W. A. Gahl, J. G. Thoene, and J. A. Schneider, Cystinosis, New England Journal of Medicine, vol.347, issue.2, pp.111-121, 2002.
DOI : 10.1056/NEJMra020552

M. Town, G. Jean, S. Cherqui, M. Attard, L. Forestier et al., A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis, Nature Genetics, vol.14, issue.4, pp.319-324, 1998.
DOI : 10.1093/HMG/6.13.2317

S. Cherqui, V. Kalatzis, G. Trugnan, and C. Antignac, The Targeting of Cystinosin to the Lysosomal Membrane Requires a Tyrosine-based Signal and a Novel Sorting Motif, Journal of Biological Chemistry, vol.276, issue.16, pp.13314-13321, 2001.
DOI : 10.1074/jbc.M010562200

V. Kalatzis, S. Cherqui, C. Antignac, and B. Gasnier, Cystinosin, the protein defective in cystinosis, is a H+-driven lysosomal cystine transporter, The EMBO Journal, vol.20, issue.21, pp.5940-5949, 2001.
DOI : 10.1093/emboj/20.21.5940

Z. Andrzejewska, N. Nevo, L. Thomas, C. Chhuon, A. Bailleux et al., Cystinosin is a Component of the Vacuolar H+-ATPase-Ragulator-Rag Complex Controlling Mammalian Target of Rapamycin Complex 1 Signaling, Journal of the American Society of Nephrology, vol.27, issue.6, pp.1678-1688, 2015.
DOI : 10.1681/ASN.2014090937

Z. Andrzejewska, N. Névo, L. Thomas, A. Bailleux, V. Chauvet et al., Lysosomal Targeting of Cystinosin Requires AP-3, Traffic, vol.18, issue.7, pp.712-726, 2015.
DOI : 10.1111/tra.12277

S. G. Heil, E. Levtchenko, L. A. Monnens, F. J. Trijbels, N. M. Van-der-put et al., The Molecular Basis of Dutch Infantile Nephropathic Cystinosis, Nephron, vol.89, issue.1, pp.50-55, 2001.
DOI : 10.1159/000046043

V. Kalatzis, N. Nevo, S. Cherqui, B. Gasnier, and C. Antignac, Molecular pathogenesis of cystinosis: effect of CTNS mutations on the transport activity and subcellular localization of cystinosin, Human Molecular Genetics, vol.13, issue.13, pp.1361-1371, 2004.
DOI : 10.1093/hmg/ddh152

J. P. Midgley, R. El-kares, F. Mathieu, and P. Goodyer, Natural history of adolescent-onset cystinosis, Pediatric Nephrology, vol.147, issue.8, pp.1335-1337, 2011.
DOI : 10.1007/s00467-011-1904-z

R. D. Marshall, Glycoproteins, Annual Review of Biochemistry, vol.41, issue.1, pp.673-702, 1972.
DOI : 10.1146/annurev.bi.41.070172.003325

R. Kundra and S. Kornfeld, Asparagine-linked Oligosaccharides Protect Lamp-1 and Lamp-2 from Intracellular Proteolysis, Journal of Biological Chemistry, vol.274, issue.43, pp.31039-31046, 1999.
DOI : 10.1074/jbc.274.43.31039

M. K. Doherty, D. E. Hammond, M. J. Clague, S. J. Gaskell, and R. J. Beynon, Turnover of the Human Proteome: Determination of Protein Intracellular Stability by Dynamic SILAC, Journal of Proteome Research, vol.8, issue.1, pp.104-112, 2009.
DOI : 10.1021/pr800641v

R. J. Beynon, The dynamics of the proteome: Strategies for measuring protein turnover on a proteome-wide scale, Briefings in Functional Genomics and Proteomics, vol.3, issue.4, pp.382-390, 2005.
DOI : 10.1093/bfgp/3.4.382

B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt et al., Global quantification of mammalian gene expression control, Nature, vol.323, issue.7347, pp.337-342, 2011.
DOI : 10.1038/nature10098

R. Zufferey, J. E. Donello, D. Trono, H. , and T. J. , Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors, J. Virol, vol.73, pp.2886-2892, 1999.

