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Bias and precision of methods for
estimating the difference in restricted
mean survival time from an individual
patient data meta-analysis
Béranger Lueza1,2,3, Federico Rotolo1,2,3* , Julia Bonastre1,2, Jean-Pierre Pignon1,2,3 and Stefan Michiels1,2,3

Abstract

Background: The difference in restricted mean survival time (rmstD t�ð Þ), the area between two survival curves up
to time horizon t� , is often used in cost-effectiveness analyses to estimate the treatment effect in randomized controlled
trials. A challenge in individual patient data (IPD) meta-analyses is to account for the trial effect. We aimed at comparing
different methods to estimate the rmstD t�ð Þ from an IPD meta-analysis.

Methods: We compared four methods: the area between Kaplan-Meier curves (experimental vs. control arm) ignoring
the trial effect (Naïve Kaplan-Meier); the area between Peto curves computed at quintiles of event times (Peto-quintile);
the weighted average of the areas between either trial-specific Kaplan-Meier curves (Pooled Kaplan-Meier) or trial-specific
exponential curves (Pooled Exponential). In a simulation study, we varied the between-trial heterogeneity for the baseline
hazard and for the treatment effect (possibly correlated), the overall treatment effect, the time horizon t� , the number of
trials and of patients, the use of fixed or DerSimonian-Laird random effects model, and the proportionality of hazards. We
compared the methods in terms of bias, empirical and average standard errors. We used IPD from the Meta-Analysis of
Chemotherapy in Nasopharynx Carcinoma (MAC-NPC) and its updated version MAC-NPC2 for illustration that included
respectively 1,975 and 5,028 patients in 11 and 23 comparisons.

Results: The Naïve Kaplan-Meier method was unbiased, whereas the Pooled Exponential and, to a much lesser extent, the
Pooled Kaplan-Meier methods showed a bias with non-proportional hazards. The Peto-quintile method underestimated
the rmstD t�ð Þ, except with non-proportional hazards at t�= 5 years. In the presence of treatment effect heterogeneity, all
methods except the Pooled Kaplan-Meier and the Pooled Exponential with DerSimonian-Laird random effects
underestimated the standard error of the rmstD t�ð Þ. Overall, the Pooled Kaplan-Meier method with DerSimonian-Laird
random effects formed the best compromise in terms of bias and variance. The rmstD t� ¼ 10 yearsð Þ estimated
with the Pooled Kaplan-Meier method was 0.49 years (95 % CI: [−0.06;1.03], p = 0.08) when comparing radiotherapy plus
chemotherapy vs. radiotherapy alone in the MAC-NPC and 0.59 years (95 % CI: [0.34;0.84], p < 0.0001) in the MAC-NPC2.

Conclusions: We recommend the Pooled Kaplan-Meier method with DerSimonian-Laird random effects to estimate the
difference in restricted mean survival time from an individual-patient data meta-analysis.
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Simulation study
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Background
In cost-effectiveness analysis, a commonly used survival
measure is the restricted mean survival time (RMST). It
estimates the life expectancy for one treatment arm up
to a certain time horizon t� [1–4]. The difference in re-
stricted mean survival time (rmstD t�ð Þ) can thus quan-
tify the treatment effect expressed in terms of life years
gained. The rmstD t�ð Þ is an appealing outcome measure
as it is valid even in case of non-proportional hazards
[5]. Moreover, as an absolute outcome, the interpretation
of the rmstD t�ð Þ is considered more intuitive from the
clinician point of view than the hazard ratio (HR) which
is a relative measure of the treatment effect [3, 5, 6]. Re-
cent studies have compared methods to estimate the
RMST including extrapolation beyond the trial follow-
up [7–10]. However, these studies focused on the use of
a single randomized clinical trial and not specifically on
multicenter clinical trials nor meta-analyses.
In meta-analyses or in multicenter clinical trials, there

is a need to take into account the trial or center effect to
avoid the Simpson’s paradox that may lead to biased
estimates [11–13]. Different authors have discussed the
use of Cox models with either stratification or fixed
effect, or random effects to account for the center effect
in a multicenter clinical trial [14–16] or the trial effect
in a meta-analysis [17–20] in presence of baseline haz-
ard heterogeneity and/or treatment effect heterogeneity
between centers or trials. Several papers have also com-
pared one-stage or two-stage methods to estimate the
hazard ratio in individual patient data (IPD) meta-
analyses [20–22]. All these studies focused on the esti-
mation of the treatment effect through the use of the
hazard ratio, but so far only one has focused on the use
of the rmstD t�ð Þ in IPD meta-analyses [6]. In this latter
study, Wei and colleagues investigated three two-stage
methods to estimate the rmstD t�ð Þ from an IPD meta-
analysis: two non-parametric methods – one based on
pseudo-values [23] and one based on the Kaplan-Meier
estimate – and a flexible parametric survival model [24].
In their study, the rmstD t�ð Þ was estimated as an aggre-
gation of the rmstD t�ð Þ estimated in each trial using a
fixed effect meta-analysis model. The authors showed
via simulations and two case studies that the three
methods produced similar results in terms of bias and
coverage probability of the confidence intervals.
In the present paper, we aimed at extending the first

study from Wei et al. [6] by comparing more methods
for estimating the rmstD t�ð Þ from an IPD meta-analysis
in a broader range of scenarios. We also designed a
more realistic simulation study with random effects to
induce between-trial heterogeneity, both in terms of
baseline hazard and of treatment effect. We considered
only one of the non-parametric methods studied by Wei
and colleagues – the one pooling Kaplan-Meier estimates –

as they found similar results for the three methods. We fur-
ther considered a parametric method – pooling exponential
estimates – and two other non-parametric methods: one
naïve method that does not account for trial effect and an
actuarial survival method developed by Peto, classically
used in IPD meta-analyses for computing survival curves
[25–27]. In simulations, we varied not only the treatment
effect size and the time horizon t� , as previously done by
Wei and colleagues, but also the baseline hazard heterogen-
eity, the treatment effect heterogeneity, the correlation
between these two random effects, the number of trials and
the number of patients per trial, the use of fixed effect and
DerSimonian-Laird random effects model [28], and depart-
ure from the assumption of proportional hazards.
In the ‘Methods’ section we describe the rmstD t�ð Þ and

the different survival analysis methods for estimating the
rmstD t�ð Þ that we investigate in this paper. Section ‘Simu-
lation study’ describes the design of the simulation study,
how to estimate the true rmstD t�ð Þ, the simulation scenar-
ios and the evaluation criteria, and presents the simulation
results. Section ‘Application’ provides two examples using
IPD meta-analyses in nasopharynx carcinoma. We end
with a discussion and our conclusion regarding the choice
of a particular method to estimate the rmstD t�ð Þ from an
IPD meta-analysis. Of note, the investigated methods can
also be used for the estimation of the rmstD t�ð Þ in multi-
center clinical trials.

