R. H. Adams, G. A. Wilkinson, C. Weiss, F. Diella, N. W. Gale et al., Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis, Genes & Development, vol.13, issue.3, pp.295-306, 1999.
DOI : 10.1101/gad.13.3.295

A. Aulehla, C. Wehrle, B. Brand-saberi, R. Kemler, A. Gossler et al., Wnt3a Plays a Major Role in the Segmentation Clock Controlling Somitogenesis, Developmental Cell, vol.4, issue.3, pp.395-406, 2003.
DOI : 10.1016/S1534-5807(03)00055-8

G. L. Barnes, P. G. Alexander, C. W. Hsu, B. D. Mariani, and R. S. Tuan, Cloning and Characterization of ChickenParaxis:A Regulator of Paraxial Mesoderm Development and Somite Formation, Developmental Biology, vol.189, issue.1, pp.95-111, 1997.
DOI : 10.1006/dbio.1997.8663

Y. Bessho, H. Hirata, Y. Masamizu, and R. Kageyama, Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock, Genes & Development, vol.17, issue.12, pp.1451-1456, 2003.
DOI : 10.1101/gad.1092303

A. Buchberger, S. Bonneick, and H. Arnold, Expression of the novel basic-helix-loop-helix transcription factor cMespo in presomitic mesoderm of chicken embryos, Mechanisms of Development, vol.97, issue.1-2, pp.223-226, 2000.
DOI : 10.1016/S0925-4773(00)00424-X

A. Buchberger, S. Bonneick, C. Klein, and H. H. Arnold, Dynamic expression of chicken cMeso2 in segmental plate and somites, Developmental Dynamics, vol.394, issue.1, pp.108-118, 2002.
DOI : 10.1002/dvdy.1240

J. Chal and O. Pourquie, Patterning and Differentiation of the Vertebrate Spine. Cold Spring Harbor Monograph The Skeletal System, pp.41-116, 2009.

S. C. Chapman, J. Collignon, G. C. Schoenwolf, and A. Lumsden, Improved method for chick whole-embryo culture using a filter paper carrier, Developmental Dynamics, vol.106, issue.3, pp.284-289, 2001.
DOI : 10.1002/1097-0177(20010301)220:3<284::AID-DVDY1102>3.0.CO;2-5

X. Chen and B. M. Gumbiner, Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity, The Journal of Cell Biology, vol.8, issue.2, pp.301-313, 2006.
DOI : 10.1083/jcb.144.2.351

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064189

X. Chen, E. Koh, M. Yoder, and B. M. Gumbiner, A Protocadherin-Cadherin-FLRT3 Complex Controls Cell Adhesion and Morphogenesis, PLoS ONE, vol.4, issue.12, p.8411, 2009.
DOI : 10.1371/journal.pone.0008411.s006

URL : http://doi.org/10.1371/journal.pone.0008411

J. K. Dale, P. Malapert, J. Chal, G. Vilhais-neto, M. Maroto et al., Oscillations of the Snail Genes in the Presomitic Mesoderm Coordinate Segmental Patterning and Morphogenesis in Vertebrate Somitogenesis, Developmental Cell, vol.10, issue.3, pp.355-366, 2006.
DOI : 10.1016/j.devcel.2006.02.011

J. K. Dale, M. Maroto, M. L. Dequeant, P. Malapert, M. Mcgrew et al., Periodic Notch inhibition by Lunatic Fringe underlies the chick segmentation clock, Nature, vol.421, issue.6920, pp.275-278, 2003.
DOI : 10.1038/nature01244

R. M. Das, N. J. Van-hateren, G. R. Howell, E. R. Farrell, F. K. Bangs et al., A robust system for RNA interference in the chicken using a modified microRNA operon, Developmental Biology, vol.294, issue.2, pp.554-563, 2006.
DOI : 10.1016/j.ydbio.2006.02.020

M. C. Delfini, J. Dubrulle, P. Malapert, J. Chal, and O. Pourquie, Control of the segmentation process by graded MAPK/ERK activation in the chick embryo, Proceedings of the National Academy of Sciences, vol.102, issue.32, pp.11343-11348, 2005.
DOI : 10.1073/pnas.0502933102

