S. Abu-abed, P. Dolle, D. Metzger, B. Beckett, P. Chambon et al., The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures, Genes & Development, vol.15, issue.2, pp.226-240, 2001.
DOI : 10.1101/gad.855001

M. K. Adams, O. V. Belyaeva, L. Wu, and N. Y. Kedishvili, The Retinaldehyde Reductase Activity of DHRS3 Is Reciprocally Activated by Retinol Dehydrogenase 10 to Control Retinoid Homeostasis, Journal of Biological Chemistry, vol.62, issue.21, pp.14868-14880, 2014.
DOI : 10.1073/pnas.1200872109

J. Amengual, N. Zhang, M. Kemerer, T. Maeda, K. Palczewski et al., STRA6 is critical for cellular vitamin A uptake and homeostasis, Human Molecular Genetics, vol.123, issue.20, pp.5402-5417, 2014.
DOI : 10.1172/JCI66176

R. J. Arceci, A. A. King, M. C. Simon, S. H. Orkin, and D. B. Wilson, Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart., Molecular and Cellular Biology, vol.13, issue.4, pp.2235-2246, 1993.
DOI : 10.1128/MCB.13.4.2235

A. P. Azambuja, V. Portillo-sanchez, M. V. Rodrigues, S. V. Omae, D. Schechtman et al., Retinoic Acid and VEGF Delay Smooth Muscle Relative to Endothelial Differentiation to Coordinate Inner and Outer Coronary Vessel Wall Morphogenesis, Circulation Research, vol.107, issue.2, pp.204-216, 2010.
DOI : 10.1161/CIRCRESAHA.109.214650

B. E. Bernstein, E. Birney, I. Dunham, E. D. Green, C. Gunter et al., An integrated encyclopedia of DNA elements in the human genome, Nature, vol.489, pp.57-74, 2012.

N. Bertrand, M. Roux, L. Ryckebusch, K. Niederreither, P. Dolle et al., Hox genes define distinct progenitor sub-domains within the second heart field, Developmental Biology, vol.353, issue.2, pp.266-274, 2011.
DOI : 10.1016/j.ydbio.2011.02.029

D. Bilbija, F. Haugen, J. Sagave, A. Baysa, N. Bastani et al., Retinoic Acid Signalling Is Activated in the Postischemic Heart and May Influence Remodelling, PLoS ONE, vol.7, issue.9, p.44740, 2012.
DOI : 10.1371/journal.pone.0044740.s006

S. E. Billings, K. Pierzchalski, N. E. Butler-tjaden, X. Y. Pang, P. A. Trainor et al., The retinaldehyde reductase DHRS3 is essential for preventing the formation of excess retinoic acid during embryonic development, The FASEB Journal, vol.71, issue.12, pp.4877-4889, 2013.
DOI : 10.4161/cc.6.3.3796

M. Boergesen, T. A. Pedersen, B. Gross, S. J. Van-heeringen, D. Hagenbeek et al., Genome-wide profiling of liver X receptor, retinoid X receptor , and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites, Mol. Cell. Biol, vol.2012, issue.32, pp.852-867

G. J. Boink, V. M. Christoffels, R. B. Robinson, and H. L. Tan, The past, present, and future of pacemaker therapies, Trends in Cardiovascular Medicine, vol.25, issue.8, pp.661-673, 2015.
DOI : 10.1016/j.tcm.2015.02.005

E. Boudadi, H. Stower, J. A. Halsall, C. E. Rutledge, M. Leeb et al., The histone deacetylase inhibitor sodium valproate causes limited transcriptional change in mouse embryonic stem cells but selectively overrides Polycomb-mediated Hoxb silencing, Epigenetics & Chromatin, vol.6, issue.1, p.11, 2013.
DOI : 10.1016/S1046-2023(03)00090-2

T. Brade, S. Kumar, T. J. Cunningham, C. Chatzi, X. Zhao et al., Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2, Development, vol.138, issue.1, pp.139-148, 2011.
DOI : 10.1242/dev.054239

C. M. Braitsch, M. D. Combs, S. E. Quaggin, and K. E. Yutzey, Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart, Developmental Biology, vol.368, issue.2, pp.345-357, 2012.
DOI : 10.1016/j.ydbio.2012.06.002

J. Briscoe and S. Small, Morphogen rules: design principles of gradient-mediated embryo patterning, Development, vol.142, issue.23, pp.3996-4009, 2015.
DOI : 10.1242/dev.129452

B. G. Bruneau, The developmental genetics of congenital heart disease, Nature, vol.43, issue.7181, pp.943-948, 2008.
DOI : 10.1161/01.RES.87.10.888

B. G. Bruneau, G. Nemer, J. P. Schmitt, F. Charron, L. Robitaille et al., A Murine Model of Holt-Oram Syndrome Defines Roles of the T-Box Transcription Factor Tbx5 in Cardiogenesis and Disease, Cell, vol.106, issue.6, pp.709-721, 2001.
DOI : 10.1016/S0092-8674(01)00493-7

M. Buckingham, S. Meilhac, and S. Zaffran, Building the mammalian heart from two sources of myocardial cells, Nature Reviews Genetics, vol.272, issue.11, pp.826-835, 2005.
DOI : 10.1016/j.ydbio.2004.05.016

URL : https://hal.archives-ouvertes.fr/pasteur-00176847

C. L. Cai, X. Liang, Y. Shi, P. H. Chu, S. L. Pfaff et al., Isl1 Identifies a Cardiac Progenitor Population that Proliferates Prior to Differentiation and Contributes a Majority of Cells to the Heart, Developmental Cell, vol.5, issue.6, pp.877-889, 2003.
DOI : 10.1016/S1534-5807(03)00363-0

L. Cammas, R. Romand, V. Fraulob, C. Mura, and P. Dolle, Expression of the murine retinol dehydrogenase 10 (Rdh10) gene correlates with many sites of retinoid signalling during embryogenesis and organ differentiation, Developmental Dynamics, vol.45, issue.144, pp.2899-2908, 2007.
DOI : 10.1002/aja.1001990305

URL : https://hal.archives-ouvertes.fr/hal-00188895

A. Castello, J. C. Rodriguez-manzaneque, M. Camps, A. Perez-castillo, X. Testar et al., Perinatal hypothyroidism impairs the normal transition of GLUT4 and GLUT1 glucose transporters from fetal to neonatal levels in heart and brown adipose tissue. Evidence for tissue-specific regulation of GLUT4 expression by thyroid hormone, J. Biol. Chem, vol.269, pp.5905-5912, 1994.

