R. A. Ankeny and S. Leonelli, What's so special about model organisms? Studies in History and Philosophy of Science A, 42, 313e323, 2011.

T. M. Baetu, Models and the mosaic of scientific knowledge. The case of immunology, Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, vol.45, issue.49e56, 2014.
DOI : 10.1016/j.shpsc.2013.11.003

T. M. Baetu, The ???Big Picture???: The Problem of Extrapolation in Basic Research, 941e964, 2016.
DOI : 10.1093/bjps/axv018

C. Ball, B. Fox, S. Hufton, G. Sharp, S. Poole et al., Antibody C Region Influences TGN1412-like Functional Activity In Vitro, The Journal of Immunology, vol.189, issue.12, pp.5831-5840, 1950.
DOI : 10.4049/jimmunol.1201795

M. R. Barnes, J. Holbrook, J. A. Feild, D. B. Searls, and P. Sanseau, Risk in drug trials, The Lancet, vol.368, issue.9554, pp.2205-0140, 2006.
DOI : 10.1016/S0140-6736(06)69882-6

P. Bartholomaeus, L. Y. Semmler, T. Bukur, V. Boisguerin, P. S. Römer et al., Cell contact-dependent priming and Fc interaction with CD32þ immune cells contribute to the TGN1412-triggered cytokine response, Journal of Immunology, vol.192, issue.5, 1950.

N. Beyersdorf, S. Gaupp, and K. Balbach, Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis, The Journal of Experimental Medicine, vol.160, issue.3, pp.445-455, 2005.
DOI : 10.1073/pnas.92.13.5850

N. Beyersdorf, T. Hanke, T. Kerkau, and T. Hünig, Superagonistic anti-CD28 antibodies: potent activators of regulatory T cells for the therapy of autoimmune diseases, Annals of the Rheumatic Diseases, vol.64, issue.suppl_4, 2005.
DOI : 10.1136/ard.2005.042564

N. Beyersdorf, T. Hanke, T. Kerkau, and T. Hünig, CD28 superagonists put a break on autoimmunity by preferentially activating CD4+CD25+ regulatory T cells, Autoimmunity Reviews, vol.5, issue.1, pp.40-45, 2006.
DOI : 10.1016/j.autrev.2005.06.001

B. Clarke, D. Gillies, P. Illari, F. Russo, and J. Williamson, Mechanisms and the Evidence Hierarchy, Topoi, vol.16, issue.3, pp.339-360, 2014.
DOI : 10.1007/s11245-013-9220-9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. F. Craver, Explaining the Brain: Mechanisms and the mosaic unity of neuroscience, 2007.
DOI : 10.1093/acprof:oso/9780199299317.001.0001

M. Day, Agency criticises drug trial, BMJ, vol.332, issue.7553, 1290.
DOI : 10.1136/bmj.332.7553.1290-a

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1473072

C. Degeling and J. Johnson, Evaluating Animal Models: Some Taxonomic Worries, Journal of Medicine and Philosophy, vol.38, 2013.
DOI : 10.1093/jmp/jht004

URL : http://jmp.oxfordjournals.org/cgi/content/short/38/2/91

V. Dhir, M. Fort, A. Mahmood, R. Higbee, W. Warren et al., A predictive biomimetic model of cytokine release induced by TGN1412 and other therapeutic monoclonal antibodies, Journal of Immunotoxicology, vol.2, issue.1, pp.34-42, 2012.
DOI : 10.1080/15476910801897433

T. Dowsing and M. J. Kendall, The Northwick Park tragedyeprotecting healthy volunteers in future first-in-man trials, Journal of Clinical Pharmacy and Therapeutics, vol.32, 2007.

D. Eastwood, L. Findlay, S. Poole, C. Bird, M. Wadhwa et al., Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4þ effector memory T-cells, British Journal of Pharmacology, vol.161, issue.3, 2010.

D. Focosi, Risk in drug trials, The Lancet, vol.368, issue.9554, pp.140-673669884, 2006.
DOI : 10.1016/S0140-6736(06)69884-X

P. Germain, From replica to instruments: animal models in biomedical research, History and Philosophy of the Life Sciences, vol.51, issue.9, 2014.
DOI : 10.1007/s40656-014-0007-0

M. Goodyear, Further lessons from the TGN1412 tragedy, BMJ, vol.333, issue.7562, pp.270-271, 2006.
DOI : 10.1136/bmj.38929.647662.80

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1526936

J. D. Green, Regulatory Affairs Introduction, Toxicologic Pathology, vol.37, issue.3, pp.361-362, 2009.
DOI : 10.1056/NEJMoa063842

S. J. Green and J. Brendsel, Could the GI tract be a better portal for antibody therapy? Gut, pp.1681-1682, 2006.

S. Hansen and R. G. Leslie, TGN1412: scrutinizing preclinical trials of antibody-based medicines, Nature, vol.440, issue.7091, 2006.
DOI : 10.1038/441282a

J. Hemelaar, Minimising risk in first-in-man trials, The Lancet, vol.369, issue.9572, pp.140-673660686, 2007.
DOI : 10.1016/S0140-6736(07)60686-2

M. B. Hesse, Models and analogies in science, new edition, 1970.

C. J. Horvath and M. N. Milton, The TeGenero incident and the duff report conclusions: A series of unfortunate events or an avoidable event? Toxicologic Pathology, 2009.