Methods
Difference in restricted mean survival time
Let T be the survival time random variable with distribu-
tion F(t). The mean survival time restricted at a specified
time t� is defined as

RMST t�ð Þ ¼
Z t�

0
S tð Þdt; ð1Þ

where S(t) = 1 – F(t) is the survival function. The RMST
t� corresponds graphically to the area under the survival
curve S(t) up to t� . The difference in restricted mean
survival time (rmstD t�ð Þ) between the experimental arm
and the control arm (noted 1 and 0) is defined as

rmstD t�ð Þ ¼ RMST 1 t�ð Þ−RMST0 t�ð Þ ð2Þ

The variance dVar rmstD t�ð Þð Þ can be estimated as
[29]:

dVar rmstD t�ð Þð Þ ¼ dVar RMST 1 t�ð Þð Þ
þ dVar RMST 0 t�ð Þð Þ ð3Þ

As opposed to the relative hazard ratio, the rmstD t�ð Þ
is an absolute outcome which depends both on the base-
line hazard and on the relative treatment effect.
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Wei et al. [6] also proposed the use of the relative dif-
ference in restricted mean survival time defined as

rmstRD t�ð Þ ¼ rmstD t�ð Þ=t� ð4Þ

The rmstD t�ð Þ varies between 0 and 1 and can be
interpreted as a percentage. Its variance can be esti-

mated as Varb rmstD t�ð Þ½ �= t�ð Þ2.

Methods for estimating the difference in restricted mean
survival time
We investigated four methods for estimating the differ-
ence in restricted mean survival time rmstD t�ð Þ from an
IPD meta-analysis: 1) the Naïve Kaplan-Meier, which
pools the data, ignoring the trial effect, 2-3) the Pooled
Kaplan-Meier and Pooled Exponential methods, which
use a two-stage approach to combine rmstDj t�ð Þ esti-
mated in each trial j, and 4) the Peto-quintile method,
which uses survival functions derived from a pooled
hazard ratio estimated with a two-stage approach in
order to take into account the trial effect.

Naïve Kaplan-Meier
The most basic method to estimate the rmstD t�ð Þ is to
consider the IPD meta-analysis as a single large trial.
Under this approach, the rmstD t�ð Þ is estimated as the
area between the Kaplan-Meier curves of the experimen-
tal and the control arm, obtained by pooling the data
from all the trials, thus ignoring the trial effect [30]:

rmstbD t�ð Þ ¼
XD1−1

i¼1
Ŝ1 t1;i
� �

t1;iþ1−t1;i
� �

−
XD0−1

i¼1
Ŝ
0
t0;i
� �

t0;iþ1−t0;i
� �

ð5Þ

with Ŝarm(tarm,0) = 0, tarm,0 = 0,Darm the number of
distinct event times (tarm,1 < tarm,2 <… < tarm,D) and
Ŝarm(t) the Kaplan-Meier estimator for the experimental
arm and the control arm (noted 1 and 0). The variance
of the rmstD t�ð Þ was estimated analytically by the delta
method for the Naïve Kaplan-Meier (details are provided
in Additional file 1).

Pooled Kaplan-Meier and Pooled Exponential
In order to take into account the trial effect, a different
strategy consists in estimating the rmstDj t�ð Þ within
each trial j and then to combine the trial-specific re-
sults into a pooled estimate. In the Pooled Kaplan-
Meier and Pooled Exponential methods, which are both
two-stage approaches, we first estimated the rmstDj t�ð Þ
in each trial j as the area between either trial-specific
Kaplan-Meier curves

rmstbDj t
�ð Þ ¼

XDj;1−1

i¼1
Ŝ j;1 tj;1;i

� �
tj;1;iþ1−tj;1;i
� �

−
XDj;0−1

i¼1
Ŝ j;0 tj;0;i

� �
tj;0;iþ1−tj;0;i
� �

ð6Þ
or trial-specific exponential curves

rmstbDj t
�ð Þ ¼

Z t�

0
e−λ̂ j;1tdt−

Z t�

0
e−λ̂ j;0tdt ¼ 1−e−λ̂ j;1t�

λ̂j;1
−
1−e−λ̂ j;0t�

λ̂j;0

ð7Þ

with for each trial j: Ŝj,arm(tj,arm,0) = 0, tj,arm,0 = 0, Dj,arm

the number of distinct event times (tj,arm,1 < tj,arm,2 <…
< tj,arm,D), Ŝj,arm(t) the Kaplan-Meier estimator, and
λ̂ j;arm the maximum likelihood estimate of the scale
parameter for the exponential distribution for the ex-
perimental arm and the control arm (noted 1 and 0).
Then, we combined the rmstDj t�ð Þ by using a fixed

effect or a DerSimonian-Laird random effects [28]
meta-analysis model (see Additional file 1). The vari-
ance of each rmstDj t�ð Þ was estimated analytically by
the delta method for the Pooled Kaplan-Meier and
Pooled Exponential methods (details are provided in
Additional file 1).

