M. Spillantini, R. Crowther, R. Jakes, M. Hasegawa, and M. Goedert, ??-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies, Proceedings of the National Academy of Sciences, vol.95, issue.11, pp.6469-73, 1998.
DOI : 10.1073/pnas.95.11.6469

M. Xilouri and O. Brekk, Alpha-synuclein and Protein Degradation Systems: a Reciprocal Relationship, Molecular Neurobiology, vol.69, issue.1, pp.537-51, 2013.
DOI : 10.1007/s12035-012-8341-2

D. Ebrahimi-fakhari, L. Wahlster, and P. Mclean, Protein degradation pathways in Parkinson???s disease: curse or blessing, Acta Neuropathologica, vol.12, issue.1, pp.153-72, 2012.
DOI : 10.1007/s00401-012-1004-6

J. Webb, B. Ravikumar, J. Atkins, J. Skepper, and D. Rubinsztein, ??-Synuclein Is Degraded by Both Autophagy and the Proteasome, Journal of Biological Chemistry, vol.278, issue.27, pp.25009-25022, 2003.
DOI : 10.1074/jbc.M300227200

M. Xilouri, O. Brekk, and L. Stefanis, Autophagy and Alpha-Synuclein: Relevance to Parkinson's Disease and Related Synucleopathies, Movement Disorders, vol.137, issue.Pt 5, pp.178-92, 2016.
DOI : 10.1002/mds.26477

T. Hara, K. Nakamura, M. Matsui, A. Yamamoto, Y. Nakahara et al., Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice, Nature, vol.16, issue.7095, pp.885-894, 2006.
DOI : 10.1038/nature04724

M. Komatsu, S. Waguri, T. Chiba, S. Murata, J. Iwata et al., Loss of autophagy in the central nervous system causes neurodegeneration in mice, Nature, vol.275, issue.7095, pp.880-884, 2006.
DOI : 10.1038/nature04723

R. Nixon, The role of autophagy in neurodegenerative disease, Nature Medicine, vol.5, issue.8, pp.983-97, 2013.
DOI : 10.1038/nm.3232

M. Lynch-day, K. Mao, K. Wang, M. Zhao, and D. Klionsky, The role of autophagy in Parkinson's disease. Cold Spring Harb Perspect Med, 2012.

J. Bove, M. Martinez-vicente, M. Vila, P. Codogno, and B. Levine, Fighting neurodegeneration with rapamycin: mechanistic insights Autophagy modulation as a potential therapeutic target for diverse diseases, Nat Rev Neurosci. Nat Rev Drug Discov, vol.1211, pp.437-52709, 2011.

W. Li, J. Li, and J. Bao, Microautophagy: lesser-known self-eating, Cellular and Molecular Life Sciences, vol.5, issue.7, pp.1125-1161, 2012.
DOI : 10.1007/s00018-011-0865-5

B. Ravikumar, S. Sarkar, J. Davies, M. Futter, M. Garcia-arencibia et al., Regulation of Mammalian Autophagy in Physiology and Pathophysiology, Physiological Reviews, vol.90, issue.4, pp.1383-435, 2009.
DOI : 10.1152/physrev.00030.2009

A. Cuervo, Autophagy, Trends Cell Biol, vol.14, pp.70-77, 2004.
DOI : 10.1016/B978-0-12-394447-4.30054-2

URL : https://hal.archives-ouvertes.fr/hal-01439629

F. Reggiori, M. Komatsu, K. Finley, and A. Simonsen, Autophagy: More Than a Nonselective Pathway, International Journal of Cell Biology, vol.1, issue.1, pp.219625-219635, 2012.
DOI : 10.1016/S1097-2765(01)00263-5

URL : http://doi.org/10.1155/2012/219625

J. Farré and S. Subramani, Mechanistic insights into selective autophagy pathways: lessons from yeast, Nature Reviews Molecular Cell Biology, vol.335, issue.9, pp.537-52, 2016.
DOI : 10.1111/j.1600-0854.2004.00245.x

A. Khaminets, C. Behl, and I. Dikic, Ubiquitin-Dependent And Independent Signals In Selective Autophagy, Trends in Cell Biology, vol.26, issue.1, pp.6-16, 2016.
DOI : 10.1016/j.tcb.2015.08.010

C. Bento, R. M. Ghislat, G. Puri, C. Ashkenazi, A. Vicinanza et al., Mammalian Autophagy: How Does It Work?, Annual Review of Biochemistry, vol.85, issue.1, pp.685-713, 2016.
DOI : 10.1146/annurev-biochem-060815-014556

M. Laplante and D. Sabatini, mTOR Signaling in Growth Control and Disease, Cell, vol.149, issue.2, pp.274-93, 2012.
DOI : 10.1016/j.cell.2012.03.017

URL : http://doi.org/10.1016/j.cell.2012.03.017

J. Kim, M. Kundu, B. Viollet, and K. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nature Cell Biology, vol.4, issue.2, pp.132-173, 2011.
DOI : 10.1016/j.cub.2010.04.041

X. Gao, Y. Zhang, P. Arrazola, O. Hino, T. Kobayashi et al., Tsc tumour suppressor proteins antagonize amino-acid???TOR signalling, Nature Cell Biology, vol.4, issue.9, pp.699-704, 2002.
DOI : 10.1038/ncb847

E. Itakura, C. Kishi, K. Inoue, and N. Mizushima, Beclin 1 Forms Two Distinct Phosphatidylinositol 3-Kinase Complexes with Mammalian Atg14 and UVRAG, Molecular Biology of the Cell, vol.19, issue.12, pp.5360-72, 2008.
DOI : 10.1091/mbc.E08-01-0080

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592660

A. Choi, S. Ryter, and B. Levine, Autophagy in Human Health and Disease, New England Journal of Medicine, vol.368, issue.7, pp.1845-1851, 2013.
DOI : 10.1056/NEJMra1205406

S. Alers, A. Löffler, S. Wesselborg, and B. Stork, Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks, Molecular and Cellular Biology, vol.32, issue.1, pp.2-11, 2012.
DOI : 10.1128/MCB.06159-11