J. Howick, The philosophy of evidence-based medicine, Bmj Books), 2011.

L. Huber and L. K. Keuck, Mutant mice: Experimental organisms as materialised models in biomedicine, Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, vol.44, issue.3, pp.385-391, 2013.
DOI : 10.1016/j.shpsc.2013.03.001

M. J. Kenter and A. F. Cohen, Establishing risk of human experimentation with drugs: lessons from TGN1412, The Lancet, vol.368, issue.9544, pp.140-673669562, 2006.
DOI : 10.1016/S0140-6736(06)69562-7

H. Lafollette and N. Shanks, Two Models of Models in Biomedical Research, The Philosophical Quarterly, vol.45, issue.179, pp.45-141, 1995.
DOI : 10.2307/2220412

M. Lemoine, C. Belzung, and E. Billette-de-villemeur, Standard-based reasoning in preclinical studies: Challenging the received view on extrapolation . forthcoming, Uncertainty in pharmacology, 2016.

J. H. Lin, Applications and limitations of interspecies scaling and in vitro extrapolation in pharmacokinetics, Drug Metabolism & Disposition, vol.26, 1998.

C. Lin, T. Kerkau, C. Guntermann, M. Trischler, N. Beyersdorf et al., Superagonistic anti-CD28 antibody TGN1412 as a potential immunotherapeutic for the Treatment of B Cell chronic lymphocytic leukemia, ASH Annual Meeting Abstracts, p.2519, 2004.

C. Lin and T. Hünig, Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist, 626e 638, 2003.
DOI : 10.1002/eji.200323570

S. Loisel, M. Ohresser, M. Pallardy, D. Daydé, C. Berthou et al., Relevance, advantages and limitations of animal models used in the development of monoclonal antibodies for cancer treatment, Critical Reviews in Oncology/Hematology, vol.62, issue.1, 2007.
DOI : 10.1016/j.critrevonc.2006.11.010

P. Maugeri and A. Blasimme, Humanised models of cancer in molecular medicine: The experimental control of disanalogy. Medicines and Healthcare Products Regulatory Agency Investigations into adverse incidents during clinical trials of TGN1412, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00803910

B. Granzyme, Fas ligand-mediated cytotoxic function induced by mitogenic CD28 stimulation of human memory CD4þ T cells, Journal of Leukocyte Biology, vol.91, issue.5, pp.759-771

M. N. Milton and C. J. Horvath, The EMEA Guideline on First-in-Human Clinical Trials and Its Impact on Pharmaceutical Development, Toxicologic Pathology, vol.47, issue.3, pp.363-371, 2009.
DOI : 10.1177/0192623309332997

N. C. Nelson, Modeling mouse, human, and discipline: Epistemic scaffolds in animal behavior genetics, Social Studies of Science, vol.114, issue.1, pp.3-29, 2013.
DOI : 10.1177/030631289019003001

M. Ohresser, D. Olive, B. Vanhove, and H. Watier, Risk in drug trials, The Lancet, vol.368, issue.9554, pp.140-673669883, 2006.
DOI : 10.1016/S0140-6736(06)69883-8

M. Pallardy and T. Hünig, Primate testing of TGN1412: right target, wrong cell, British Journal of Pharmacology, vol.355, issue.3, 2010.
DOI : 10.1111/j.1476-5381.2010.00925.x

M. Rodríguez-palmero, T. Hara, A. Thumbs, and T. Hünig, Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo, 12<3914::AID- IMMU3914>3.0.CO, pp.3914-39241521, 1999.
DOI : 10.1002/(SICI)1521-4141(199912)29:12<3914::AID-IMMU3914>3.3.CO;2-R

P. S. Römer, S. Berr, E. Avota, S. Na, M. Battaglia et al., Preculture of PBMCs at high cell density increases sensitivity of T-cell responses, revealing cytokine release by CD28 superagonist TGN1412, Blood, vol.118, issue.26, pp.6772-6782, 2011.
DOI : 10.1182/blood-2010-12-319780

F. Russo and J. Williamson, Interpreting Causality in the Health Sciences, International Studies in the Philosophy of Science, vol.14, issue.2, pp.157-170, 2007.
DOI : 10.1007/s10849-005-9010-x

F. Russo and J. Williamson, EnviroGenomarkers: The Interplay Between Mechanisms and Difference Making in Establishing Causal Claims, Medicine Studies, vol.6, issue.6, pp.249-262, 2012.
DOI : 10.1007/s12376-012-0079-7

K. F. Schaffner, Genes, Behavior, and Developmental Emergentism: One Process, Indivisible?, Philosophy of Science, vol.65, issue.2, pp.209-252, 1998.
DOI : 10.1086/392635

K. F. Schaffner, Behavior at the Organismal and Molecular Levels: The Case of C. elegans, Philosophy of Science, vol.67, p.288, 2000.
DOI : 10.1086/392825

K. F. Schaffner, Behaving: What's genetic and What's not, and why should we care, 2016.
DOI : 10.1093/acprof:oso/9780195171402.001.0001

C. K. Schneider, U. Kalinke, and J. Löwer, TGN1412ea regulator's perspective, Nature Biotechnologies, vol.24, issue.493e496, pp.506-493, 2006.