E. Delva and A. P. Kowalczyk, Regulation of Cadherin Trafficking, Traffic, vol.278, issue.3, pp.259-267, 2009.
DOI : 10.1111/j.1600-0854.2008.00862.x

M. L. Dequeant, E. Glynn, K. Gaudenz, M. Wahl, J. Chen et al., A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation Clock, Science, vol.314, issue.5805, pp.1595-1598, 2006.
DOI : 10.1126/science.1133141

R. Diez-del-corral, I. Olivera-martinez, A. Goriely, E. Gale, M. Maden et al., Opposing FGF and Retinoid Pathways Control Ventral Neural Pattern, Neuronal Differentiation, and Segmentation during Body Axis Extension, Neuron, vol.40, issue.1, pp.65-79, 2003.
DOI : 10.1016/S0896-6273(03)00565-8

R. Diez-del-corral and K. G. Storey, Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis, BioEssays, vol.212, issue.8, pp.857-869, 2004.
DOI : 10.1002/bies.20080

M. Dottori, L. Hartley, M. Galea, G. Paxinos, M. Polizzotto et al., EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract, Proceedings of the National Academy of Sciences, vol.95, issue.22, pp.13248-13253, 1998.
DOI : 10.1073/pnas.95.22.13248

J. L. Duband, S. Dufour, K. Hatta, M. Takeichi, G. M. Edelman et al., Adhesion molecules during somitogenesis in the avian embryo, The Journal of Cell Biology, vol.104, issue.5, pp.1361-1374, 1987.
DOI : 10.1083/jcb.104.5.1361

J. Dubrulle, M. J. Mcgrew, and O. Pourquie, FGF Signaling Controls Somite Boundary Position and Regulates Segmentation Clock Control of Spatiotemporal Hox Gene Activation, Cell, vol.106, issue.2, pp.219-232, 2001.
DOI : 10.1016/S0092-8674(01)00437-8

H. Forsberg, F. Crozet, and N. A. Brown, Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation, Current Biology, vol.8, issue.18, pp.1027-1030, 1998.
DOI : 10.1016/S0960-9822(07)00424-1

T. L. Greco, S. Takada, M. M. Newhouse, J. A. Mcmahon, A. P. Mcmahon et al., Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development., Genes & Development, vol.10, issue.3, pp.313-324, 1996.
DOI : 10.1101/gad.10.3.313

V. Hamburger, The stage series of the chick embryo, Developmental Dynamics, vol.195, issue.4, pp.273-275, 1992.
DOI : 10.1002/aja.1001950405

D. Henrique, J. Adam, A. Myat, A. Chitnis, J. Lewis et al., Expression of a Delta homologue in prospective neurons in the chick, Nature, vol.375, issue.6534, pp.787-790, 1995.
DOI : 10.1038/375787a0

K. Horikawa, G. Radice, M. Takeichi, and O. Chisaka, Adhesive Subdivisions Intrinsic to the Epithelial Somites, Developmental Biology, vol.215, issue.2, pp.182-189, 1999.
DOI : 10.1006/dbio.1999.9463

A. Hubaud and O. Pourquie, Signalling dynamics in vertebrate segmentation, Nature Reviews Molecular Cell Biology, vol.149, issue.11, pp.709-721, 2014.
DOI : 10.1038/nrm3891

N. A. Hukriede, T. E. Tsang, R. Habas, P. L. Khoo, K. Steiner et al., Conserved Requirement of Lim1 Function for Cell Movements during Gastrulation, Developmental Cell, vol.4, issue.1, pp.83-94, 2003.
DOI : 10.1016/S1534-5807(02)00398-2

D. Julich, G. Cobb, A. M. Melo, P. Mcmillen, A. K. Lawton et al., Cross-Scale Integrin Regulation Organizes ECM and Tissue Topology, Developmental Cell, vol.34, issue.1, pp.33-44, 2015.
DOI : 10.1016/j.devcel.2015.05.005

D. Julich, A. P. Mould, E. Koper, and S. A. Holley, Control of extracellular matrix assembly along tissue boundaries via Integrin and Eph/Ephrin signaling, Development, vol.136, issue.17, pp.2913-2921, 2009.
DOI : 10.1242/dev.038935

S. H. Kim, W. C. Jen, E. M. De-robertis, and C. Kintner, The protocadherin PAPC establishes segmental boundaries during somitogenesis in Xenopus embryos, Current Biology, vol.10, issue.14, pp.821-830, 2000.
DOI : 10.1016/S0960-9822(00)00580-7

S. H. Kim, A. Yamamoto, T. Bouwmeester, E. Agius, and E. M. Robertis, The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation, Development, vol.125, pp.4681-4690, 1998.