M. Sardiello, M. Palmieri, A. Di-ronza, D. Medina, M. Valenza et al., A Gene Network Regulating Lysosomal Biogenesis and Function, Science, vol.325, pp.473-480, 2009.
DOI : 10.1126/science.1174447

C. Settembre, M. Di, V. Polito, A. Garcia, F. Vetrini et al., TFEB Links Autophagy to Lysosomal Biogenesis, Science, vol.332, issue.6036, pp.1429-1462, 2011.
DOI : 10.1126/science.1204592

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638014

C. Settembre, R. Zoncu, D. Medina, F. Vetrini, S. Erdin et al., A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB, The EMBO Journal, vol.12, issue.5, pp.1095-108, 2012.
DOI : 10.1038/emboj.2012.32

R. Zoncu, L. Bar-peled, A. Efeyan, S. Wang, Y. Sancak et al., mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase, Science, vol.334, issue.6056, pp.678-83, 2011.
DOI : 10.1126/science.1207056

A. Williams, S. Sarkar, P. Cuddon, E. Ttofi, S. Saiki et al., Novel targets for Huntington's disease in an mTOR-independent autophagy pathway, Nature Chemical Biology, vol.4, issue.5, pp.295-305, 2008.
DOI : 10.1038/nchembio.79

A. Criollo, M. Maiuri, E. Tasdemir, I. Vitale, A. Fiebig et al., Regulation of autophagy by the inositol trisphosphate receptor, Cell Death and Differentiation, vol.114, pp.1029-1068, 2007.
DOI : 10.1016/j.molcel.2004.09.026

URL : https://hal.archives-ouvertes.fr/hal-00216049

Z. Gan-or, P. Dion, and G. Rouleau, Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease, Autophagy, vol.7, issue.9, 2015.
DOI : 10.1016/S0140-6736(14)61010-2

E. Sidransky and G. Lopez, The link between the GBA gene and parkinsonism, The Lancet Neurology, vol.11, issue.11, pp.986-98, 2012.
DOI : 10.1016/S1474-4422(12)70190-4

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141416

E. Sidransky, M. Nalls, J. Aasly, J. Aharon-peretz, G. Annesi et al., Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson's Disease, New England Journal of Medicine, vol.361, issue.17, pp.1651-61, 2009.
DOI : 10.1056/NEJMoa0901281

J. Liu and H. Zhang, mutation and parkinson's disease, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.91, issue.1, pp.96-102, 2014.
DOI : 10.1002/ajmg.b.32214

X. Mao, T. Wang, R. Peng, X. Chang, N. Li et al., Mutations in GBA and risk of Parkinson???s disease: a meta-analysis based on 25 case-control studies, Neurological Research, vol.4, issue.8, pp.873-881, 2013.
DOI : 10.1038/ng1333

A. Schapira, Glucocerebrosidase and Parkinson disease: Recent advances, Molecular and Cellular Neuroscience, vol.66, pp.37-42, 2015.
DOI : 10.1016/j.mcn.2015.03.013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471139

T. Moors, S. Paciotti, D. Chiasserini, P. Calabresi, L. Parnetti et al., Lysosomal Dysfunction and alpha-Synuclein Aggregation in Parkinson's Disease: Diagnostic Links, Mov Disord, 2016.
DOI : 10.1002/mds.26562

D. Reczek, M. Schwake, J. Schroder, H. Hughes, J. Blanz et al., LIMP-2 Is a Receptor for Lysosomal Mannose-6-Phosphate-Independent Targeting of ??-Glucocerebrosidase, Cell, vol.131, issue.4, pp.770-83, 2007.
DOI : 10.1016/j.cell.2007.10.018

E. Dagan, I. Schlesinger, M. Ayoub, A. Mory, M. Nassar et al., The contribution of Niemann-Pick SMPD1 mutations to Parkinson disease in Ashkenazi Jews, Parkinsonism & Related Disorders, vol.21, issue.9, pp.1067-71, 2015.
DOI : 10.1016/j.parkreldis.2015.06.016

J. Foo, H. Liany, J. Bei, X. Yu, J. Liu et al., Rare lysosomal enzyme gene SMPD1 variant (p. R591C) associates with Parkinson's disease, Neurobiol Aging, vol.34, 2013.
DOI : 10.1016/j.neurobiolaging.2013.06.010

Z. Gan-or, L. Ozelius, A. Bar-shira, R. Saunders-pullman, A. Mirelman et al., The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease, Neurology, vol.80, issue.17, pp.1606-1616, 2013.
DOI : 10.1212/WNL.0b013e31828f180e

R. Wu and C. Lin, The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease, Neurology, vol.82, issue.3, 2014.
DOI : 10.1212/WNL.0000000000000004

URL : https://hal.archives-ouvertes.fr/in2p3-00023345

J. Trinh and M. Farrer, Advances in the genetics of Parkinson disease, Nature Reviews Neurology, vol.8, issue.8, pp.445-54, 2013.
DOI : 10.1038/nrneurol.2013.132

V. Burchell, D. Nelson, A. Sanchez-martinez, M. Delgado-camprubi, R. Ivatt et al., The Parkinson's disease???linked proteins Fbxo7 and Parkin interact to mediate mitophagy, Nature Neuroscience, vol.4, issue.9, pp.1257-65, 2013.
DOI : 10.1038/cdd.2009.23

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827746

S. Orenstein, S. Kuo, I. Tasset, E. Arias, H. Koga et al., Interplay of LRRK2 with chaperone-mediated autophagy, Nature Neuroscience, vol.182, issue.4, pp.394-406, 2013.
DOI : 10.1073/pnas.76.9.4350

S. Park, S. Han, I. Choi, B. Kim, S. Park et al., Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy, PLOS ONE, vol.6, issue.5, 2016.
DOI : 10.1371/journal.pone.0163029.g005

URL : http://doi.org/10.1371/journal.pone.0163029

E. Plowey, I. Cherra, . Sj, Y. Liu, and C. Chu, Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells, Journal of Neurochemistry, vol.13, issue.3
DOI : 10.1016/j.neuron.2004.11.005

P. Anglade, S. Vyas, F. Javoy-agid, M. Herrero, P. Michel et al., Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease, Histol Histopathol, vol.12, pp.25-31, 1997.