J. M. Pratt, J. Petty, I. Riba-garcia, D. H. Robertson, S. J. Gaskell et al., Dynamics of Protein Turnover, a Missing Dimension in Proteomics, Molecular & Cellular Proteomics, vol.1, issue.8, pp.579-591, 2002.
DOI : 10.1074/mcp.M200046-MCP200

J. A. Vizcaíno, A. Csordas, N. Del-toro, J. A. Dianes, J. Griss et al., 2016 update of the PRIDE database and its related tools, Nucleic Acids Research, vol.44, issue.D1, pp.447-456, 2016.
DOI : 10.1093/nar/gkv1145

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nature Biotechnology, vol.7, issue.12, pp.1367-1372, 2008.
DOI : 10.1038/nprot.2007.261

J. Cox, M. Y. Hein, C. A. Luber, I. Paron, N. Nagaraj et al., MaxLFQ allows accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, Mol. Cell Proteomics, 2014.
DOI : 10.1074/mcp.m113.031591

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159666

S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein et al., The Perseus computational platform for comprehensive analysis of (prote)omics data, Nature Methods, vol.8, issue.9, pp.731-740, 2016.
DOI : 10.1038/nmeth.3901

M. Attard, G. Jean, L. Forestier, S. Cherqui, W. Van-'t-hoff et al., Severity of phenotype in cystinosis varies with mutations in the CTNS gene: predicted effect on the model of cystinosin, Human Molecular Genetics, vol.8, issue.13, pp.2507-2514, 1999.
DOI : 10.1093/hmg/8.13.2507

L. Lamriben, J. B. Graham, B. M. Adams, H. , and D. N. , -Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle, Traffic, vol.369, issue.4, pp.308-326, 2016.
DOI : 10.1111/tra.12358

URL : https://hal.archives-ouvertes.fr/hal-01407871

B. Schröder, C. Wrocklage, C. Pan, R. Jäger, B. Kösters et al., Integral and Associated Lysosomal Membrane Proteins, Traffic, vol.57, issue.12, pp.1676-1686, 2007.
DOI : 10.1111/j.1600-0854.2007.00643.x

R. Bernasconi, C. Galli, V. Calanca, T. Nakajima, and M. Molinari, substrates, The Journal of Cell Biology, vol.2, issue.2, pp.223-235, 2010.
DOI : 10.1074/jbc.M409034200

W. Chiang, C. Messah, L. , and J. H. , IRE1 directs proteasomal and lysosomal degradation of misfolded rhodopsin, Molecular Biology of the Cell, vol.23, issue.5, p.758, 2012.
DOI : 10.1091/mbc.E11-08-0663

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290636

D. Dersh, S. M. Jones, D. Eletto, J. C. Christianson, and Y. Argon, OS-9 facilitates turnover of nonnative GRP94 marked by hyperglycosylation, Molecular Biology of the Cell, vol.25, issue.15, pp.2220-2234, 2014.
DOI : 10.1091/mbc.E14-03-0805

D. N. Hebert, L. Lamriben, E. T. Powers, K. , and J. W. , The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis, Nature Chemical Biology, vol.3, issue.11, p.902, 2014.
DOI : 10.1073/pnas.0704862104

C. Hammond, I. Braakman, and A. Helenius, Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control., Proceedings of the National Academy of Sciences, vol.91, issue.3, p.913, 1994.
DOI : 10.1073/pnas.91.3.913

A. Helenius, How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum., Molecular Biology of the Cell, vol.5, issue.3, pp.253-265, 1994.
DOI : 10.1091/mbc.5.3.253

M. Høyer-hansen and M. Jäättelä, Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium, Cell Death and Differentiation, vol.20, issue.9, pp.1576-1582, 2007.
DOI : 10.1038/sj.cdd.4401651

H. Y. Gee, S. H. Noh, B. L. Tang, K. H. Kim, and M. G. Lee, Rescue of ??F508-CFTR Trafficking via a GRASP-Dependent Unconventional Secretion Pathway, Cell, vol.146, issue.5, pp.746-760, 2011.
DOI : 10.1016/j.cell.2011.07.021

R. Bernasconi and M. Molinari, ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER, Current Opinion in Cell Biology, vol.23, issue.2, pp.176-183, 2011.
DOI : 10.1016/j.ceb.2010.10.002