Peto-quintile
The actuarial method was developed by Peto to compute
the survival curves taking into account the trial effect in
IPD meta-analyses [25–27, 31]. In this case, the survival
probabilities in the two arms are estimated at the end of
predetermined time intervals i based on the estimated
survival probability pi in the overall population and a
pooled hazard ratio HRi,pooled. The survival probability
for the overall population is estimated as

pib ¼ exp −
Di

PIi

� �
ð8Þ

where Di is the number of deaths during interval i and
PIi the total number of person-intervals in the i-th
interval. One person-interval is equivalent to one
person-year when the time interval chosen is 1 year.
The pooled hazard ratio in the interval, HRb i;pooled; is
estimated using a fixed effect meta-analysis model to
aggregate the different HRb i;j estimated in each trial j.
The survival probabilities at the end of each interval i
in the control arm (p0,i) and in the experimental arm
(p1,i) are estimated as follows:

cp0;i ¼ p̂i− 0:5p̂i p̂i−1ð Þlog dHRi;pooled

� �h i
ð9Þ

cp1;i ¼ p̂i þ 0:5p̂i p̂i−1ð Þlog dHRi;pooled

� �h i
ð10Þ
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The survival probability at time t in each arm is the
product of the survival probabilities across ni intervals
up to t

Ŝpeto;0 tð Þ ¼
Yni

i¼1
p̂0;i and Ŝpeto;1 tð Þ ¼

Yni

i¼1
p̂1;i

ð11Þ

In the present work, we extended this method by also

pooling the dHRi;j using a DerSimonian-Laird random
effects meta-analysis model (see Additional file 1). Fur-
thermore, we used time intervals i based on the quintiles
of the overall number of deaths occurring before t� in
the meta-analysis and therefore we called this method
the Peto-quintile method. The rmstD t�ð Þ was then esti-
mated as the area between the two survival curves de-
fined by ŜPeto,0(t) and ŜPeto,1(t).

rmstDb t�ð Þ ¼
X4

i¼0

tiþ1−tið Þ
2

h
ŜPeto;1 tiþ1ð Þ−ŜPeto;0 tiþ1ð Þ� �

þ ŜPeto;1 tið Þ−ŜPeto;0 tið Þ� �i
ð12Þ

where t0 = 0 and t1;::; t5 ¼ t�ð Þ denotes the time inter-
vals based on the quintiles of events.
A 50-replicate non-parametric bootstrap was used to

estimate the variance of the rmstD t�ð Þ for the Peto-
quintile method.

Follow-up differences across trials and extrapolation
We used the extrapolation method proposed by Brown
et al. [32] for Naïve Kaplan-Meier and Pooled Kaplan-
Meier, to extrapolate the survival function beyond the last
observed event time (tmax) until t� , if needed (e.g. in case
of potential follow-up difference across trials) [10, 32].
The Brown extrapolation method consists in completing
the tail of the Kaplan-Meier survival curve by an exponen-
tial curve. The estimated survival function for t > tmax is:

ŜBrown tð Þ ¼ exp t � log Ŝ tmaxð Þ� 	
=tmax


 � ð13Þ

where Ŝ (t) is the Kaplan-Meier estimator of the survival
function.
No extrapolation was needed for Pooled Exponential

as a parametric model is used. Concerning the Peto-
quintile method, at least one event is needed overall in
the meta-analysis in each arm and at each time interval i
for survival probabilities p0,i and p1,i to be computed.
This was always the case, even in case of a potential dif-
ference in follow-up across trials, as each time interval
contained by definition one fifth of the deaths occurring
before t�. It is worth noting that if t� is greater than tmax

the last observed event in the whole meta-analysis, the
method estimates the event rate pi and the pooled

hazard ratio HRi,pooled until tmax and implicitly extrapo-
lates the survival in the remaining interval tmax; t�½ �.

Simulation study
Design of the simulation study
We simulated survival times of N patients from J trials,
each of size nj with ∑j = 1

J nj =N. We defined the hazard
function for a trial j ϵ {1 ,…, J} as

λ t; xjAj ¼ aj;Bj ¼ bj
� � ¼ λ0 tð Þexp aj þ βþ bj

� �
x


 �
ð14Þ

where λ0(t) is the baseline hazard function, Aj is a trial-
specific random quantity affecting the baseline hazard
with Var(Aj) = σ2, and Bj is a trial-specific random quan-
tity affecting the treatment effect with Var(Bj) = τ2, β is
the overall treatment effect, and x is the binary treat-
ment variable, coded +1/2 for experimental arm, −1/2
for control in order to obtain equal heterogeneity in
both arms [19, 21, 22]. Of note, the covariance between
the two random effects is defined by cov(Aj,Bj) = ρστ
with ρ the correlation between Aj and Bj.
We used an exponential distribution for the baseline

hazard function λ0(t) = (log(2)/5)t, corresponding to a
median survival time of 5 years. Independent and non-
informative right-censoring was induced by setting the
recruitment time at 3 years for all trials and varying the
maximum follow-up time uniformly between 2 and
9 years across trials to replicate the typical difference in
observed follow-up between trials included an IPD
meta-analysis.
We induced between-trial heterogeneity by generating

random values aj and bj from binomial distributions for
the baseline hazard and the treatment effect. The use of
a discrete distribution allowed us to derive straightfor-
wardly the true difference in restricted mean survival
time ( rmstD t�ð Þ ). The binomial random variables were
centered and properly rescaled in order to obtain the de-
sired variances σ2 and τ2:

Ae Bin n ¼ 50; p ¼ 0:5ð Þ−25½ �⋅σ=
ffiffiffiffiffiffiffiffiffi
12:5

p
ð15Þ

Be Bin n ¼ 50; p ¼ 0:5ð Þ−25½ �⋅τ=
ffiffiffiffiffiffiffiffiffi
12:5

p
ð16Þ

The rationale for the arbitrary choice of n = 50 was
that the distribution approximated well a continuous
distribution, while allowing easy computation of the true
rmstD t�ð Þ.