D. Toulorge, A. Schapira, and R. Hajj, Molecular changes in the postmortem parkinsonian brain, Journal of Neurochemistry, vol.51, issue.1, pp.27-58, 2016.
DOI : 10.1111/jnc.13696

B. Dehay, J. Bove, N. Rodriguez-muela, C. Perier, A. Recasens et al., Pathogenic Lysosomal Depletion in Parkinson's Disease, Journal of Neuroscience, vol.30, issue.37, pp.12535-12579, 2010.
DOI : 10.1523/JNEUROSCI.1920-10.2010

K. Tanji, F. Mori, A. Kakita, H. Takahashi, and K. Wakabayashi, Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease, Neurobiology of Disease, vol.43, issue.3, pp.690-697, 2011.
DOI : 10.1016/j.nbd.2011.05.022

Y. Chu, H. Dodiya, P. Aebischer, C. Olanow, and J. Kordower, Alterations in lysosomal and proteasomal markers in Parkinson's disease: Relationship to alpha-synuclein inclusions, Neurobiology of Disease, vol.35, issue.3, pp.385-98, 2009.
DOI : 10.1016/j.nbd.2009.05.023

L. Alvarez-erviti, M. Rodriguez-oroz, J. Cooper, C. Caballero, I. Ferrer et al., Chaperone-Mediated Autophagy Markers in Parkinson Disease Brains, Archives of Neurology, vol.67, issue.12, pp.1464-72, 2010.
DOI : 10.1001/archneurol.2010.198

K. Murphy, A. Gysbers, S. Abbott, A. Spiro, A. Furuta et al., Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson's disease, Movement Disorders, vol.9, issue.Suppl 1, pp.1639-1686, 2015.
DOI : 10.1002/mds.26141

M. Gegg, D. Burke, S. Heales, J. Cooper, J. Hardy et al., Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains, Annals of Neurology, vol.115, issue.suppl 1, pp.455-63, 2012.
DOI : 10.1002/ana.23614

K. Murphy, A. Gysbers, S. Abbott, N. Tayebi, W. Kim et al., Reduced glucocerebrosidase is associated with increased ??-synuclein in sporadic Parkinson's disease, Brain, vol.137, issue.3, pp.834-882, 2014.
DOI : 10.1093/brain/awt367

URL : http://doi.org/10.1093/brain/awt367

D. Chiasserini, S. Paciotti, P. Eusebi, E. Persichetti, A. Tasegian et al., Selective loss of glucocerebrosidase activity in sporadic Parkinson???s disease and dementia with Lewy bodies, Molecular Neurodegeneration, vol.3, issue.6, pp.15-25, 2015.
DOI : 10.1186/s13024-015-0010-2

C. Balducci, L. Pierguidi, E. Persichetti, L. Parnetti, M. Sbaragli et al., Lysosomal hydrolases in cerebrospinal fluid from subjects with Parkinson's disease, Movement Disorders, vol.349, issue.10, pp.1481-1485, 2007.
DOI : 10.1002/mds.21399

K. Van-dijk, E. Persichetti, D. Chiasserini, P. Eusebi, T. Beccari et al., Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson's disease, Movement Disorders, vol.34, issue.6, pp.747-54, 2013.
DOI : 10.1002/mds.25495

L. Parnetti, D. Chiasserini, E. Persichetti, P. Eusebi, S. Varghese et al., Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson's disease, Movement Disorders, vol.69, issue.Pt 3, pp.1019-1046, 2014.
DOI : 10.1002/mds.25772

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282452

M. Rothaug, F. Zunke, J. Mazzulli, M. Schweizer, H. Altmeppen et al., LIMP-2 expression is critical for ??-glucocerebrosidase activity and ??-synuclein clearance, Proceedings of the National Academy of Sciences, vol.111, issue.43, pp.15573-15581, 2014.
DOI : 10.1073/pnas.1405700111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217458

D. Mantle, G. Falkous, S. Ishiura, R. Perry, and E. Perry, Comparison of cathepsin protease activities in brain tissue from normal cases and cases with Alzheimer's disease, Lewy body dementia, Parkinson's disease and Huntington's disease, Journal of the Neurological Sciences, vol.131, issue.1, pp.65-70, 1995.
DOI : 10.1016/0022-510X(95)00035-Z

K. Murphy, L. Cottle, A. Gysbers, A. Cooper, and G. Halliday, ATP13A2 (PARK9) protein levels are reduced in brain tissue of cases with Lewy bodies, Acta Neuropathologica Communications, vol.1, issue.1
DOI : 10.1016/S1474-4422(09)70238-8

D. Ramonet, A. Podhajska, K. Stafa, S. Sonnay, A. Trancikova et al., PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity, Human Molecular Genetics, vol.21, issue.8, pp.1725-1768, 2012.
DOI : 10.1093/hmg/ddr606

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465694

A. Dijkstra, A. Ingrassia, R. De-menezes, R. Van-kesteren, A. Rozemuller et al., Evidence for Immune Response, Axonal Dysfunction and Reduced Endocytosis in the Substantia Nigra in Early Stage Parkinson???s Disease, PLOS ONE, vol.135, issue.3, 2015.
DOI : 10.1371/journal.pone.0128651.s008

M. Elstner, C. Morris, K. Heim, A. Bender, D. Mehta et al., Expression analysis of dopaminergic neurons in Parkinson???s disease and aging links transcriptional dysregulation of energy metabolism to cell death, Acta Neuropathologica, vol.137, issue.Suppl 2, pp.75-86, 2011.
DOI : 10.1007/s00401-011-0828-9

E. Mutez, A. Nkiliza, K. Belarbi, A. De-broucker, C. Vanbesien-mailliot et al., Involvement of the immune system, endocytosis and EIF2 signaling in both genetically determined and sporadic forms of Parkinson's disease, Neurobiology of Disease, vol.63, pp.165-70, 2014.
DOI : 10.1016/j.nbd.2013.11.007

L. Crews, B. Spencer, P. Desplats, C. Patrick, A. Paulino et al., Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy, Plos One, vol.5, 2010.