C. P. Chang, K. Stankunas, C. Shang, S. C. Kao, K. Y. Twu et al., Pbx1 functions in distinct regulatory networks to pattern the great arteries and cardiac outflow tract, Development, vol.135, issue.21, pp.3577-3586, 2008.
DOI : 10.1242/dev.022350

A. Chatagnon, P. Veber, V. Morin, J. Bedo, G. Triqueneaux et al., RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements, Nucleic Acids Research, vol.21, issue.10, pp.4833-4854, 2015.
DOI : 10.1210/me.2006-0490

URL : https://hal.archives-ouvertes.fr/hal-01170316

H. Chiba, M. Muramatsu, A. Nomoto, and H. Kato, are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor, Nucleic Acids Research, vol.22, issue.10, pp.1815-1820, 1994.
DOI : 10.1093/nar/22.10.1815

T. M. Chlon and J. D. Crispino, Combinatorial regulation of tissue specification by GATA and FOG factors, Development, vol.139, issue.21, pp.3905-3916, 2012.
DOI : 10.1242/dev.080440

V. M. Christoffels, G. J. Smits, A. Kispert, and A. F. Moorman, Development of the Pacemaker Tissues of the Heart, Circulation Research, vol.106, issue.2, pp.240-254, 2010.
DOI : 10.1161/CIRCRESAHA.109.205419

M. L. Clabby, T. A. Robison, H. F. Quigley, D. B. Wilson, and D. P. Kelly, Retinoid X Receptor ?? Represses GATA-4-mediated Transcription via a Retinoid-dependent Interaction with the Cardiac-enriched Repressor FOG-2, Journal of Biological Chemistry, vol.19, issue.8, pp.5760-5767, 2003.
DOI : 10.1074/jbc.M103577200

A. Comptour, M. Rouzaire, C. Belville, D. Bouvier, D. Gallot et al., Nuclear retinoid receptors and pregnancy: placental transfer, functions, and pharmacological aspects, Cellular and Molecular Life Sciences, vol.46, issue.19, 2016.
DOI : 10.1021/jm020401k

D. 'aniello, E. Ravisankar, P. Waxman, and J. S. , Rdh10a Provides a Conserved Critical Step in the Synthesis of Retinoic Acid during Zebrafish Embryogenesis, PLoS One, vol.10, 2015.

D. 'aniello, E. Rydeen, A. B. Anderson, J. L. Mandal, A. Waxman et al., Depletion of retinoic acid receptors initiates a novel positive feedback mechanism that promotes teratogenic increases in retinoic acid, PLoS Genet, vol.9, 2013.

D. 'aniello, E. Waxman, and J. S. , Input overload: Contributions of retinoic acid signaling feedback mechanisms to heart development and teratogenesis, Developmental Dynamics, vol.19, issue.3, pp.513-523, 2015.
DOI : 10.1016/j.cub.2009.04.059

W. De-laat and D. Duboule, Topology of mammalian developmental enhancers and their regulatory landscapes, Nature, vol.5, issue.7472, pp.499-506, 2013.
DOI : 10.1371/journal.pbio.0050234

H. De-the, M. M. Vivanco-ruiz, P. Tiollais, H. Stunnenberg, and A. Dejean, Identification of a retinoic acid responsive element in the retinoic acid receptor & beta;gene, Nature, vol.343, issue.6254, pp.177-180, 1990.
DOI : 10.1038/343177a0

L. Delacroix, E. Moutier, G. Altobelli, S. Legras, O. Poch et al., Cell-Specific Interaction of Retinoic Acid Receptors with Target Genes in Mouse Embryonic Fibroblasts and Embryonic Stem Cells, Molecular and Cellular Biology, vol.30, issue.1, pp.231-244, 2010.
DOI : 10.1128/MCB.00756-09

H. D. Devalla, V. Schwach, J. W. Ford, J. T. Milnes, S. El-haou et al., Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology, EMBO Molecular Medicine, vol.7, issue.4, pp.394-410, 2015.
DOI : 10.15252/emmm.201404757

E. D. Dickman and S. M. Smith, Selective regulation of cardiomyocyte gene expression and cardiac morphogenesis by retinoic acid, Developmental Dynamics, vol.355, issue.1, pp.39-48, 1996.
DOI : 10.1038/355441a0

N. Y. Diman, S. Remacle, N. Bertrand, J. J. Picard, S. Zaffran et al., A Retinoic Acid Responsive Hoxa3 Transgene Expressed in Embryonic Pharyngeal Endoderm, Cardiac Neural Crest and a Subdomain of the Second Heart Field, PLoS ONE, vol.6, issue.11, 2011.
DOI : 10.1371/journal.pone.0027624.s002

P. Dolle, V. Fraulob, P. Kastner, and P. Chambon, Developmental expression of murine retinoid X receptor (RXR) genes, Mechanisms of Development, vol.45, issue.2, pp.91-104, 1994.
DOI : 10.1016/0925-4773(94)90023-X

P. Dolle, E. Ruberte, P. Leroy, G. Morriss-kay, and P. Chambon, Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis, Development, vol.110, pp.1133-1151, 1990.

J. N. Dominguez, S. M. Meilhac, Y. S. Bland, M. E. Buckingham, and N. A. Brown, Asymmetric Fate of the Posterior Part of the Second Heart Field Results in Unexpected Left/Right Contributions to Both Poles of the Heart, Circulation Research, vol.111, issue.10, pp.1323-1335, 2012.
DOI : 10.1161/CIRCRESAHA.112.271247

V. Dupe, N. Matt, J. M. Garnier, P. Chambon, M. Mark et al., A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment, Proceedings of the National Academy of Sciences, vol.68, issue.2, pp.14036-14041, 2003.
DOI : 10.1006/mgme.1999.2915

B. Durand, M. Saunders, P. Leroy, M. Leid, and P. Chambon, All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs, Cell, vol.71, issue.1, pp.73-85, 1992.
DOI : 10.1016/0092-8674(92)90267-G

E. Dyson, H. M. Sucov, S. W. Kubalak, G. W. Schmid-schonbein, F. A. Delano et al., Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor alpha -/- mice., Proc. Natl. Acad. Sci. U. S. A. 92, pp.7386-7390, 1995.
DOI : 10.1073/pnas.92.16.7386