True difference in restricted mean survival time
Based on our simulation model, the difference in re-
stricted mean survival time is defined as
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rmstD t�ð Þ ¼
Z t�

0
S t; x ¼ 1

2

� �
dt−

Z t�

0
S t; x ¼ −

1
2

� �
tð Þdt

ð17Þ

rmstD t�ð Þ ¼
Z t�

0

Z
K
S t; x ¼ 1

2
jaj; bj

� �
dFA;B a; bð Þ


 �
dt

−
Z t�

0

Z
K
S t; x ¼ −

1
2
jaj; bj

� �
dFA;B a; bð Þ


 �
dt

ð18Þ
where K ¼ ak ; ; bkð Þf gk¼1;…; K is the support of the bi-
variate variable (A,B). The joint distribution FA,B(a,b) is
defined by the probabilities pk = ℙ(A = ak, B = bk )k = 1,…, K

of all the K admissible couples of values (ak,bk). Thanks
to the use of a discrete joint probability distribution
FA,B(a,b), the integral in equation (18) boils down to a
sum over the K points belonging to its support K:

rmstDðt�Þ ¼
XK

k¼1
pkrmstDkðt�Þ; ð19Þ

with the conditional restricted mean survival time
rmstDk t�ð Þ defined for a couple (ak,bk) as:

rmstDk t�ð Þ ¼
Z t�

0
exp −

log 2ð Þ
5

⋅t⋅eakþ1=2 βþbkð Þ
� �

dt

−
Z t�

0
exp −

log 2ð Þ
5

⋅t⋅eak−1=2 βþbkð Þ
� �

dt

ð20Þ

Simulation scenarios
In different scenarios we varied the strength of between-
trial heterogeneity for the baseline hazard (low with σ2 =
0.01 and high with σ2 = 0.10) and for the treatment effect
(τ2 = 0.01, 0.10). We performed the main analysis with un-
correlated random effects (ρ = 0), however, in a sensitivity
analysis, we studied the impact of a negative correlation
between Aj and Bj (ρ = −0.8). We considered different
values for the number of trials and patients per trial: (J = 5,
nj = 200) and (J = 20, nj = 100) and for the size of the overall
treatment effect (β = 0, ±0.2, ±0.7). We also studied the
impact of the time horizon of restriction at t�= 5 years and
t�= 10 years. These two values were chosen to illustrate a
scenario in which all trials still have patients at risk at t�

(5 years) and a scenario in which some trials’ follow-up are
shorter than the time of restriction ( t� = 10 years). The
average administrative censoring rate ranged across scenar-
ios from 49 to 52 % at t�= 5 years and from 38 to 40 % at
t�= 10 years. In the case of no overall treatment effect at all
(β = 0, τ2 = 0) and no baseline heterogeneity (σ2 = 0), the
restricted mean survival time was equal to 3.6 years at t�=
5 years and 5.4 years at t� = 10 years in both arms. The
influence of non-proportional hazards was examined using
a piecewise exponential distribution with a deleterious

treatment effect (β’ = −β, with β ≤ 0) in the first 2 years and
a beneficial treatment effect (β) afterwards.

Evaluation criteria
We simulated 1,000 meta-analyses for each scenario and
compared the four methods using: the average bias, de-
fined as the average of the estimated rmstD t�ð Þ minus
the true value; the empirical standard error (ESE), de-
fined as the standard deviation of the rmstD t�ð Þ over the
replicates; and the average standard error (ASE), defined
as the average of the estimated standard errors [33].
With the exception of the Naïve Kaplan-Meier method,

the methods were not available in standard statistical soft-
ware. We implemented the methods and performed the
simulation study using R version 3.1.3 (R Foundation,
Vienna, Austria). The R code is available from the authors
upon request.

Results
For all scenarios, there was almost no bias in the case of
no treatment effect (β = 0). When there was a beneficial
treatment effect (β = −0.2 or −0.7), Peto-quintile under-
estimated the rmstD t�ð Þ, notably on the long term (t�=
10 years). The Pooled Exponential and, to a much lesser
extent, the Pooled Kaplan-Meier methods showed a bias
in the case of non-proportional hazards. In all these
cases, whenever a method showed a bias, the bias in-
creased with |β| (Table 1 and Fig. 1).
In scenarios with higher treatment effect heterogeneity

(τ2 = 0.10), all the methods had higher empirical standard
error (ESE), as shown in the Figs. 1 and 2, and Tables 1
and 2. The standard error was estimated correctly (ASE =
ESE) only with Pooled Kaplan-Meier and Pooled Expo-
nential. It was generally underestimated (ASE < ESE) with
the two other methods: the ASE was two-fold smaller than
the ESE for the Naïve Kaplan-Meier and the Peto-quintile
methods with τ2 = 0.10. When varying the baseline hazard
heterogeneity between trials, no relevant impact was
noted neither on the bias nor on the standard error.
With both proportional and non-proportional hazards,

for β = −0.7, the Peto-quintile method showed a bias
which was negligible at t�= 5 years but much higher at
t�= 10 years (up to 0.21 years; Fig. 1-b and Fig. 2-b). In
the case of non-proportional hazards, which were incor-
porated using a piecewise exponential distribution with
a deleterious treatment effect in the first 2 years and a
beneficial treatment effect afterwards, Pooled Exponential
was heavily biased at 5 years, with a bias of almost 0.40 years
as compared to a true rmstD t� ¼ 5ð Þ = −0.30 years (Fig. 2-a
and Table 2). This bias suggests that the Pooled Exponential
method failed to reflect the piecewise exponential distribu-
tion with β’ = −β (β ≤ 0) for t ϵ [0;2] years and β for t >
2 years. However, this bias disappeared at 10 years, arguably
because the true hazards were proportional between 2 and
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10 years in our simulation set-up (Fig. 2-b) and the
different effect in the first 2 years was thus attenu-
ated. A small bias also arose for Pooled Kaplan-Meier
at 10 years when the hazards were not proportional:
a bias of around 0.05 years as compared to a true
rmstD t� ¼ 10ð Þ = 0.30 years (Fig. 2-b).
In terms of standard error, lower values were found for

both ESE and ASE at t� = 5 years (Fig. 1-a and Fig. 2-a) as
compared at t�= 10 years (Fig. 1-b and Fig. 2-b), no matter
the hazards were proportional or not.
The number of trials and the size of trials had no

major impact in terms of bias. In meta-analyses of J = 20
trials and nj = 100 patients per trial, all the methods had
lower empirical and average standard errors than in
meta-analyses of J = 5 trials and nj = 200 patients per trial
(see Additional file 1: Tables S1, 2, 3 and 4).
We also considered a deleterious treatment effect

(β = +0.2, +0.7) but, as expected, results were not af-
fected: the biased methods had biases that were reversed,
and ASE and ESE remained unchanged (Additional file 1:
Table S5).
The introduction of a negative correlation between

Aj and Bj also had no major impact in terms of bias
and standard error estimation, with the exception of
the scenario with high baseline hazard and treatment

variances (σ2 = τ2 = 0.10) for which ASE and ESE of
all the methods were higher than with no correlation,
notably for β = −0.7 (Additional file 1: Table S6).
When using a fixed effect meta-analysis model

(Additional file 1: Table S7), for scenarios with high
treatment effect heterogeneity (τ2 = 0.10), the Pooled
Kaplan-Meier, Pooled Exponential and Peto-quintile
methods exhibited a larger bias as compared with a
DerSimonian-Laird random effects models used in Table 1.
Furthermore, using a fixed effect model underestimated
the standard error in general (ASE < <ESE).