Y. Miki, K. Tanji, F. Mori, J. Utsumi, H. Sasaki et al., Alteration of Upstream Autophagy-Related Proteins (ULK1, ULK2, Beclin1, VPS34 and AMBRA1) in Lewy Body Disease, Brain Pathology, vol.11, issue.3, pp.359-70, 2015.
DOI : 10.1111/bpa.12297

M. Decressac, B. Mattsson, P. Weikop, M. Lundblad, J. Jakobsson et al., TFEB-mediated autophagy rescues midbrain dopamine neurons from ??-synuclein toxicity, Proceedings of the National Academy of Sciences, vol.110, issue.19, pp.1817-1843, 2013.
DOI : 10.1073/pnas.1305623110

T. Vogiatzi, M. Xilouri, K. Vekrellis, and L. Stefanis, Wild Type ??-Synuclein Is Degraded by Chaperone-mediated Autophagy and Macroautophagy in Neuronal Cells, Journal of Biological Chemistry, vol.283, issue.35, pp.23542-56, 2008.
DOI : 10.1074/jbc.M801992200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527094

W. Yu, B. Dorado, H. Figueroa, L. Wang, E. Planel et al., Metabolic Activity Determines Efficacy of Macroautophagic Clearance of Pathological Oligomeric ??-Synuclein, The American Journal of Pathology, vol.175, issue.2, pp.736-783, 2009.
DOI : 10.2353/ajpath.2009.080928

A. Cuervo, L. Stefanis, R. Fredenburg, P. Lansbury, and D. Sulzer, Impaired Degradation of Mutant ??-Synuclein by Chaperone-Mediated Autophagy, Science, vol.305, issue.5688, pp.1292-1297, 2004.
DOI : 10.1126/science.1101738

A. Oueslati, B. Schneider, P. Aebischer, and H. Lashuel, Polo-like kinase 2 regulates selective autophagic ??-synuclein clearance and suppresses its toxicity in vivo, Proceedings of the National Academy of Sciences, vol.110, issue.41, pp.3945-54, 2013.
DOI : 10.1073/pnas.1309991110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799334

S. Tenreiro, M. Reimao-pinto, P. Antas, J. Rino, D. Wawrzycka et al., Phosphorylation Modulates Clearance of Alpha-Synuclein Inclusions in a Yeast Model of Parkinson's Disease, PLoS Genetics, vol.21, issue.5, 2014.
DOI : 10.1371/journal.pgen.1004302.s014

J. Mazzulli, Y. Xu, Y. Sun, A. Knight, P. Mclean et al., Gaucher Disease Glucocerebrosidase and ??-Synuclein Form a Bidirectional Pathogenic Loop in Synucleinopathies, Cell, vol.146, issue.1, pp.37-52, 2011.
DOI : 10.1016/j.cell.2011.06.001

URL : http://doi.org/10.1016/j.cell.2011.06.001

A. Manning-bog, B. Schule, and J. Langston, Alpha-synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: A biological link between Gaucher disease and parkinsonism, NeuroToxicology, vol.30, issue.6, pp.1127-1159, 2009.
DOI : 10.1016/j.neuro.2009.06.009

S. Sardi, J. Clarke, C. Kinnecom, T. Tamsett, L. Li et al., CNS expression of glucocerebrosidase corrects ??-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy, Proceedings of the National Academy of Sciences, vol.108, issue.29, pp.12101-12107, 2011.
DOI : 10.1073/pnas.1108197108

E. Bae, N. Yang, C. Lee, S. Kim, H. Lee et al., Haploinsufficiency of cathepsin D leads to lysosomal dysfunction and promotes cell-to-cell transmission of alpha-synuclein aggregates, Cell Death Dis, vol.6, 2015.

E. Bae, N. Yang, M. Song, C. Lee, J. Lee et al., Glucocerebrosidase depletion enhances cell-to-cell transmission of ??-synuclein, Nature Communications, vol.113, p.4755, 2014.
DOI : 10.1371/journal.pone.0019338

K. Maiese, Z. Chong, Y. Shang, and S. Wang, mTOR: on target for novel therapeutic strategies in the nervous system, Trends in Molecular Medicine, vol.19, issue.1, pp.51-60
DOI : 10.1016/j.molmed.2012.11.001

T. Pan, P. Rawal, Y. Wu, W. Xie, J. Jankovic et al., Rapamycin protects against rotenone-induced apoptosis through autophagy induction, Neuroscience, vol.164, issue.2, pp.541-51, 2009.
DOI : 10.1016/j.neuroscience.2009.08.014

C. Malagelada, Z. Jin, V. Jackson-lewis, S. Przedborski, and L. Greene, Rapamycin Protects against Neuron Death in In Vitro andIn Vivo Models of Parkinson's Disease, Journal of Neuroscience, vol.30, issue.3, pp.1166-75, 2010.
DOI : 10.1523/JNEUROSCI.3944-09.2010

X. Bai, M. Wey, E. Fernandez, M. Hart, J. Gelfond et al., Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy, Pathobiology of Aging & Age-related Diseases, vol.5, issue.1, 2015.
DOI : 10.1002/ana.67

E. Santini, M. Heiman, P. Greengard, E. Valjent, and G. Fisone, Inhibition of mTOR Signaling in Parkinson's Disease Prevents L-DOPA-Induced Dyskinesia, Science Signaling, vol.2, issue.80
DOI : 10.1126/scisignal.2000308

M. Decressac and A. Bjorklund, mTOR inhibition alleviates L-DOPA-induced dyskinesia in parkinsonian rats, J Parkinsons Dis, vol.3, pp.13-20, 2013.