S. Koshida, Y. Kishimoto, H. Ustumi, T. Shimizu, M. Furutani-seiki et al., Integrin??5-Dependent Fibronectin Accumulation for Maintenance of Somite Boundaries in Zebrafish Embryos, Developmental Cell, vol.8, issue.4, pp.587-598, 2005.
DOI : 10.1016/j.devcel.2005.03.006

A. P. Kowalczyk and B. A. Nanes, Adherens Junction Turnover: Regulating Adhesion Through Cadherin Endocytosis, Degradation, and Recycling, Sub-cellular biochemistry, vol.60, pp.197-222, 2012.
DOI : 10.1007/978-94-007-4186-7_9

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074012

A. J. Krol, D. Roellig, M. L. Dequeant, O. Tassy, E. Glynn et al., Evolutionary plasticity of segmentation clock networks, Development, vol.138, issue.13, pp.2783-2792, 2011.
DOI : 10.1242/dev.063834

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109603

P. M. Kulesa and S. E. Fraser, Cell Dynamics During Somite Boundary Formation Revealed by Time-Lapse Analysis, Science, vol.298, issue.5595, pp.991-995, 2002.
DOI : 10.1126/science.1075544

K. K. Linask, C. Ludwig, M. D. Han, X. Liu, G. L. Radice et al., N-Cadherin/Catenin-Mediated Morphoregulation of Somite Formation, Developmental Biology, vol.202, issue.1, pp.85-102, 1998.
DOI : 10.1006/dbio.1998.9025

O. Luu, E. W. Damm, S. E. Parent, D. Barua, T. H. Smith et al., PAPC mediates self/non???self-distinction during Snail1-dependent tissue separation, The Journal of Cell Biology, vol.109, issue.6, pp.839-856, 2015.
DOI : 10.1083/jcb.200704150

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362454

H. Makarenkova, H. Sugiura, K. Yamagata, and G. Owens, Alternatively spliced variants of protocadherin 8 exhibit distinct patterns of expression during mouse development, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1681, issue.2-3, pp.150-156, 2005.
DOI : 10.1016/j.bbaexp.2004.11.001

G. G. Martins, P. Rifes, R. Amandio, G. Rodrigues, I. Palmeirim et al., Dynamic 3D Cell Rearrangements Guided by a Fibronectin Matrix Underlie Somitogenesis, PLoS ONE, vol.27, issue.10, p.7429, 2009.
DOI : 10.1371/journal.pone.0007429.s006

URL : http://doi.org/10.1371/journal.pone.0007429

M. J. Mcgrew, J. K. Dale, S. Fraboulet, and O. Pourquie, The lunatic Fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos, Current Biology, vol.8, issue.17, pp.979-982, 1998.
DOI : 10.1016/S0960-9822(98)70401-4

P. Mcmillen, V. Chatti, D. Julich, and S. A. Holley, A Sawtooth Pattern of Cadherin 2 Stability Mechanically Regulates Somite Morphogenesis, Current Biology, vol.26, issue.4, pp.542-549, 2016.
DOI : 10.1016/j.cub.2015.12.055

A. Medina, R. K. Swain, K. M. Kuerner, and H. Steinbeisser, Xenopus paraxial protocadherin has signaling functions and is involved in tissue separation, The EMBO Journal, vol.126, issue.16, pp.3249-3258, 2004.
DOI : 10.1016/S0014-5793(99)01309-5

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514504

S. G. Megason and A. P. Mcmahon, A mitogen gradient of dorsal midline Wnts organizes growth in the CNS, Development, vol.129, pp.2087-2098, 2002.