E. Robrini, N. Etchevers, H. C. Ryckebusch, L. Faure, E. Eudes et al., Cardiac outflow morphogenesis depends on effects of retinoic acid signaling on multiple cell lineages, Developmental Dynamics, vol.2, issue.3, pp.388-401, 2016.
DOI : 10.3390/jdb2010050

URL : https://hal.archives-ouvertes.fr/hal-01469053

Y. Emoto, H. Wada, H. Okamoto, A. Kudo, and Y. Imai, Retinoic acid-metabolizing enzyme Cyp26a1 is essential for determining territories of hindbrain and spinal cord in zebrafish, Developmental Biology, vol.278, issue.2, pp.415-427, 2005.
DOI : 10.1016/j.ydbio.2004.11.023

F. Hale, The Relation of Vitamin a to Anophthalmos in Pigs, American Journal of Ophthalmology, vol.18, issue.12, pp.1087-1093, 1935.
DOI : 10.1016/S0002-9394(35)90563-3

A. C. Fahed, B. D. Gelb, J. G. Seidman, and C. E. Seidman, Genetics of Congenital Heart Disease: The Glass Half Empty, Circulation Research, vol.112, issue.4, pp.707-720, 2013.
DOI : 10.1161/CIRCRESAHA.112.300853

X. Fan, A. Molotkov, S. Manabe, C. M. Donmoyer, L. Deltour et al., Targeted Disruption of Aldh1a1 (Raldh1) Provides Evidence for a Complex Mechanism of Retinoic Acid Synthesis in the Developing Retina, Molecular and Cellular Biology, vol.23, issue.13, pp.4637-4648, 2003.
DOI : 10.1128/MCB.23.13.4637-4648.2003

L. Feng, R. E. Hernandez, J. S. Waxman, D. Yelon, and C. B. Moens, Dhrs3a regulates retinoic acid biosynthesis through a feedback inhibition mechanism, Developmental Biology, vol.338, issue.1, pp.1-14, 2010.
DOI : 10.1016/j.ydbio.2009.10.029

S. Flajollet, B. Lefebvre, C. Cudejko, B. Staels, and P. Lefebvre, The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor, Molecular and Cellular Endocrinology, vol.270, issue.1-2, pp.23-32, 2007.
DOI : 10.1016/j.mce.2007.02.004

URL : https://hal.archives-ouvertes.fr/hal-00531916

D. Galli, J. N. Dominguez, S. Zaffran, A. Munk, N. A. Brown et al., Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed, Development, vol.135, issue.6, pp.1157-1167, 2008.
DOI : 10.1242/dev.014563

URL : https://hal.archives-ouvertes.fr/hal-00311155

N. Gassanov, F. Er, N. Zagidullin, M. Jankowski, J. Gutkowska et al., Retinoid acid-induced effects on atrial and pacemaker cell differentiation and expression of cardiac ion channels, Differentiation, vol.76, issue.9, pp.971-980, 2008.
DOI : 10.1111/j.1432-0436.2008.00283.x

R. F. Gillespie and L. J. Gudas, Retinoid Regulated Association of Transcriptional Co-regulators and the Polycomb Group Protein SUZ12 with the Retinoic Acid Response Elements of Hoxa1, RAR??2, and Cyp26A1 in F9 Embryonal Carcinoma Cells, and Cyp26A1 in F9 embryonal carcinoma cells, pp.298-316, 2007.
DOI : 10.1016/j.jmb.2007.06.079

C. Golzio, J. Martinovic-bouriel, S. Thomas, S. Mougou-zrelli, B. Grattagliano-bessieres et al., Matthew-Wood Syndrome Is Caused by Truncating Mutations in the Retinol-Binding Protein Receptor Gene STRA6, The American Journal of Human Genetics, vol.80, issue.6, pp.1179-1187, 2007.
DOI : 10.1086/518177

URL : https://hal.archives-ouvertes.fr/hal-00172593

P. J. Gruber, S. W. Kubalak, T. Pexieder, H. M. Sucov, R. M. Evans et al., RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice., Journal of Clinical Investigation, vol.98, issue.6, pp.1332-1343, 1996.
DOI : 10.1172/JCI118920

J. A. Guadix, A. Ruiz-villalba, L. Lettice, V. Velecela, R. Munoz-chapuli et al., Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2, Development, vol.138, issue.6, pp.1093-1097, 2011.
DOI : 10.1242/dev.044594

M. Guillonneau and E. Jacqz-aigrain, Les effets t??ratog??nes de la vitamine A et de ses d??riv??s, Archives de P??diatrie, vol.4, issue.9, pp.867-874, 1997.
DOI : 10.1016/S0929-693X(97)88158-4

M. M. Harrison, B. V. Jenkins, K. M. O-'connor-giles, and J. Wildonger, A CRISPR view of development, Genes & Development, vol.28, issue.17, pp.1859-1872, 2014.
DOI : 10.1101/gad.248252.114

H. He, S. Chin, K. Zhuang, R. Hartong, J. Apriletti et al., Negative regulation of the rat Na-K-ATPase alpha 3-subunit gene promoter by thyroid hormone, American Journal of Physiology-Cell Physiology, vol.6, issue.93, 1996.
DOI : 10.1021/bi00373a001

Y. He, L. Gong, Y. Fang, Q. Zhan, H. X. Liu et al., The role of retinoic acid in hepatic lipid homeostasis defined by genomic binding and transcriptome profiling, BMC Genomics, vol.14, issue.1, p.575, 2013.
DOI : 10.1186/1471-2105-11-415

R. E. Hernandez, A. P. Putzke, J. P. Myers, L. Margaretha, and C. B. Moens, Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development, Development, vol.134, issue.1, pp.177-187, 2007.
DOI : 10.1242/dev.02706

B. P. Hierck, A. C. Gittenberger-de-groot, L. Van-iperen, A. Brouwer, and R. E. Poelmann, Expression of the beta 4 integrin subunit in the mouse heart during embryonic development: retinoic acid advances beta 4 expression, Dev. Dyn, vol.207, pp.89-103, 1996.

T. Hochgreb, V. L. Linhares, D. C. Menezes, A. C. Sampaio, C. Y. Yan et al., A caudorostral wave of RALDH2 conveys anteroposterior information to the cardiac field, Development, vol.130, issue.22, pp.5363-5374, 2003.
DOI : 10.1242/dev.00750

D. Huang, S. W. Chen, A. W. Langston, and L. J. Gudas, A conserved retinoic acid responsive element in the murine Hoxb-1 gene is required for expression in the developing gut, Development, vol.125, pp.3235-3246, 1998.