L. Tain, H. Mortiboys, R. Tao, E. Ziviani, O. Bandmann et al., Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss, Nature Neuroscience, vol.80, issue.9, pp.1129-1164, 2009.
DOI : 10.1038/nn.2372

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745154

S. Sarkar, R. Floto, Z. Berger, S. Imarisio, A. Cordenier et al., Lithium induces autophagy by inhibiting inositol monophosphatase, The Journal of Cell Biology, vol.7, issue.7, pp.1101-1112, 2005.
DOI : 10.1093/hmg/11.9.1137

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171537

O. Forlenza, V. De-paula, and B. Diniz, Neuroprotective Effects of Lithium: Implications for the Treatment of Alzheimer???s Disease and Related Neurodegenerative Disorders, ACS Chemical Neuroscience, vol.5, issue.6, pp.443-50, 2014.
DOI : 10.1021/cn5000309

C. Lazzara and Y. Kim, Potential application of lithium in Parkinson's and other neurodegenerative diseases, Frontiers in Neuroscience, vol.83, issue.209, 2015.
DOI : 10.1016/j.brainresbull.2010.07.008

R. Oruch, M. Elderbi, H. Khattab, I. Pryme, and A. Lund, Lithium: A review of pharmacology, clinical uses, and toxicity, European Journal of Pharmacology, vol.740, pp.464-73, 2014.
DOI : 10.1016/j.ejphar.2014.06.042

L. Hou, N. Xiong, L. Liu, J. Huang, C. Han et al., Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement, BMC Neuroscience, vol.44, issue.12, 2015.
DOI : 10.1186/s12868-015-0222-y

URL : http://doi.org/10.1186/s12868-015-0222-y

X. Li, X. Chen, K. Zhao, L. Bai, H. Zhang et al., Therapeutic Effects of Valproate Combined With Lithium Carbonate on MPTP-Induced Parkinsonism in Mice: Possible Mediation Through Enhanced Autophagy, International Journal of Neuroscience, vol.273, issue.4, pp.73-82, 2013.
DOI : 10.1074/jbc.M001475200

C. Ng, M. Guan, C. Koh, X. Ouyang, F. Yu et al., AMP Kinase Activation Mitigates Dopaminergic Dysfunction and Mitochondrial Abnormalities in Drosophila Models of Parkinson's Disease, Journal of Neuroscience, vol.32, issue.41, pp.14311-14318, 2012.
DOI : 10.1523/JNEUROSCI.0499-12.2012

S. Patil, P. Jain, P. Ghumatkar, R. Tambe, and S. Sathaye, Neuroprotective effect of metformin in MPTP-induced Parkinson???s disease in mice, Neuroscience, vol.277, issue.277, pp.747-54, 2014.
DOI : 10.1016/j.neuroscience.2014.07.046

M. Dulovic, M. Jovanovic, M. Xilouri, L. Stefanis, L. Harhaji-trajkovic et al., The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro, Neurobiology of Disease, vol.63, pp.1-11, 2014.
DOI : 10.1016/j.nbd.2013.11.002

B. Perez-revuelta, M. Hettich, A. Ciociaro, C. Rotermund, P. Kahle et al., Metformin lowers Ser-129 phosphorylated alpha-synuclein levels Via mtor-dependent protein phosphatase 2A activation, Cell Death Dis, vol.5, 2014.

U. Rasheed, M. Tripathi, M. Mishra, A. Shukla, S. Singh et al., Resveratrol Protects from Toxin-Induced Parkinsonism: Plethora of Proofs Hitherto Petty Translational Value, Molecular Neurobiology, vol.25, issue.5, pp.2751-60, 2015.
DOI : 10.1166/jbn.2015.2107

Y. Wu, X. Li, J. Zhu, W. Xie, W. Le et al., Resveratrol-Activated AMPK/SIRT1/Autophagy in Cellular Models of Parkinson???s Disease, Neurosignals, vol.19, issue.3, pp.163-74, 2011.
DOI : 10.1159/000328516

T. Lin, S. Chen, Y. Chuang, H. Lin, C. Huang et al., Resveratrol Partially Prevents Rotenone-Induced Neurotoxicity in Dopaminergic SH-SY5Y Cells through Induction of Heme Oxygenase-1 Dependent Autophagy, International Journal of Molecular Sciences, vol.15, issue.1, pp.1625-1671, 2014.
DOI : 10.3390/ijms15011625

A. Ferretta, A. Gaballo, P. Tanzarella, C. Piccoli, N. Capitanio et al., Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson's disease, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1842, issue.7, pp.902-917, 2014.
DOI : 10.1016/j.bbadis.2014.02.010

D. Bosch, B. Heitmeier, M. Mayer, A. Higgins, C. Crowley et al., Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis, Sci Signal, vol.9, p.21, 2016.

S. Sarkar, J. Davies, Z. Huang, A. Tunnacliffe, and D. Rubinsztein, Trehalose, a Novel mTOR-independent Autophagy Enhancer, Accelerates the Clearance of Mutant Huntingtin and ??-Synuclein, Journal of Biological Chemistry, vol.282, issue.8, pp.5641-52, 2007.
DOI : 10.1074/jbc.M609532200

M. Casarejos, R. Solano, A. Gomez, J. Perucho, J. De-yebenes et al., The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells, Neurochemistry International, vol.58, issue.4, pp.512-532, 2011.
DOI : 10.1016/j.neuint.2011.01.008

F. Wu, H. Xu, J. Guan, Y. Hou, J. Gu et al., Rotenone impairs autophagic flux and lysosomal functions in Parkinson???s disease, Neuroscience, vol.284, pp.900-911, 2015.
DOI : 10.1016/j.neuroscience.2014.11.004

S. Sarkar, S. Chigurupati, J. Raymick, D. Mann, J. Bowyer et al., Neuroprotective effect of the chemical chaperone, trehalose in a chronic MPTP-induced Parkinson's disease mouse model, NeuroToxicology, vol.44, pp.250-62, 2014.
DOI : 10.1016/j.neuro.2014.07.006

Q. He, J. Koprich, Y. Wang, W. Yu, B. Xiao et al., Treatment with Trehalose Prevents Behavioral and Neurochemical Deficits Produced in an AAV ??-Synuclein Rat Model of Parkinson???s Disease, Molecular Neurobiology, vol.25, issue.Suppl 3, pp.2258-68, 2015.
DOI : 10.1007/s12035-015-9173-7

K. Tanji, Y. Miki, A. Maruyama, J. Mimura, T. Matsumiya et al., Trehalose intake induces chaperone molecules along with autophagy in a mouse model of Lewy body disease, Biochemical and Biophysical Research Communications, vol.465, issue.4, pp.746-52, 2015.
DOI : 10.1016/j.bbrc.2015.08.076