C. H. Self and S. Thompson, How specific are therapeutic monoclonal antibodies? Lancet, pp.140-6736, 2006.
DOI : 10.1016/s0140-6736(06)68396-7

A. H. Sharpe, Mechanisms of costimulation, Immunological Reviews, vol.26, issue.1, pp.5-11, 2009.
DOI : 10.1111/j.1600-065X.2009.00784.x

M. Sibille, Y. Donazzolo, F. Lecoz, and E. Krupka, After the London tragedy, is it still possible to consider Phase I is safe?, British Journal of Clinical Pharmacology, vol.62, issue.4, 2006.
DOI : 10.1016/j.clpt.2005.12.256

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1885163

R. Stebbings, D. Eastwood, S. Poole, and R. Thorpe, After TGN1412: Recent developments in cytokine release assays, Journal of Immunotoxicology, vol.94, issue.1, pp.75-82, 2013.
DOI : 10.3109/1547691X.2011.613419

R. Stebbings, L. Findlay, C. Edwards, D. Eastwood, C. Bird et al., "Cytokine Storm" in the Phase I Trial of Monoclonal Antibody TGN1412: Better Understanding the Causes to Improve PreClinical Testing of Immunotherapeutics, The Journal of Immunology, vol.179, issue.5, pp.179-3325, 1950.
DOI : 10.4049/jimmunol.179.5.3325

D. Steel, Across the Boundaries: Extrapolation in biology and social science, 2008.
DOI : 10.1093/acprof:oso/9780195331448.001.0001

M. J. Stone, Essay: Monoclonal antibodiesddesigner medical missiles. The Lancet, 368, S48eS49, pp.140-673669926, 2006.
DOI : 10.1016/s0140-6736(06)69926-1

G. Suntharalingam, M. R. Perry, S. Ward, S. J. Brett, A. Castello-cortes et al., Cytokine Storm in a Phase 1 Trial of the Anti-CD28 Monoclonal Antibody TGN1412, New England Journal of Medicine, vol.355, issue.10, pp.1018-1028, 2006.
DOI : 10.1056/NEJMoa063842

M. Tacke, G. Hanke, T. Hanke, and T. Hünig, CD28-mediated induction of proliferation in resting T cellsin vitro andin vivo without engagement of the T cell receptor: Evidence for functionally distinct forms of CD28, European Journal of Immunology, vol.79, issue.1, pp.239-247, 1997.
DOI : 10.1002/eji.1830270136

E. Tranter, G. Peters, M. Boyce, and S. Warrington, Giving monoclonal antibodies to healthy volunteers in phase 1 trials: is it safe?, British Journal of Clinical Pharmacology, vol.100, issue.Suppl. 2, pp.164-172, 2013.
DOI : 10.1111/bcp.12096

J. L. Vandeberg, S. M. Zola, J. J. Ely, and R. C. Kennedy, Monoclonal antibody testing, Journal of Medical Primatology, vol.441, issue.6, 2006.
DOI : 10.1038/437030a

Z. Waibler, L. Y. Sender, C. Merten, R. Hartig, S. Kliche et al., Signaling Signatures and Functional Properties of Anti-Human CD28 Superagonistic Antibodies, PLoS ONE, vol.193, issue.3, 2008.
DOI : 10.1371/journal.pone.0001708.s005

M. Weber, Philosophy of experimental biology, 2005.
DOI : 10.1017/CBO9780511498596

J. H. Weis, Allergy test might have avoided drug-trial disaster, Nature, vol.440, issue.7090, 2006.
DOI : 10.1038/441150c

S. Weissmüller, L. Y. Semmler, U. Kalinke, S. Christians, J. Müller-berghaus et al., ICOS-LICOS interaction is critically involved in TGN1412-mediated T-cell activation, Blood, vol.119, issue.26, 2012.
DOI : 10.1182/blood-2011-12-401083

P. Willner, The validity of animal models of depression, Psychopharmacology, vol.8, issue.Suppl, pp.1-16, 1984.
DOI : 10.1007/BF00427414

H. Zhou, Biologics in the Pipeline: Large Molecules With High Hopes or Bigger Risks?, The Journal of Clinical Pharmacology, vol.11, issue.5, 2007.
DOI : 10.1177/0091270006297230