D. J. Huk, H. L. Hammond, H. Kegechika, and J. Lincoln, Increased Dietary Intake of Vitamin A Promotes Aortic Valve Calcification In Vivo, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.33, issue.2, pp.285-293, 2013.
DOI : 10.1161/ATVBAHA.112.300388

D. Iyer, L. Gambardella, W. G. Bernard, F. Serrano, V. L. Mascetti et al., Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells, Development, vol.143, issue.5, p.904, 2016.
DOI : 10.1242/dev.136143

A. Janesick, T. T. Nguyen, K. Aisaki, K. Igarashi, S. Kitajima et al., Active repression by RAR?? signaling is required for vertebrate axial elongation, Development, vol.141, issue.11, pp.2260-2270, 2014.
DOI : 10.1242/dev.103705

K. J. Jenkins, A. Correa, J. A. Feinstein, L. Botto, A. E. Britt et al., Noninherited Risk Factors and Congenital Cardiovascular Defects: Current Knowledge: A Scientific Statement From the American Heart Association Council on Cardiovascular Disease in the Young: Endorsed by the American Academy of Pediatrics, Circulation, vol.115, issue.23, pp.2995-3014, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.183216

L. J. Jonk, M. E. De-jonge, J. M. Vervaart, S. Wissink, and W. Kruijer, Isolation and Developmental Expression of Retinoic-Acid-Induced Genes, Developmental Biology, vol.161, issue.2, pp.604-614, 1994.
DOI : 10.1006/dbio.1994.1056

J. O. Kang and H. M. Sucov, Convergent proliferative response and divergent morphogenic pathways induced by epicardial and endocardial signaling in fetal heart development, Mechanisms of Development, vol.122, issue.1, pp.57-65, 2005.
DOI : 10.1016/j.mod.2004.09.001

V. Kashyap and L. J. Gudas, Epigenetic Regulatory Mechanisms Distinguish Retinoic Acid-mediated Transcriptional Responses in Stem Cells and Fibroblasts, Journal of Biological Chemistry, vol.23, issue.19, pp.14534-14548, 2010.
DOI : 10.1002/(SICI)1097-0177(199801)211:1<97::AID-AJA9>3.0.CO;2-2

P. Kastner, J. M. Grondona, M. Mark, A. Gansmuller, M. Lemeur et al., Genetic analysis of RXR?? developmental function: Convergence of RXR and RAR signaling pathways in heart and eye morphogenesis, Cell, vol.78, issue.6, pp.987-1003, 1994.
DOI : 10.1016/0092-8674(94)90274-7

R. Kawaguchi, J. Yu, J. Honda, J. Hu, J. Whitelegge et al., A Membrane Receptor for Retinol Binding Protein Mediates Cellular Uptake of Vitamin A, Science, vol.315, issue.5813, pp.820-825, 2007.
DOI : 10.1126/science.1136244

B. R. Keegan, J. L. Feldman, G. Begemann, P. W. Ingham, and D. Yelon, Retinoic Acid Signaling Restricts the Cardiac Progenitor Pool, Science, vol.307, issue.5707, pp.247-249, 2005.
DOI : 10.1126/science.1101573

R. G. Kelly, N. A. Brown, and M. E. Buckingham, The Arterial Pole of the Mouse Heart Forms from Fgf10-Expressing Cells in Pharyngeal Mesoderm, Developmental Cell, vol.1, issue.3, pp.435-440, 2001.
DOI : 10.1016/S1534-5807(01)00040-5

S. A. Kliewer, K. Umesono, R. A. Heyman, D. J. Mangelsdorf, J. A. Dyck et al., Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling., Proceedings of the National Academy of Sciences, vol.89, issue.4, pp.1448-1452, 1992.
DOI : 10.1073/pnas.89.4.1448

I. Kostetskii, S. Y. Yuan, E. Kostetskaia, K. K. Linask, S. Blanchet et al., Initial retinoid requirement for early avian development coincides with retinoid receptor coexpression in the precardiac fields and induction of normal cardiovascular development, Developmental Dynamics, vol.128, issue.2, pp.188-198, 1998.
DOI : 10.1002/aja.1002000103

S. Kumar, T. J. Cunningham, and G. Duester, Nuclear receptor corepressors Ncor1 and Ncor2 ( Smrt ) are required for retinoic acid-dependent repression of Fgf8 during somitogenesis, Developmental Biology, vol.418, issue.1, 2016.
DOI : 10.1016/j.ydbio.2016.08.005

S. Kumar and G. Duester, Retinoic acid controls body axis extension by directly repressing Fgf8 transcription, Development, vol.141, issue.15, pp.2972-2977, 2014.
DOI : 10.1242/dev.112367

B. Laforest, N. Bertrand, and S. Zaffran, Genetic Lineage Tracing Analysis of Anterior Hox Expressing Cells, Methods Mol. Biol, vol.1196, pp.37-48, 2014.
DOI : 10.1007/978-1-4939-1242-1_3

URL : https://hal.archives-ouvertes.fr/hal-01134372

S. Lalevee, Y. N. Anno, A. Chatagnon, E. Samarut, O. Poch et al., Identification of New Conserved and Functional Retinoic Acid Receptor Response Elements (Direct Repeats Separated by 5 bp), Journal of Biological Chemistry, vol.204, issue.38, pp.33322-33334, 2011.
DOI : 10.1101/gad.552910

E. J. Lammer, D. T. Chen, R. M. Hoar, N. D. Agnish, P. J. Benke et al., Retinoic Acid Embryopathy, New England Journal of Medicine, vol.313, issue.14, pp.837-841, 1985.
DOI : 10.1056/NEJM198510033131401

C. Lampron, C. Rochette-egly, P. Gorry, P. Dolle, M. Mark et al., Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal, Development, vol.121, pp.539-548, 1995.