Application
We illustrate the four methods for estimating the rmstD
t�ð Þ using IPD from the Meta-Analysis of Chemotherapy in
Nasopharynx Carcinoma (MAC-NPC) Collaborative Group
[34] and its updated version MAC-NPC2 [35] as these two
IPD meta-analyses differed in terms of evidence of treat-
ment effect heterogeneity. These IPD meta-analyses studied
the addition of chemotherapy (CT) to radiotherapy (RT) in
patients with nasopharynx carcinoma. For the estimation of
the rmstD t�ð Þ, we selected t�= 5 years and t�= 10 years, as
these were the two time points of clinical interest in the
publications of MAC-NPC and MAC-NPC2.

Table 1 Simulation results for comparisons of methods in estimating the difference in restricted mean survival time. Scenario with 5
trials and 200 patients per trial and with proportional hazards

Heterogeneity
scenario

Methods β = 0 β = −0.7

t* = 5
True rmstD = 0

t* = 10
True rmstD = 0

t* = 5
True rmstD = 0.8

t* = 10
True rmstD = 2.0

Bias ESE ASE Bias ESE ASE Bias ESE ASE Bias ESE ASE

(σ2,τ2) = (0.01;0.01) Naïve Kaplan-Meier 0.00 0.12 0.11 0.00 0.28 0.24 0.01 0.12 0.11 0.01 0.28 0.23

Pooled Kaplan-Meier 0.00 0.12 0.13 0.00 0.29 0.30 0.01 0.12 0.13 0.02 0.30 0.29

Pooled Exponential 0.00 0.10 0.11 0.00 0.27 0.28 0.01 0.11 0.11 0.02 0.27 0.27

Peto-quintile 0.00 0.11 0.10 0.00 0.24 0.21 −0.04 0.12 0.10 −0.21 0.26 0.23

(σ2,τ2) = (0.01;0.10) Naïve Kaplan-Meier 0.00 0.19 0.11 0.01 0.49 0.24 0.00 0.19 0.11 0.00 0.48 0.23

Pooled Kaplan-Meier 0.00 0.20 0.18 0.01 0.50 0.47 0.00 0.20 0.18 0.01 0.48 0.44

Pooled Exponential 0.00 0.19 0.17 0.01 0.48 0.45 0.00 0.19 0.17 0.01 0.47 0.44

Peto-quintile 0.00 0.18 0.10 0.00 0.43 0.22 −0.04 0.19 0.10 −0.20 0.46 0.23

(σ2,τ2) = (0.10;0.01) Naïve Kaplan-Meier −0.01 0.12 0.11 −0.01 0.28 0.24 0.00 0.14 0.11 0.01 0.28 0.24

Pooled Kaplan-Meier −0.01 0.12 0.13 0.00 0.28 0.29 0.00 0.14 0.13 0.01 0.28 0.29

Pooled Exponential 0.00 0.10 0.11 −0.01 0.26 0.28 0.00 0.12 0.12 0.02 0.27 0.27

Peto-quintile −0.01 0.11 0.10 −0.01 0.23 0.22 −0.03 0.13 0.11 −0.15 0.26 0.23

(σ2,τ2) = (0.10;0.10) Naïve Kaplan-Meier 0.00 0.18 0.11 0.00 0.45 0.24 0.01 0.19 0.11 0.01 0.44 0.24

Pooled Kaplan-Meier 0.00 0.18 0.18 0.00 0.45 0.45 0.01 0.19 0.18 0.02 0.44 0.43

Pooled Exponential 0.00 0.17 0.17 0.00 0.44 0.44 0.01 0.19 0.18 0.02 0.44 0.42

Peto-quintile 0.00 0.17 0.10 0.00 0.40 0.22 −0.02 0.19 0.11 −0.13 0.43 0.24

A DerSimonian-Laird random effects meta-analysis model was used for Pooled Kaplan-Meier, Pooled Exponential and Peto-quintile
β Size of treatment effect (=log(HR)), σ2 baseline hazard heterogeneity, τ2 treatment effect heterogeneity, ASE average standard error, CI Confidence interval, ESE
empirical standard error, rmstD difference in restricted mean survival time, t* time horizon

Lueza et al. BMC Medical Research Methodology  (2016) 16:37 Page 6 of 14



Fig. 1 Graphical comparison at 5 years (panel a) and at 10 years (panel b) of methods in terms of bias, empirical and average standard error with
proportional hazards; 5 trials and 200 patients per trial; β = −0.7. Black squares represent the average bias of the rmstD estimated by each method for
a particular scenario. Black and purple vertical lines represent the 95 % confidence intervals of the bias based on respectively the empirical and
average standard errors. The horizontal red line indicates the absence of bias in the rmstD estimation. β: Size of treatment effect (=log(HR)); σ2:
baseline hazard heterogeneity; τ2: treatment effect heterogeneity; CI: Confidence interval; rmstD: difference in restricted mean survival time
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Fig. 2 Graphical comparison at 5 years (panel a) and at 10 years (panel b) of methods in terms of bias, empirical and average standard error with
non-proportional hazards; 5 trials and 200 patients per trial; β = −0.7. Black squares represent the average bias of the rmstD estimated by each
method for a particular scenario. Black and purple vertical lines represent the 95 % confidence intervals of the bias based on respectively the empirical
and average standard errors. The horizontal red line indicates the absence of bias in the rmstD estimation. β: Size of treatment effect (=log(HR)); σ2:
baseline hazard heterogeneity; τ2: treatment effect heterogeneity; CI: Confidence interval; rmstD: difference in restricted mean survival time
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Meta-Analysis of Chemotherapy in Nasopharynx
Carcinoma (MAC-NPC)
The data from the MAC-NPC [34] included 1,975 patients
in 11 treatment comparisons. The pooled HR estimated
with a fixed effect model was 0.82 (95 % CI: [0.71;0.94]),
indicating a significant improvement in overall survival
with RT plus CT (p = 0.006). The treatment effect hetero-
geneity was significant (Q-test: p = 0.03; Higgins’ I2 =
50 %) which was explained by the timing of CT. The
pooled HR estimated with a DerSimonian-Laird random
effects model [28] was 0.82 (95 % CI: [0.66;1.02], p = 0.08).