G. Lee, C. Lin, Y. Tao, J. Yang, K. Hsu et al., The potential of lactulose and melibiose, two novel trehalase-indigestible and autophagy-inducing disaccharides, for polyQ-mediated neurodegenerative disease treatment, NeuroToxicology, vol.48, pp.120-150, 2015.
DOI : 10.1016/j.neuro.2015.03.009

S. Sarkar, E. Perlstein, S. Imarisio, S. Pineau, A. Cordenier et al., Small molecules enhance autophagy and reduce toxicity in Huntington's disease models, Nature Chemical Biology, vol.36, issue.6, pp.331-339, 2007.
DOI : 10.1534/genetics.104.026658

S. Sarkar and D. Rubinsztein, Small molecule enhancers of autophagy for neurodegenerative diseases, Molecular BioSystems, vol.132, issue.Suppl, pp.895-901, 2008.
DOI : 10.1039/b804606a

P. Bharadwaj, G. Verdile, R. Barr, V. Gupta, J. Steele et al., Latrepirdine (dimebon) enhances autophagy and reduces intracellular GFP-Abeta42 levels in yeast, J Alzheimers Dis, vol.32, pp.949-67, 2012.

J. Steele, S. Ju, M. Lachenmayer, J. Liken, A. Stock et al., Latrepirdine stimulates autophagy and reduces accumulation of ??-synuclein in cells and in mouse brain, Molecular Psychiatry, vol.390, issue.8, pp.882-890, 2013.
DOI : 10.1083/jcb.200606084

P. Bharadwaj, K. Bates, T. Porter, E. Teimouri, G. Perry et al., Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer???s and other neurodegenerative diseases, Translational Psychiatry, vol.24, issue.12, 2013.
DOI : 10.1111/j.1742-4658.2009.07346.x

URL : http://doi.org/10.1038/tp.2013.97

C. Olanow and A. Schapira, Therapeutic prospects for Parkinson disease, Annals of Neurology, vol.27, issue.suppl 3
DOI : 10.1002/ana.24011

S. Buttner, F. Broeskamp, C. Sommer, M. Markaki, L. Habernig et al., Spermidine protects against ??-synuclein neurotoxicity, Cell Cycle, vol.77, issue.24, pp.3903-3911, 2014.
DOI : 10.1371/journal.pgen.1003664

T. Jiang, Y. Zhang, H. Zhou, H. Wang, L. Tian et al., Curcumin Ameliorates the Neurodegenerative Pathology in A53T ??-synuclein Cell Model of Parkinson???s Disease Through the Downregulation of mTOR/p70S6K Signaling and the Recovery of Macroautophagy, Journal of Neuroimmune Pharmacology, vol.103, issue.8, pp.356-69, 2013.
DOI : 10.1007/s11481-012-9431-7

G. Filomeni, I. Graziani, Z. De, L. Dini, D. Centonze et al., Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease, Neurobiology of Aging, vol.33, issue.4, pp.767-85, 2012.
DOI : 10.1016/j.neurobiolaging.2010.05.021

D. Macedo, L. Tavares, G. Mcdougall, M. Vicente, D. Stewart et al., (Poly)phenols protect from ??-synuclein toxicity by reducing oxidative stress and promoting autophagy, Human Molecular Genetics, vol.24, issue.6, pp.1717-1749, 2015.
DOI : 10.1093/hmg/ddu585

M. Hebron, I. Lonskaya, and C. Moussa, Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of ??-synuclein in Parkinson's disease models, Human Molecular Genetics, vol.22, issue.16, pp.3315-3343, 2013.
DOI : 10.1093/hmg/ddt192

A. Mahul-mellier, B. Fauvet, A. Gysbers, I. Dikiy, A. Oueslati et al., c-Abl phosphorylates ??-synuclein and regulates its degradation: implication for ??-synuclein clearance and contribution to the pathogenesis of Parkinson's disease, Human Molecular Genetics, vol.23, issue.11, pp.2858-79, 2014.
DOI : 10.1093/hmg/ddt674

A. Rubinstein and A. Kimchi, Life in the balance ??? a mechanistic view of the crosstalk between autophagy and apoptosis, Journal of Cell Science, vol.125, issue.22, pp.5259-68, 2012.
DOI : 10.1242/jcs.115865

R. Amaravadi, A. Kimmelman, and E. White, Recent insights into the function of autophagy in cancer: Table 1., Genes & Development, vol.30, issue.17, 2016.
DOI : 10.1101/gad.287524.116

E. White, Deconvoluting the context-dependent role for autophagy in cancer, Nature Reviews Cancer, vol.108, issue.6, pp.401-411, 2012.
DOI : 10.1038/nrc3262

C. Gomez-santos, I. Ferrer, A. Santidrian, M. Barrachina, J. Gil et al., Dopamine induces autophagic cell death and ??-synuclein increase in human neuroblastoma SH-SY5Y cells, Journal of Neuroscience Research, vol.170, issue.3, pp.341-50, 2003.
DOI : 10.1002/jnr.10663

L. Stefanis, K. Larsen, H. Rideout, D. Sulzer, and L. Greene, Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death, J Neurosci, vol.21, pp.9549-60, 2001.

K. Choi, S. Kim, J. Ha, S. Kim, and J. Son, A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death, Journal of Neurochemistry, vol.170, issue.Suppl 6, pp.366-76, 2009.
DOI : 10.1111/j.1471-4159.2009.06463.x

Y. Xu, C. Liu, S. Chen, Y. Ye, M. Guo et al., Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson's disease, Cellular Signalling, vol.26, issue.8, pp.1680-1689, 2014.
DOI : 10.1016/j.cellsig.2014.04.009

H. Cheng, S. Kim, T. Oo, T. Kareva, O. Yarygina et al., Akt Suppresses Retrograde Degeneration of Dopaminergic Axons by Inhibition of Macroautophagy, Journal of Neuroscience, vol.31, issue.6, pp.2125-2160, 2011.
DOI : 10.1523/JNEUROSCI.5519-10.2011

Y. Yang, K. Fukui, T. Koike, and X. Zheng, Induction of autophagy in neurite degeneration of mouse superior cervical ganglion neurons, European Journal of Neuroscience, vol.13, issue.10, pp.2979-88, 2007.
DOI : 10.1111/j.1460-9568.2007.05914.x

M. Xilouri, T. Vogiatzi, K. Vekrellis, D. Park, and L. Stefanis, Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy, Plos One, vol.4, 2009.