A. W. Langston, J. R. Thompson, and L. J. Gudas, Retinoic Acid-responsive Enhancers Located 3??? of the Hox A and Hox B Homeobox Gene Clusters, Journal of Biological Chemistry, vol.1, issue.4, 1997.
DOI : 10.1016/0092-8674(92)90405-2

G. J. Larosa and L. J. Gudas, Early retinoic acid-induced F9 teratocarcinoma stem cell gene ERA-1: alternate splicing creates transcripts for a homeobox-containing protein and one lacking the homeobox., Molecular and Cellular Biology, vol.8, issue.9, pp.3906-3917, 1988.
DOI : 10.1128/MCB.8.9.3906

K. J. Lavine, K. Yu, A. C. White, X. Zhang, C. Smith et al., Endocardial and Epicardial Derived FGF Signals Regulate Myocardial Proliferation and Differentiation In Vivo, Developmental Cell, vol.8, issue.1, pp.85-95, 2005.
DOI : 10.1016/j.devcel.2004.12.002

E. R. Lee, F. E. Murdoch, and M. K. Fritsch, High Histone Acetylation and Decreased Polycomb Repressive Complex 2 Member Levels Regulate Gene Specific Transcriptional Changes During Early Embryonic Stem Cell Differentiation Induced by Retinoic Acid, STEM CELLS, vol.226, issue.9, pp.2191-2199, 2007.
DOI : 10.1016/j.mce.2004.07.001

P. Leroy, H. Nakshatri, and P. Chambon, Mouse retinoic acid receptor alpha 2 isoform is transcribed from a promoter that contains a retinoic acid response element., Proceedings of the National Academy of Sciences, vol.88, issue.22, pp.10138-10142, 1991.
DOI : 10.1073/pnas.88.22.10138

F. Lescroart, T. Mohun, S. M. Meilhac, M. Bennett, and M. Buckingham, Lineage Tree for the Venous Pole of the Heart: Clonal Analysis Clarifies Controversial Genealogy Based on Genetic Tracing, Circulation Research, vol.111, issue.10, pp.1313-1322, 2012.
DOI : 10.1161/CIRCRESAHA.112.271064

E. Li, H. M. Sucov, K. F. Lee, R. M. Evans, and R. Jaenisch, Normal development and growth of mice carrying a targeted disruption of the alpha 1 retinoic acid receptor gene., Proceedings of the National Academy of Sciences, vol.90, issue.4, pp.1590-1594, 1993.
DOI : 10.1073/pnas.90.4.1590

P. Li, M. Pashmforoush, and H. M. Sucov, Retinoic Acid Regulates Differentiation of the Secondary Heart Field and TGF??-Mediated Outflow Tract Septation, Developmental Cell, vol.18, issue.3, pp.480-485, 2010.
DOI : 10.1016/j.devcel.2009.12.019

X. Liang, S. M. Evans, and Y. Sun, Insights into cardiac conduction system formation provided by HCN4 expression, Trends in Cardiovascular Medicine, vol.25, issue.1, pp.1-9, 2015.
DOI : 10.1016/j.tcm.2014.08.009

C. M. Liberatore, R. D. Searcy-schrick, and K. E. Yutzey, Ventricular Expression of tbx5 Inhibits Normal Heart Chamber Development, Developmental Biology, vol.223, issue.1, pp.169-180, 2000.
DOI : 10.1006/dbio.2000.9748

S. C. Lin, P. Dolle, L. Ryckebusch, M. Noseda, S. Zaffran et al., Endogenous retinoic acid regulates cardiac progenitor differentiation, Proceedings of the National Academy of Sciences, vol.193, issue.2, pp.9234-9239, 2010.
DOI : 10.1006/dbio.1997.8801

D. Lohnes, P. Kastner, A. Dierich, M. Mark, M. Lemeur et al., Function of retinoic acid receptor ?? in the mouse, Cell, vol.73, issue.4, pp.643-658, 1993.
DOI : 10.1016/0092-8674(93)90246-M

O. Loudig, G. A. Maclean, N. L. Dore, L. Luu, and M. Petkovich, inducibility, Biochemical Journal, vol.392, issue.1, pp.241-248, 2005.
DOI : 10.1042/BJ20050874

T. Lufkin, D. Lohnes, M. Mark, A. Dierich, P. Gorry et al., High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice., Proceedings of the National Academy of Sciences, vol.90, issue.15, pp.7225-7229, 1993.
DOI : 10.1073/pnas.90.15.7225

G. Maclean, S. Abu-abed, P. Dolle, A. Tahayato, P. Chambon et al., Cloning of a novel retinoic-acid metabolizing cytochrome P450, Cyp26B1, and comparative expression analysis with Cyp26A1 during early murine development, Mechanisms of Development, vol.107, issue.1-2, pp.195-201, 2001.
DOI : 10.1016/S0925-4773(01)00463-4

R. Mahmood, K. C. Flanders, and G. M. Morriss-kay, Interactions between retinoids and TGF beta s in mouse morphogenesis, Development, vol.115, pp.67-74, 1992.

S. Mahony, E. O. Mazzoni, S. Mccuine, R. A. Young, H. Wichterle et al., Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis, Genome Biology, vol.12, issue.1, p.2, 2011.
DOI : 10.1186/gb-2011-12-1-r2

N. Makki and M. R. Capecchi, Cardiovascular defects in a mouse model of HOXA1 syndrome, Human Molecular Genetics, vol.375, issue.6534, pp.26-31, 2012.
DOI : 10.1038/375787a0

M. Mark, N. B. Ghyselinck, and P. Chambon, FUNCTION OF RETINOID NUCLEAR RECEPTORS: Lessons from Genetic and Pharmacological Dissections of the Retinoic Acid Signaling Pathway During Mouse Embryogenesis, Annual Review of Pharmacology and Toxicology, vol.46, issue.1, pp.451-480, 2006.
DOI : 10.1146/annurev.pharmtox.46.120604.141156

H. Marshall, M. Studer, H. Popperl, S. Aparicio, A. Kuroiwa et al., A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1, Nature, vol.370, issue.6490, pp.567-571, 1994.
DOI : 10.1038/370567a0

C. Mendelsohn, D. Lohnes, D. Decimo, T. Lufkin, M. Lemeur et al., Function of the retinoic acid receptors (RARs) during development (II) Multiple abnormalities at various stages of organogenesis in RAR double mutants, Development, vol.120, pp.2749-2771, 1994.

M. A. Mendoza-parra, M. Walia, M. Sankar, and H. Gronemeyer, Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics, Molecular Systems Biology, vol.34, issue.1, p.538, 2011.
DOI : 10.1186/gb-2008-9-9-r137

E. Merki, M. Zamora, A. Raya, Y. Kawakami, J. Wang et al., Epicardial retinoid X receptor ?? is required for myocardial growth and coronary artery formation, Proceedings of the National Academy of Sciences, vol.8, issue.1, pp.18455-18460, 2005.
DOI : 10.1016/j.devcel.2004.12.002

D. Metzger and P. Chambon, Contribution of Targeted Conditional Somatic Mutagenesis to Deciphering Retinoid X Receptor Functions and to Generating Mouse Models of Human Diseases, Handb. Exp. Pharmacol, pp.511-524, 2007.
DOI : 10.1007/978-3-540-35109-2_21

URL : https://hal.archives-ouvertes.fr/hal-00191086

F. A. Mic, R. J. Haselbeck, A. E. Cuenca, and G. Duester, Novel retinoic acid generating activities in the neural tube and heart identified by conditional rescue of Raldh2 null mutant mice, Development, vol.129, pp.2271-2282, 2002.