The overall proportional hazards assumption was verified
at the 5 % significance level (p= 0.09) according to the meth-
odology described by Wei et al. [6], in which trial-specific p-
values from Grambsch-Therneau test [36] are pooled. The
rmstD t�ð Þ ranged from 0.17 to 0.23 years at t�= 5 years and
from 0.46 to 0.55 years at t�= 10 years across the estimation
methods (Table 3). For Pooled Kaplan-Meier and Pooled Ex-
ponential using a random effects model, the rmstD t�ð Þ was
not significantly different from 0. As there was high treat-
ment effect heterogeneity in the MAC-NPC, a
DerSimonian-Laird random effects model was deemed more

Table 2 Simulation results for comparisons of methods in estimating the difference in restricted mean survival time. Scenario with 5
trials and 200 patients per trial, and with non-proportional hazards

Heterogeneity
scenario

Methods β = 0 β = −0.7

t* = 5
True rmstD = 0

t* = 10
True rmstD = 0

t* = 5
True rmstD = −0.3

t* = 10
True rmstD = 0.3

Bias ESE ASE Bias ESE ASE Bias ESE ASE Bias ESE ASE

(σ2,τ2) = (0.01;0.01) Naïve Kaplan-Meier 0.00 0.12 0.11 0.00 0.28 0.24 0.00 0.12 0.11 0.00 0.28 0.24

Pooled Kaplan-Meier 0.00 0.12 0.13 0.01 0.29 0.30 0.01 0.12 0.13 −0.05 0.29 0.29

Pooled Exponential 0.00 0.10 0.11 0.00 0.27 0.28 0.40 0.12 0.12 0.07 0.30 0.30

Peto-quintile 0.00 0.11 0.10 0.00 0.24 0.21 0.02 0.11 0.10 −0.19 0.24 0.21

(σ2,τ2) = (0.01;0.10) Naïve Kaplan-Meier 0.00 0.19 0.11 0.02 0.50 0.24 0.00 0.19 0.11 0.00 0.48 0.24

Pooled Kaplan-Meier 0.01 0.19 0.18 0.02 0.50 0.46 0.00 0.19 0.18 −0.05 0.48 0.46

Pooled Exponential 0.00 0.19 0.17 0.01 0.49 0.45 0.39 0.20 0.18 0.05 0.50 0.47

Peto-quintile 0.00 0.18 0.10 0.01 0.43 0.22 0.02 0.18 0.10 −0.18 0.42 0.22

(σ2,τ2) = (0.10;0.01) Naïve Kaplan-Meier 0.00 0.12 0.11 0.00 0.28 0.24 0.00 0.12 0.11 −0.01 0.27 0.24

Pooled Kaplan-Meier 0.00 0.12 0.13 0.00 0.29 0.29 0.00 0.12 0.13 −0.07 0.28 0.29

Pooled Exponential 0.00 0.10 0.11 0.00 0.27 0.28 0.38 0.12 0.12 0.04 0.30 0.31

Peto-quintile 0.00 0.11 0.10 0.00 0.24 0.21 0.00 0.11 0.10 −0.21 0.25 0.22

(σ2,τ2) = (0.10;0.10) Naïve Kaplan-Meier −0.01 0.19 0.11 −0.01 0.46 0.24 0.00 0.20 0.11 0.01 0.49 0.24

Pooled Kaplan-Meier −0.01 0.19 0.18 −0.02 0.47 0.45 0.00 0.20 0.18 −0.05 0.48 0.45

Pooled Exponential −0.01 0.18 0.17 −0.01 0.45 0.44 0.38 0.20 0.18 0.05 0.50 0.46

Peto-quintile −0.01 0.18 0.10 −0.01 0.41 0.22 0.01 0.19 0.10 −0.18 0.44 0.22

A DerSimonian-Laird random effects meta-analysis model was used for Pooled Kaplan-Meier, Pooled Exponential and Peto-quintile
β Size of treatment effect (=log(HR)), σ2 baseline hazard heterogeneity, τ2 treatment effect heterogeneity, ASE average standard error, CI Confidence interval, ESE
empirical standard error, rmstD difference in restricted mean survival time, t* time horizon

Table 3 Results for comparisons of methods in estimating the difference in restricted mean survival time (rmstD) in MAC-NPC and
MAC-NPC2 meta-analyses

Meta-analysis
model

Methods MAC-NPC MAC-NPC2

t* = 5 years t* = 10 years t* = 5 years t* = 10 years

rmstD SE p-value rmstD SE p-value rmstD SE p-value rmstD SE p-value

Naïve Kaplan-Meier 0.20 0.08 0.008 0.51 0.19 0.006 0.17 0.04 <0.001 0.54 0.11 <0.001

Random effects Pooled Kaplan-Meier 0.17 0.11 0.106 0.49 0.28 0.081 0.20 0.05 <0.001 0.59 0.13 <0.001

Pooled Exponential 0.17 0.09 0.076 0.51 0.29 0.078 0.17 0.03 <0.001 0.55 0.11 <0.001

Peto-quintile 0.23 0.09 0.007 0.55 0.22 0.011 0.21 0.04 <0.001 0.59 0.12 <0.001

Fixed effect Pooled Kaplan-Meier 0.20 0.07 0.005 0.52 0.18 0.004 0.18 0.04 <0.001 0.59 0.10 <0.001

