038/nature06968

K. Yoshida, T. Taga, M. Saito, S. Suematsu, A. Kumanogoh et al., Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders., Proc. Natl. Acad. Sci. U. S. A. 93, pp.407-411, 1996.
DOI : 10.1073/pnas.93.1.407

S. Yuri, S. Fujimura, K. Nimura, N. Takeda, Y. Toyooka et al., Is Essential for Stabilization, But Not for Pluripotency, of Embryonic Stem Cells by Repressing Aberrant Trophectoderm Gene Expression, Stem Cells, vol.133, issue.4, pp.796-805, 2009.
DOI : 10.1002/stem.14