F. A. Mic, A. Molotkov, X. Fan, A. E. Cuenca, and G. Duester, RALDH3, a retinaldehyde dehydrogenase that generates retinoic acid, is expressed in the ventral retina, otic vesicle and olfactory pit during mouse development, Mechanisms of Development, vol.97, issue.1-2, pp.227-230, 2000.
DOI : 10.1016/S0925-4773(00)00434-2

N. Miyake, S. Mizuno, N. Okamoto, H. Ohashi, M. Shiina et al., KDM6A Point Mutations Cause Kabuki Syndrome, Human Mutation, vol.28, issue.1, pp.108-110, 2013.
DOI : 10.1523/JNEUROSCI.5382-07.2008

J. D. Molkentin, D. V. Kalvakolanu, and B. E. Markham, Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene., Molecular and Cellular Biology, vol.14, issue.7, pp.4947-4957, 1994.
DOI : 10.1128/MCB.14.7.4947

N. Molotkova, A. Molotkov, and G. Duester, Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone, Developmental Biology, vol.303, issue.2, pp.601-610, 2007.
DOI : 10.1016/j.ydbio.2006.11.035

A. F. Moorman and V. M. Christoffels, Cardiac Chamber Formation: Development, Genes, and Evolution, Physiological Reviews, vol.83, issue.4, pp.1223-1267, 2003.
DOI : 10.1128/MCB.15.6.2972

A. D. Mori, Y. Zhu, I. Vahora, B. Nieman, K. Koshiba-takeuchi et al., Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis, Developmental Biology, vol.297, issue.2, pp.566-586, 2006.
DOI : 10.1016/j.ydbio.2006.05.023

J. B. Moss, J. Xavier-neto, M. D. Shapiro, S. M. Nayeem, P. Mccaffery et al., Dynamic Patterns of Retinoic Acid Synthesis and Response in the Developing Mammalian Heart, Developmental Biology, vol.199, issue.1, pp.55-71, 1998.
DOI : 10.1006/dbio.1998.8911

E. Moutier, T. Ye, M. A. Choukrallah, S. Urban, J. Osz et al., Retinoic Acid Receptors Recognize the Mouse Genome through Binding Elements with Diverse Spacing and Topology, Journal of Biological Chemistry, vol.15, issue.31, pp.26328-26341, 2012.
DOI : 10.1016/j.jmb.2004.07.102

L. Nagy, H. Y. Kao, D. Chakravarti, R. J. Lin, C. A. Hassig et al., Nuclear Receptor Repression Mediated by a Complex Containing SMRT, mSin3A, and Histone Deacetylase, Cell, vol.89, issue.3, pp.373-380, 1997.
DOI : 10.1016/S0092-8674(00)80218-4

Y. J. Nam, C. Lubczyk, M. Bhakta, T. Zang, A. Fernandez-perez et al., Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors, Development, vol.141, issue.22, pp.4267-4278, 2014.
DOI : 10.1242/dev.114025

K. Niederreither, S. Abu-abed, B. Schuhbaur, M. Petkovich, P. Chambon et al., Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development, Nature Genetics, vol.31, pp.84-88, 2002.
DOI : 10.1038/ng876

K. Niederreither and P. Dolle, Retinoic acid in development: towards an integrated view, Nature Reviews Genetics, vol.126, issue.7, pp.541-553, 2008.
DOI : 10.1038/nrg2340

URL : https://hal.archives-ouvertes.fr/inserm-00311222

K. Niederreither, V. Fraulob, J. M. Garnier, P. Chambon, and P. Dolle, Differential expression of retinoic acid-synthesizing (RALDH) enzymes during fetal development and organ differentiation in the mouse, Mechanisms of Development, vol.110, issue.1-2, pp.165-171, 2002.
DOI : 10.1016/S0925-4773(01)00561-5

K. Niederreither, P. Mccaffery, U. C. Drager, P. Chambon, and P. Dolle, Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development, Mechanisms of Development, vol.62, issue.1, pp.67-78, 1997.
DOI : 10.1016/S0925-4773(96)00653-3

K. Niederreither, V. Subbarayan, P. Dolle, and P. Chambon, Embryonic retinoic acid synthesis is essential for early mouse post-implantation development, Nature Genetics, vol.21, issue.4, pp.444-448, 1999.
DOI : 10.1038/7788

K. Niederreither, J. Vermot, L. Roux, I. Schuhbaur, B. Chambon et al., The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system, Development, vol.130, issue.11, pp.2525-2534, 2003.
DOI : 10.1242/dev.00463

K. Niederreither, J. Vermot, N. Messaddeq, B. Schuhbaur, P. Chambon et al., Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse, Development, vol.128, pp.1019-1031, 2001.

C. Nolte, T. Jinks, X. Wang, M. T. Martinez-pastor, and R. Krumlauf, Shadow enhancers flanking the HoxB cluster direct dynamic Hox expression in early heart and endoderm development, Developmental Biology, vol.383, issue.1, pp.158-173, 2013.
DOI : 10.1016/j.ydbio.2013.09.016

J. Norden, T. Grieskamp, E. Lausch, B. Van-wijk, M. J. Van-den-hoff et al., Wt1 and Retinoic Acid Signaling in the Subcoelomic Mesenchyme Control the Development of the Pleuropericardial Membranes and the Sinus Horns, Circulation Research, vol.106, issue.7, pp.1212-1220, 2010.
DOI : 10.1161/CIRCRESAHA.110.217455

T. Oosterveen, P. Van-vliet, J. Deschamps, and F. Meijlink, The Direct Context of a Hox Retinoic Acid Response Element Is Crucial for its Activity, Journal of Biological Chemistry, vol.14, issue.26, pp.24103-24107, 2003.
DOI : 10.1038/26040

M. K. Osmond, A. J. Butler, F. C. Voon, and R. Bellairs, The Effects of Retinoic Acid on Early Heart Formation and Segmentation in the Chick Embryo, Development, vol.113, pp.1405-1417, 1991.
DOI : 10.1007/978-1-4615-3458-7_23