Pooled Exponential 0.18 0.06 0.003 0.55 0.18 0.002 0.17 0.03 <0.001 0.56 0.09 <0.001

Peto-quintile 0.20 0.07 0.006 0.46 0.16 0.004 0.18 0.04 <0.001 0.53 0.09 <0.001

MAC-NPC meta-analysis of chemotherapy in nasopharynx carcinoma, rmstD difference in restricted mean survival time, SE standard error, t* time horizon
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appropriate to aggregate the trial-specific rmstDj t�ð Þ. As pre-
viously seen in the simulation study, a fixed effect model
would underestimate the variance of the overall estimate.
Also, similarly to our simulation study with proportional
hazards, larger values for rmstD t�ð Þ and SE (rmstD t�ð Þ) were
found at t�= 5 years as compared to at t�= 10 years. Figure 3
displays the forest plot for trial-specific rmstDj t�ð Þ and over-
all rmstD t�ð Þ estimated using Pooled Kaplan-Meier with
DerSimonian-Laird random effects at t�= 10 for the MAC-
NPC meta-analysis. Figure 4 displays the overall rmstD(t*)
estimated by Pooled Kaplan-Meier with DerSimonian-Laird
random effects when varying t� ; it shows that the rmstD
t�ð Þ is not significantly different from 0 for t�ϵ [0;10] years.
The same graphic for the overall rmstD t�ð Þ is displayed as
Additional file 1: Figure S1.

Update of Meta-Analysis of Chemotherapy in Nasopharynx
Carcinoma (MAC-NPC2)
The MAC-NPC2 [35], the update of the MAC-NPC,
included new trials as well as updated follow-up for trials in-
cluded in the MAC-NPC (N= 5,028 patients within 23 com-
parisons). For overall survival, a significant pooled HR of
0.79 (95 % CI: [0.73;0.86], p < 0.001) in favor of CT+RT was
obtained with a fixed effect model. In the MAC-NPC2, there
was less evidence of treatment effect heterogeneity (Q-test:
p= 0.09; Higgins’ I2 = 30 %) than in the MAC-NPC. The
pooled HR with a DerSimonian-Laird random effects model
[28] was 0.79 (95 % CI: [0.70;0.87], p <0.001).
The pooled p-value test (p = 0.16) suggested that the

overall proportional hazards assumption was appropriate.
The rmstD t�ð Þ ranged from 0.17 to 0.21 years at t�= 5 years
and from 0.53 to 0.59 years at t�= 10 across the estimation
methods (Table 3). The rmstD t�ð Þ was significantly differ-
ent from 0 and in favor of the RT +CT arm with all of the
methods. As compared to the results in the MAC-NPC,
the standard error of the rmstD t�ð Þ was lower in the MAC-
NPC2 with a rmstD t�ð Þ of similar magnitude for all the
methods. This was consistent with the simulation results,
as there were more trials and overall more patients in-
cluded in the MAC-NPC2. The forest plot for the MAC-
NPC2 displaying trial-specific rmstDj t�ð Þ and the overall
rmstD t�ð Þ at t� = 10 years estimated using the Pooled
Kaplan-Meier method with DerSimonian-Laird random
effects is provided in Additional file 1: Figure S2.

Discussion
The difference in restricted mean survival time (rmstD t�ð Þ)
is an appealing alternative to the hazard ratio (HR) as meas-
ure of treatment effect, because it does not require the pro-
portional hazards assumption and is considered to have a
more intuitive interpretation [3, 5, 6]. Furthermore, the
rmstD t�ð Þ is directly related to cost-effectiveness analysis as
it is the denominator of the incremental cost-effectiveness

ratio, so one can use the rmstD t�ð Þ estimation from a previ-
ous publication to perform a cost-effectiveness analysis. We
previously showed that in a cost-effectiveness analysis even
small variations in the estimate of the rmstD t�ð Þ from an
individual patient data (IPD) meta-analysis can yield signifi-
cantly different reimbursement conclusions [37]. However,
to our knowledge only one evaluation of the methods to
estimate the rmstD t�ð Þ from IPD meta-analysis is available
to date [6].
In this study, we compared different methods to estimate

the rmstD t�ð Þ from IPDmeta-analysis in different scenarios
varying several key meta-analysis parameters. We showed
that Pooled Kaplan-Meier was rarely biased. Similarly,
Naïve Kaplan-Meier was unbiased in all scenarios, whereas
Pooled Exponential showed a bias with non-proportional
hazards at t�= 10 years and an even larger bias at t* = 5 years.
Peto-quintile underestimated the rmstD t�ð Þ , except with
non-proportional hazards at t� = 5 years. In case of treat-
ment effect heterogeneity, the use of a fixed effect model
was not appropriate and all methods except Pooled Kaplan-
Meier and Pooled Exponential with DerSimonian-Laird
random effects underestimated the standard error of the
rmstD t�ð Þ. Overall, the Pooled Kaplan-Meier method with
DerSimonian-Laird random effects formed the best com-
promise in terms of bias and variance for estimating the
rmstD t�ð Þ from IPD meta-analysis.
In the IPD meta-analyses studying the effect of chemo-

therapy (CT) plus radiotherapy (RT) versus RT alone in
nasopharynx carcinoma, the rmstD t� ¼ 10 yearsð Þ esti-
mated using the Pooled Kaplan-Meier method with
DerSimonian-Laird random effects was 0.49 years (95 %
CI: [−0.06;1.03], p = 0.08) in the MAC-NPC [34] and
0.59 years (95 % CI: [0.34;0.84], p < 0.0001) in its updated
version MAC-NPC2 [35]. In other words, the addition of
CT to RT extended the 10-year mean survival time by
7.1 months (95 % CI 4.1;10.1) in MAC-NPC2. We believe
the clinical interpretation with the rmstD t�ð Þ is more in-
tuitive than the one derived from the pooled hazard ratio
with DerSimonian-Laird random effects of 0.79 (95 % CI
0.70−0.87) in MAC-NPC2.
The rmstD t�ð Þ is an absolute outcome measure which