M. Mohammadi, G. Mcmahon, L. Sun, C. Tang, P. Hirth et al., Structures of the Tyrosine Kinase Domain of Fibroblast Growth Factor Receptor in Complex with Inhibitors, Science, vol.276, issue.5314, pp.955-960, 1997.
DOI : 10.1126/science.276.5314.955

T. A. Moreno and C. Kintner, Regulation of Segmental Patterning by Retinoic Acid Signaling during Xenopus Somitogenesis, Developmental Cell, vol.6, issue.2, pp.205-218, 2004.
DOI : 10.1016/S1534-5807(04)00026-7

M. Morimoto, Y. Takahashi, M. Endo, and Y. Saga, The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity, Nature, vol.128, issue.7040, pp.354-359, 2005.
DOI : 10.1038/nbt0102-87

A. Munjal, J. M. Philippe, E. Munro, and T. Lecuit, A self-organized biomechanical network drives shape changes during tissue morphogenesis, Nature, vol.420, issue.7565, pp.351-355, 2015.
DOI : 10.1038/nature14603

Y. Nakajima, M. Morimoto, Y. Takahashi, H. Koseki, and Y. Saga, Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2, Development, vol.133, issue.13, pp.2517-2525, 2006.
DOI : 10.1242/dev.02422

K. Niederreither and P. Dolle, Retinoic acid in development: towards an integrated view, Nature Reviews Genetics, vol.126, issue.7, pp.541-553, 2008.
DOI : 10.1038/nrg2340

URL : https://hal.archives-ouvertes.fr/inserm-00311222

K. Niederreither, V. Subbarayan, P. Dolle, and P. Chambon, Embryonic retinoic acid synthesis is essential for early mouse post-implantation development, Nature Genetics, vol.21, issue.4, pp.444-448, 1999.
DOI : 10.1038/7788

M. A. Nieto, THE SNAIL SUPERFAMILY OF ZINC-FINGER TRANSCRIPTION FACTORS, Nature Reviews Molecular Cell Biology, vol.3, issue.3, pp.155-166, 2002.
DOI : 10.1038/nrm757

Y. Niwa, Y. Masamizu, T. Liu, R. Nakayama, C. X. Deng et al., The Initiation and Propagation of Hes7 Oscillation Are Cooperatively Regulated by Fgf and Notch Signaling in the Somite Segmentation Clock, Developmental Cell, vol.13, issue.2, pp.298-304, 2007.
DOI : 10.1016/j.devcel.2007.07.013

A. Nomura-kitabayashi, Y. Takahashi, S. Kitajima, T. Inoue, H. Takeda et al., Hypomorphic Mesp allele distinguishes establishment of rostrocaudal polarity and segment border formation in somitogenesis, Development, vol.129, pp.2473-2481, 2002.

M. Oginuma, Y. Niwa, D. L. Chapman, and Y. Saga, Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis, Development, vol.135, issue.15, pp.2555-2562, 2008.
DOI : 10.1242/dev.019877

C. Oka, T. Nakano, A. Wakeham, J. L. De-la-pompa, C. Mori et al., Disruption of the mouse RBP-J kappa gene results in early embryonic death, Development, vol.121, pp.3291-3301, 1995.

O. Pourquie and P. P. Tam, A Nomenclature for Prospective Somites and Phases of Cyclic Gene Expression in the Presomitic Mesoderm, Developmental Cell, vol.1, issue.5, pp.619-620, 2001.
DOI : 10.1016/S1534-5807(01)00082-X

G. L. Radice, H. Rayburn, H. Matsunami, K. A. Knudsen, M. Takeichi et al., Developmental Defects in Mouse Embryos Lacking N-Cadherin, Developmental Biology, vol.181, issue.1, pp.64-78, 1997.
DOI : 10.1006/dbio.1996.8443

URL : http://doi.org/10.1006/dbio.1996.8443

J. Rhee, Y. Takahashi, Y. Saga, J. Wilson-rawls, and A. Rawls, The protocadherin papc is involved in the organization of the epithelium along the segmental border during mouse somitogenesis, Developmental Biology, vol.254, issue.2, pp.248-261, 2003.
DOI : 10.1016/S0012-1606(02)00085-4

Y. Saga, The mechanism of somite formation in mice, Current Opinion in Genetics & Development, vol.22, issue.4, pp.331-338, 2012.
DOI : 10.1016/j.gde.2012.05.004

A. Sawada, M. Shinya, Y. J. Jiang, A. Kawakami, A. Kuroiwa et al., Fgf/MAPK signalling is a crucial positional cue in somite boundary formation, Development, vol.128, pp.4873-4880, 2001.