V. Choubey, D. Safiulina, A. Vaarmann, M. Cagalinec, P. Wareski et al., Mutant A53T ??-Synuclein Induces Neuronal Death by Increasing Mitochondrial Autophagy, Journal of Biological Chemistry, vol.286, issue.12, pp.10814-10838, 2011.
DOI : 10.1074/jbc.M110.132514

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060532

Y. Liu and B. Levine, Autosis and autophagic cell death: the dark side of autophagy, Cell Death and Differentiation, vol.38, issue.3, pp.367-76, 2015.
DOI : 10.4161/auto.28784

R. Button, S. Luo, and D. Rubinsztein, Autophagic activity in neuronal cell death, Neuroscience Bulletin, vol.6, issue.4, pp.382-94, 2015.
DOI : 10.1007/s12264-015-1528-y

B. Spencer, R. Potkar, M. Trejo, E. Rockenstein, C. Patrick et al., Beclin 1 Gene Transfer Activates Autophagy and Ameliorates the Neurodegenerative Pathology in ??-Synuclein Models of Parkinson's and Lewy Body Diseases, Journal of Neuroscience, vol.29, issue.43, pp.13578-88, 2009.
DOI : 10.1523/JNEUROSCI.4390-09.2009

K. Wang, J. Huang, W. Xie, L. Huang, C. Zhong et al., Beclin1 and HMGB1 ameliorate the ??-synuclein-mediated autophagy inhibition in PC12 cells, Diagnostic Pathology, vol.26, issue.2, pp.15-25, 2016.
DOI : 10.1186/s13000-016-0459-5

T. Obata and S. Kubota, Protective effect of tamoxifen on 1-methyl-4-phenylpyridine-induced hydroxyl radical generation in the rat striatum, Neuroscience Letters, vol.308, issue.2, pp.87-90, 2001.
DOI : 10.1016/S0304-3940(01)01966-8

M. Savolainen, C. Richie, B. Harvey, P. Mannisto, K. Maguire-zeiss et al., The beneficial effect of a prolyl oligopeptidase inhibitor, KYP-2047, on alpha-synuclein clearance and autophagy in A30P transgenic mouse, Neurobiology of Disease, vol.68, pp.1-15, 2014.
DOI : 10.1016/j.nbd.2014.04.003

J. Lu, J. Tan, S. Durairajan, L. Liu, Z. Zhang et al., Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy, Autophagy, vol.8, issue.1, pp.98-108, 2012.
DOI : 10.4161/auto.8.1.18313

W. Song, F. Wang, P. Lotfi, M. Sardiello, and L. Segatori, 2-Hydroxypropyl-??-cyclodextrin Promotes Transcription Factor EB-mediated Activation of Autophagy: IMPLICATIONS FOR THERAPY, Journal of Biological Chemistry, vol.289, issue.14, pp.10211-10233, 2014.
DOI : 10.1074/jbc.M113.506246

K. Kilpatrick, Y. Zeng, T. Hancock, and L. Segatori, Genetic and chemical activation of TFEB mediates clearance of aggregated alpha-synuclein, Plos One, vol.10, 2015.

G. Baltazar, S. Guha, W. Lu, J. Lim, K. Boesze-battaglia et al., Acidic Nanoparticles Are Trafficked to Lysosomes and Restore an Acidic Lysosomal pH and Degradative Function to Compromised ARPE-19 Cells, PLoS ONE, vol.4, issue.12, 2012.
DOI : 10.1371/journal.pone.0049635.s003

URL : http://doi.org/10.1371/journal.pone.0049635

M. Bourdenx, J. Daniel, E. Genin, F. Soria, M. Blanchard-desce et al., Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases, Autophagy, vol.269, issue.3, pp.472-83, 2016.
DOI : 10.1016/j.nbd.2013.09.020

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835967

S. Sardi, J. Clarke, C. Viel, M. Chan, T. Tamsett et al., Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies, Proceedings of the National Academy of Sciences, vol.110, issue.9, pp.3537-3579, 2013.
DOI : 10.1073/pnas.1220464110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587272

E. Rocha, G. Smith, E. Park, H. Cao, E. Brown et al., Glucocerebrosidase gene therapy prevents ??-synucleinopathy of midbrain dopamine neurons, Neurobiology of Disease, vol.82, pp.495-503, 2015.
DOI : 10.1016/j.nbd.2015.09.009

URL : http://doi.org/10.1016/j.nbd.2015.09.009

A. Schapira and M. Gegg, Glucocerebrosidase in the pathogenesis and treatment of Parkinson disease: Fig. 1., Proceedings of the National Academy of Sciences, vol.110, issue.9, pp.3214-3219, 2013.
DOI : 10.1073/pnas.1300822110

J. Blanz and P. Saftig, Parkinson's disease: acid-glucocerebrosidase activity and alpha-synuclein clearance, Journal of Neurochemistry, vol.2, issue.37, 2016.
DOI : 10.1111/jnc.13517

A. Mcneill, J. Magalhaes, C. Shen, K. Chau, D. Hughes et al., Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells, Brain, vol.137, issue.5, pp.1481-95, 2014.
DOI : 10.1093/brain/awu020

G. Ambrosi, C. Ghezzi, R. Zangaglia, G. Levandis, C. Pacchetti et al., Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson's disease cells, Neurobiology of Disease, vol.82, pp.235-277, 2015.
DOI : 10.1016/j.nbd.2015.06.008

M. Siebert, E. Sidransky, and W. Westbroek, Glucocerebrosidase is shaking up the synucleinopathies, Brain, vol.137, issue.5, pp.1304-1326, 2014.
DOI : 10.1093/brain/awu002