depends both on the baseline hazard and on the relative
treatment effect. Consequently, the heterogeneity test
when pooling the rmstDj t�ð Þ reflects both baseline hazard
and relative treatment effect heterogeneities. Deeks already
showed that in 551 systematic reviews with binary out-
comes the heterogeneity was higher for an absolute out-
come than for a relative outcome [38]. In our IPD meta-
analyses in nasopharynx carcinoma, the heterogeneity was
slightly higher when pooling the rmstDj t�ð Þ with Pooled
Kaplan-Meier than when pooling the hazard ratios: for the
MAC-NPC there was a small increase in the heterogeneity
with Cochran Q test p-value = 0.03, I2 = 50 % for HR as
compared to p= 0.02, I2 = 54 % for rmstD t� ¼ 10 yearsð Þ
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(Fig. 3). For the MAC-NPC2, this increase was more
pronounced with p= 0.09, I2 = 30 % for HR versus p= 0.01,
I2 = 45 % for rmstD t� ¼ 10 yearsð Þ (Additional file 1: Figure
S1). Wei and colleagues showed a similar trend in their sec-
ond example (p= 0.47, I2 = 0 % for HR and p= 0.20, I2 =
24 % for rmstD t� ¼ 5 yearsð Þ) [6].
In our simulation study, we have induced between-trial

heterogeneity for the baseline hazard and for the treat-
ment effect using two random effects. As a matter of fact,
both random effects can be tested, by testing Var(Aj) = σ2

= 0 and Var(Bj) = τ2 = 0. Testing for the presence of treat-
ment effect heterogeneity (τ2 = 0) corresponds to the
Cochran Q-test which we have used in the MAC-NPC
applications [34, 35]. Commenges and Andersen [39] and
Biard and colleagues [40] proposed respectively the use of
score tests or permutation tests for testing the baseline
heterogeneity (σ2 = 0) in proportional hazard models.
Rondeau et al. [19] tested both the baseline hazard (σ2 = 0)
and the treatment effect heterogeneity between trials
(τ2 = 0) using a mixture of χ2 distributions in one-stage
Cox models.
Recent techniques like the one proposed by Guyot et

al. [41] allow one to reconstruct IPD based on published
Kaplan-Meier curves, which could be useful to recalcu-
late the rmstD t�ð Þ even for aggregate data. However, we
suggest that clinical publications for single (multicenter)
clinical trial or IPD meta-analysis should report the
rmstD t�ð Þ at different time horizons t� of clinical interest
in addition to the hazard ratio. This way the rmstD t�ð Þ
would be available for future economic evaluations. This
is of particular relevance as a previous study stated that
the survival outcome in a cost-effectiveness analysis based
on a clinical trial or a meta-analysis should be estimated
with the same statistical model used for efficacy [42].
Among the two-stage methods studied by Wei et al., the

non-parametric pseudo-values method was disregarded, as
Wei et al. showed that it led to similar results as the non-
parametric Pooled Kaplan-Meier method [6]. Also, among
parametric models we chose the exponential model instead
of the Royston and Parmar flexible parametric model for
ease of computation. In addition, we chose to study other
non-parametric methods from the medical literature
that have been actually applied in practice. Parametric
methods developed for network meta-analysis were not
included [43, 44]. Furthermore, methods using the per-
centile ratio [45, 46] were beyond the scope of this study,
which focused on the rmstD t�ð Þ. In addition, in this simu-
lation study, we only considered balanced trials and we
did not vary the administrative censoring rate.
The rmstD t�ð Þ is inherently dependent on the choice of

t� . Also, we showed that its standard error gets larger as t�

increases (Fig. 1). Karrison recommended to choose a max-
imum time horizon t� such that SE(S( t� )) is less than a
chosen ceiling value [29, 47]. In the particular case of an

IPD meta-analysis, trials can have different lengths of
follow-up, and there is thus a compromise to achieve
between small values of t� that censor a lot of data with a
high loss of information, and high values of t� that need a
massive use of extrapolation. Wei and colleagues stated that
the choice of t� should also be of clinical interest, and they
suggested plotting the rmstD t�ð Þ against t� to see how the
treatment effect varies over time. In MAC-NPC for in-
stance such a plot shows that the rmstD t�ð Þ was not signifi-
cantly different from 0 with t� ϵ [0;10] years based on
pointwise confidence intervals (Fig. 4). In two recent
papers, Tian et al. [48] and Zhao et al. [4] have proposed a
simultaneous confidence interval of the rmstD t�ð Þ in the
context of one randomized controlled trial. However, an ex-
tension to the context of IPD meta-analyses or multicenter
clinical trials has not yet been proposed and may be the
subject of further research.
Depending on the choice of the time horizon t� , some

trials included in the IPD meta-analysis may have a
follow-up not long enough to reach t� . In our study, for
such trials, we used the extrapolation method proposed
by Brown et al. [32] until t� for the Naïve Kaplan-Meier
and the Pooled Kaplan-Meier methods. Lamb and col-
leagues [10] have shown that this extrapolation method
is less biased than the mean survival time restricted at
the last observed event time. For lifetime extrapolation,
which can be needed in cost-effectiveness analysis, one
can estimate the difference in mean survival time using
the Pooled Kaplan-Meier with a DerSimonian-Laird ran-
dom effects model. In each trial, the difference in mean
survival time would be estimated using Kaplan-Meier
curves with extrapolated parametric tails [9, 10]. Simi-
larly, for the two other non-parametric methods Naïve
Kaplan-Meier and Peto-quintile, one can extrapolate the
survival curves beyond the last observed failure time by
using an extrapolated parametric tail.

Conclusions
The difference in restricted mean survival time (rmstD t�ð Þ)
is an appealing alternative to the hazard ratio to measure
the treatment effect in a meta-analysis of time-to-event out-
comes, as it is free of the proportional hazards assumption
and its interpretation is more intuitive. We compared
methods to estimate the rmstD t�ð Þ from an individual
patient data meta-analysis. In our simulation study, in
which a large panel of meta-analysis parameters was
varied, the two-stage Pooled Kaplan-Meier method with
DerSimonian-Laird random effects formed the best
compromise in terms of bias and variance. Thus, Pooled
Kaplan-Meier with DerSimonian-Laird random effects
should be the preferred method to estimate the difference
in restricted mean survival time from an individual patient
data meta-analysis or from a multicenter clinical trial.
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