D. Sosic, B. Brand-saberi, C. Schmidt, B. Christ, and E. N. Olson, Regulation ofparaxisExpression and Somite Formation by Ectoderm- and Neural Tube-Derived Signals, Developmental Biology, vol.185, issue.2, pp.229-243, 1997.
DOI : 10.1006/dbio.1997.8561

J. S. Takahashi, H. K. Hong, C. H. Ko, and E. L. Mcdearmon, The genetics of mammalian circadian order and disorder: implications for physiology and disease, Nature Reviews Genetics, vol.15, issue.10, pp.764-775, 2008.
DOI : 10.1038/nrg2430

R. B. Troyanovsky, E. P. Sokolov, and S. M. Troyanovsky, Endocytosis of Cadherin from Intracellular Junctions Is the Driving Force for Cadherin Adhesive Dimer Disassembly, Molecular Biology of the Cell, vol.17, issue.8, pp.3484-3493, 2006.
DOI : 10.1091/mbc.E06-03-0190

F. Unterseher, J. A. Hefele, K. Giehl, E. M. De-robertis, D. Wedlich et al., Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK, The EMBO Journal, vol.105, issue.16, pp.3259-3269, 2004.
DOI : 10.1083/JCB.144.2.351

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514506

J. Vermot, J. G. Llamas, V. Fraulob, K. Niederreither, P. Chambon et al., Retinoic Acid Controls the Bilateral Symmetry of Somite Formation in the Mouse Embryo, Science, vol.308, issue.5721, pp.563-566, 2005.
DOI : 10.1126/science.1108363

URL : https://hal.archives-ouvertes.fr/hal-00187818

T. Watanabe, Y. Sato, D. Saito, R. Tadokoro, and Y. Takahashi, EphrinB2 coordinates the formation of a morphological boundary and cell epithelialization during somite segmentation, Proceedings of the National Academy of Sciences, vol.106, issue.18, pp.7467-7472, 2009.
DOI : 10.1073/pnas.0902859106

T. Watanabe and Y. Takahashi, Tissue morphogenesis coupled with cell shape changes, Current Opinion in Genetics & Development, vol.20, issue.4, pp.443-447, 2010.
DOI : 10.1016/j.gde.2010.05.004

L. Wittler, E. H. Shin, P. Grote, A. Kispert, A. Beckers et al., Expression of Msgn1 in the presomitic mesoderm is controlled by synergism of WNT signalling and Tbx6, EMBO reports, vol.126, issue.8, pp.784-789, 2007.
DOI : 10.1006/dbio.1997.8502

K. Yamagata, K. I. Andreasson, H. Sugiura, E. Maru, M. Dominique et al., Arcadlin Is a Neural Activity-regulated Cadherin Involved in Long Term Potentiation, Journal of Biological Chemistry, vol.274, issue.27, pp.19473-11979, 1999.
DOI : 10.1074/jbc.274.27.19473

A. Yamamoto, S. L. Amacher, S. H. Kim, D. Geissert, C. B. Kimmel et al., Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm, Development, vol.125, pp.3389-3397, 1998.

S. Yasuda, H. Tanaka, H. Sugiura, K. Okamura, T. Sakaguchi et al., Activity-Induced Protocadherin Arcadlin Regulates Dendritic Spine Number by Triggering N-Cadherin Endocytosis via TAO2?? and p38 MAP Kinases, Neuron, vol.56, issue.3, pp.456-471, 2007.
DOI : 10.1016/j.neuron.2007.08.020

URL : http://doi.org/10.1016/j.neuron.2007.08.020