S. L. Paige, S. Thomas, C. L. Stoick-cooper, H. Wang, L. Maves et al., A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development, Cell, vol.151, issue.1, pp.221-232, 2012.
DOI : 10.1016/j.cell.2012.08.027

F. Pasutto, H. Sticht, G. Hammersen, G. Gillessen-kaesbach, D. R. Fitzpatrick et al., Mutations in STRA6 Cause a Broad Spectrum of Malformations Including Anophthalmia, Congenital Heart Defects, Diaphragmatic Hernia, Alveolar Capillary Dysplasia, Lung Hypoplasia, and Mental Retardation, The American Journal of Human Genetics, vol.80, issue.3, pp.550-560, 2007.
DOI : 10.1086/512203

M. Pavan, V. F. Ruiz, F. A. Silva, T. J. Sobreira, R. M. Cravo et al., ALDH1A2 (RALDH2) genetic variation in human congenital heart disease, BMC Medical Genetics, vol.315, issue.5811, pp.1-2, 2009.
DOI : 10.1126/science.1135308

F. A. Pereira, Y. Qiu, G. Zhou, M. J. Tsai, and S. Y. Tsai, The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development, Genes & Development, vol.13, issue.8, pp.1037-1049, 1999.
DOI : 10.1101/gad.13.8.1037

J. M. Perez-pomares, A. Phelps, M. Sedmerova, R. Carmona, M. Gonzalez-iriarte et al., Experimental Studies on the Spatiotemporal Expression of WT1 and RALDH2 in the Embryonic Avian Heart: A Model for the Regulation of Myocardial and Valvuloseptal Development by Epicardially Derived Cells (EPDCs), Developmental Biology, vol.247, issue.2, pp.307-326, 2002.
DOI : 10.1006/dbio.2002.0706

T. Prendiville, P. Y. Jay, and W. T. Pu, Insights into the genetic structure of congenital heart disease from human and murine studies on monogenic disorders. Cold Spring Harb, 2014.

M. S. Rana, M. Theveniau-ruissy, D. Bono, C. Mesbah, K. Francou et al., Tbx1 Coordinates Addition of Posterior Second Heart Field Progenitor Cells to the Arterial and Venous Poles of the Heart, Circulation Research, vol.115, issue.9, pp.790-799, 2014.
DOI : 10.1161/CIRCRESAHA.115.305020

URL : https://hal.archives-ouvertes.fr/hal-01112667

A. Ratajska, R. Zlotorowicz, M. Blazejczyk, and A. Wasiutynski, Coronary artery embryogenesis in cardiac defects induced by retinoic acid in mice, Birth Defects Research Part A: Clinical and Molecular Teratology, vol.131, issue.12, pp.966-979, 2005.
DOI : 10.1161/01.CIR.91.9.2478

M. Rhinn and P. Dolle, Retinoic acid signalling during development, Development, vol.139, issue.5, pp.843-858, 2012.
DOI : 10.1242/dev.065938

M. Rhinn, B. Schuhbaur, K. Niederreither, and P. Dolle, Involvement of retinol dehydrogenase 10 in embryonic patterning and rescue of its loss of function by maternal retinaldehyde treatment, Proceedings of the National Academy of Sciences, vol.24, issue.6, pp.16687-16692, 2011.
DOI : 10.1016/S0098-2997(03)00040-2

C. Roberts, S. Ivins, A. C. Cook, A. Baldini, and P. J. Scambler, Cyp26 genes a1, b1 and c1 are down-regulated in Tbx1 null mice and inhibition of Cyp26 enzyme function produces a phenocopy of DiGeorge Syndrome in the chick, Human Molecular Genetics, vol.125, issue.23, pp.3394-3410, 2006.
DOI : 10.1128/MCB.23.17.6103-6116.2003

D. K. Rohrer, R. Hartong, and W. H. Dillmann, Influence of thyroid hormone and retinoic acid on slow sarcoplasmic reticulum Ca2+ ATPase and myosin heavy chain alpha gene expression in cardiac myocytes. Delineation of cis-active DNA elements that confer responsiveness to thyroid hormone but not to retinoic acid, J. Biol. Chem, vol.266, pp.8638-8646, 1991.

R. Romand, T. Kondo, L. Cammas, E. Hashino, and P. Dolle, Dynamic expression of the retinoic acid-synthesizing enzyme retinol dehydrogenase 10 (rdh10) in the developing mouse brain and sensory organs, The Journal of Comparative Neurology, vol.21, issue.144, pp.879-892, 2008.
DOI : 10.1002/cne.21707

URL : https://hal.archives-ouvertes.fr/hal-00282985

E. Rousseau, C. Michaud, D. Lefebvre, S. Proteau, and A. Decrouy, Reconstitution of ionic channels from inner and outer membranes of mammalian cardiac nuclei, Biophysical Journal, vol.70, issue.2, pp.703-714, 1996.
DOI : 10.1016/S0006-3495(96)79610-8

E. Ruberte, P. Dolle, P. Chambon, and G. Morriss-kay, Retinoic acid receptors and cellular retinoid binding proteins. II. Their differential pattern of transcription during early morphogenesis in mouse embryos, Development, vol.111, pp.45-60, 1991.

E. Ruberte, P. Dolle, A. Krust, A. Zelent, G. Morriss-kay et al., Specific spatial and temporal distribution of retinoic acid receptor gamma transcripts during mouse embryogenesis, Development, vol.108, pp.213-222, 1990.

L. Ryckebusch, Z. Wang, N. Bertrand, S. C. Lin, X. Chi et al., Retinoic acid deficiency alters second heart field formation, Proceedings of the National Academy of Sciences, vol.31, issue.1, pp.2913-2918, 2008.
DOI : 10.1038/nature03215

A. B. Rydeen and J. S. Waxman, Cyp26 enzymes are required to balance the cardiac and vascular lineages within the anterior lateral plate mesoderm, Development, vol.141, issue.8, pp.1638-1648, 2014.
DOI : 10.1242/dev.105874

M. Sakabe, H. Kokubo, Y. Nakajima, and Y. Saga, Ectopic retinoic acid signaling affects outflow tract cushion development through suppression of the myocardial Tbx2-Tgf??2 pathway, Development, vol.139, issue.2, pp.385-395, 2012.
DOI : 10.1242/dev.067058

Y. Sakai, C. Meno, H. Fujii, J. Nishino, H. Shiratori et al., The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo, Genes & Development, vol.15, issue.2, pp.213-225, 2001.
DOI : 10.1101/gad.851501