T. Weiser, Ambroxol: A CNS Drug?, CNS Neuroscience & Therapeutics, vol.21, issue.1, pp.17-24, 2008.
DOI : 10.1016/j.tins.2006.07.006

Z. Luan, L. Li, K. Higaki, E. Nanba, Y. Suzuki et al., The chaperone activity and toxicity of ambroxol on Gaucher cells and normal mice, Brain and Development, vol.35, issue.4, pp.317-339, 2013.
DOI : 10.1016/j.braindev.2012.05.008

R. Khanna, E. Benjamin, L. Pellegrino, A. Schilling, B. Rigat et al., The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of ??-glucosidase, FEBS Journal, vol.93, issue.7, pp.1618-1656, 2010.
DOI : 10.1111/j.1742-4658.2010.07588.x

R. Steet, S. Chung, B. Wustman, A. Powe, H. Do et al., The iminosugar isofagomine increases the activity of N370S mutant acid beta-glucosidase in Gaucher fibroblasts by several mechanisms, Proceedings of the National Academy of Sciences, vol.103, issue.37, pp.13813-13821, 2006.
DOI : 10.1073/pnas.0605928103

Y. Sun, B. Liou, Y. Xu, B. Quinn, W. Zhang et al., Ex Vivo and in Vivo Effects of Isofagomine on Acid ??-Glucosidase Variants and Substrate Levels in Gaucher Disease, Journal of Biological Chemistry, vol.287, issue.6, pp.4275-87, 2012.
DOI : 10.1074/jbc.M111.280016

C. Yang, S. Rahimpour, J. Lu, K. Pacak, B. Ikejiri et al., Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones, Proceedings of the National Academy of Sciences, vol.110, issue.3, pp.966-71, 2013.
DOI : 10.1073/pnas.1221046110

F. Richter, S. Fleming, M. Watson, V. Lemesre, L. Pellegrino et al., A GCase Chaperone Improves Motor Function in a Mouse Model of Synucleinopathy, Neurotherapeutics, vol.118, issue.4, pp.840-56, 2014.
DOI : 10.1007/s13311-014-0294-x

S. Patnaik, W. Zheng, J. Choi, O. Motabar, N. Southall et al., Discovery, Structure???Activity Relationship, and Biological Evaluation of Noninhibitory Small Molecule Chaperones of Glucocerebrosidase, Journal of Medicinal Chemistry, vol.55, issue.12, pp.5734-5782, 2012.
DOI : 10.1021/jm300063b

E. Aflaki, B. Stubblefield, E. Maniwang, G. Lopez, N. Moaven et al., Macrophage Models of Gaucher Disease for Evaluating Disease Pathogenesis and Candidate Drugs, Science Translational Medicine, vol.6, issue.240, pp.240-73, 2014.
DOI : 10.1126/scitranslmed.3008659

E. Aflaki, D. Borger, N. Moaven, B. Stubblefield, S. Rogers et al., A New Glucocerebrosidase Chaperone Reduces ??-Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism, Journal of Neuroscience, vol.36, issue.28, pp.7441-52, 2016.
DOI : 10.1523/JNEUROSCI.0636-16.2016

M. Xilouri, O. Brekk, N. Landeck, P. Pitychoutis, T. Papasilekas et al., Boosting chaperone-mediated autophagy in vivo mitigates ??-synuclein-induced neurodegeneration, Brain, vol.136, issue.7, pp.2130-2176, 2013.
DOI : 10.1093/brain/awt131

URL : http://doi.org/10.1093/brain/awt131

J. Anguiano, T. Garner, M. Mahalingam, B. Das, E. Gavathiotis et al., Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives, Nature Chemical Biology, vol.124, issue.6, pp.374-82, 2013.
DOI : 10.1038/nchembio.1230

D. East and M. Campanella, Mitophagy and the therapeutic clearance of damaged mitochondria for neuroprotection, The International Journal of Biochemistry & Cell Biology, vol.79, pp.382-389, 2016.
DOI : 10.1016/j.biocel.2016.08.019

D. East, F. Fagiani, J. Crosby, N. Georgakopoulos, H. Bertrand et al., PMI: A ????m Independent Pharmacological Regulator of Mitophagy, Chemistry & Biology, vol.21, issue.11, pp.1585-96, 2014.
DOI : 10.1016/j.chembiol.2014.09.019

URL : https://hal.archives-ouvertes.fr/hal-01362710

A. Jegga, L. Schneider, X. Ouyang, and J. Zhang, Systems biology of the autophagy-lysosomal pathway, Autophagy, vol.16, issue.5, pp.477-89, 2011.
DOI : 10.1016/j.cell.2004.12.035

N. Kanagaraj, H. Beiping, S. Dheen, and S. Tay, Downregulation of miR-124 in MPTP-treated mouse model of Parkinson???s disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins, Neuroscience, vol.272, pp.167-79, 2014.
DOI : 10.1016/j.neuroscience.2014.04.039

H. Wang, Y. Ye, Z. Zhu, L. Mo, C. Lin et al., MiR-124 Regulates Apoptosis and Autophagy Process in MPTP Model of Parkinson's Disease by Targeting to Bim, Brain Pathology, vol.27, issue.Pt 11, pp.167-76, 2016.
DOI : 10.1111/bpa.12267

L. Alvarez-erviti, Y. Seow, A. Schapira, M. Rodriguez-oroz, J. Obeso et al., Influence of microrna deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson's disease, Cell Death Dis, vol.4, 2013.

H. Wu, S. Chen, A. Ammar, J. Xu, Q. Wu et al., Crosstalk Between Macroautophagy and Chaperone-Mediated Autophagy: Implications for the Treatment of Neurological Diseases, Molecular Neurobiology, vol.32, issue.49, pp.1284-96, 2014.
DOI : 10.1523/JNEUROSCI.3049-12.2012

S. Tanik, C. Schultheiss, L. Volpicelli-daley, K. Brunden, and V. Lee, Lewy Body-like ??-Synuclein Aggregates Resist Degradation and Impair Macroautophagy, Journal of Biological Chemistry, vol.288, issue.21, pp.15194-210, 2013.
DOI : 10.1074/jbc.M113.457408

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663539