L. L. Sandell, M. L. Lynn, K. E. Inman, W. Mcdowell, and P. A. Trainor, RDH10 Oxidation of Vitamin A Is a Critical Control Step in Synthesis of Retinoic Acid during Mouse Embryogenesis, PLoS ONE, vol.26, issue.144, p.30698, 2012.
DOI : 10.1371/journal.pone.0030698.g006

L. L. Sandell, B. W. Sanderson, G. Moiseyev, T. Johnson, A. Mushegian et al., RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development, Genes & Development, vol.21, issue.9, pp.1113-1124, 2007.
DOI : 10.1101/gad.1533407

T. F. Schilling, Q. Nie, and A. D. Lander, Dynamics and precision in retinoic acid morphogen gradients, Current Opinion in Genetics & Development, vol.22, issue.6, pp.562-569, 2012.
DOI : 10.1016/j.gde.2012.11.012

S. Shimozono, T. Iimura, T. Kitaguchi, S. Higashijima, and A. Miyawaki, Visualization of an endogenous retinoic acid gradient across embryonic development, Nature, vol.174, issue.7445, pp.363-366, 2013.
DOI : 10.1016/0167-4838(94)90130-9

I. O. Sirbu, X. Zhao, and G. Duester, Retinoic acid controls heart anteroposterior patterning by down-regulatingIsl1 through theFgf8 pathway, Developmental Dynamics, vol.219, issue.6, pp.1627-1635, 2008.
DOI : 10.1002/dvdy.21570

S. M. Smith, E. D. Dickman, R. P. Thompson, A. R. Sinning, A. M. Wunsch et al., Retinoic Acid Directs Cardiac Laterality and the Expression of Early Markers of Precardiac Asymmetry, Developmental Biology, vol.182, issue.1, pp.162-171, 1997.
DOI : 10.1006/dbio.1996.8474

W. C. Smith, H. Nakshatri, P. Leroy, J. Rees, and P. Chambon, A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter, EMBO J, vol.10, pp.2223-2230, 1991.

B. S. Snarr, J. L. O-'neal, M. R. Chintalapudi, E. E. Wirrig, A. L. Phelps et al., Isl1 Expression at the Venous Pole Identifies a Novel Role for the Second Heart Field in Cardiac Development, Circulation Research, vol.101, issue.10, pp.971-974, 2007.
DOI : 10.1161/CIRCRESAHA.107.162206

A. Sommer, I. Tarwotjo, E. Djunaedi, W. Jr, K. P. Loeden et al., Impact of vitamin A supplementation on childhood mortality. A randomised controlled community trial, Lancet, vol.1, pp.1169-1173, 1986.

M. R. Sorrell and J. S. Waxman, Restraint of Fgf8 signaling by retinoic acid signaling is required for proper heart and forelimb formation, Developmental Biology, vol.358, issue.1, pp.44-55, 2011.
DOI : 10.1016/j.ydbio.2011.07.022

K. Stankunas, C. Shang, K. Y. Twu, S. C. Kao, N. A. Jenkins et al., Pbx/Meis Deficiencies Demonstrate Multigenetic Origins of Congenital Heart Disease, Circulation Research, vol.103, issue.7, pp.702-709, 2008.
DOI : 10.1161/CIRCRESAHA.108.175489

S. Stefanovic and V. M. Christoffels, GATA-dependent transcriptional and epigenetic control of cardiac lineage specification and differentiation, Cellular and Molecular Life Sciences, vol.14, issue.6, pp.3871-3881, 2015.
DOI : 10.1038/nrg3473

I. Strate, T. H. Min, D. Iliev, and E. M. Pera, Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system, Development, vol.136, issue.3, pp.461-472, 2009.
DOI : 10.1242/dev.024901

I. Stuckmann, S. Evans, and A. B. Lassar, Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation, Developmental Biology, vol.255, issue.2, pp.334-349, 2003.
DOI : 10.1016/S0012-1606(02)00078-7

M. Studer, H. Popperl, H. Marshall, A. Kuroiwa, and R. Krumlauf, Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1, Science, vol.265, issue.5179, pp.1728-1732, 1994.
DOI : 10.1126/science.7916164

H. M. Sucov, E. Dyson, C. L. Gumeringer, J. Price, K. R. Chien et al., RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis., Genes & Development, vol.8, issue.9, pp.1007-1018, 1994.
DOI : 10.1101/gad.8.9.1007

T. Tsuda, N. Philp, M. H. Zile, and K. K. Linask, Left???Right Asymmetric Localization of Flectin in the Extracellular Matrix during Heart Looping, Developmental Biology, vol.173, issue.1, pp.39-50, 1996.
DOI : 10.1006/dbio.1996.0005

M. Uehara, K. Yashiro, S. Mamiya, J. Nishino, P. Chambon et al., CYP26A1 and CYP26C1 cooperatively regulate anterior???posterior patterning of the developing brain and the production of migratory cranial neural crest cells in the mouse, Developmental Biology, vol.302, issue.2, pp.399-411, 2007.
DOI : 10.1016/j.ydbio.2006.09.045

URL : https://hal.archives-ouvertes.fr/hal-00166242

B. A. Underwood, Vitamin A Deficiency Disorders: International Efforts to Control A Preventable ???Pox???, The Journal of Nutrition, vol.72, issue.1, pp.231-236, 2004.
DOI : 10.1111/j.1753-4887.2000.tb01831.x

C. R. Vakoc, D. L. Letting, N. Gheldof, T. Sawado, M. A. Bender et al., Proximity among Distant Regulatory Elements at the ??-Globin Locus Requires GATA-1 and FOG-1, Molecular Cell, vol.17, issue.3, pp.453-462, 2005.
DOI : 10.1016/j.molcel.2004.12.028

J. Van-der-wees, P. J. Matharu, K. De-roos, O. H. Destree, S. F. Godsave et al., Developmental expression and differential regulation by retinoic acid ofXenopus COUP-TF-A andCOUP-TF-B, Mechanisms of Development, vol.54, issue.2, pp.173-184, 1996.
DOI : 10.1016/0925-4773(95)00471-8

G. C. Vilhais-neto, M. Maruhashi, K. T. Smith, M. Vasseur-cognet, A. S. Peterson et al., Rere controls retinoic acid signalling and somite bilateral symmetry, Nature, vol.375, issue.7283, pp.953-957, 2010.
DOI : 10.1038/nature08763

L. E. Vissers, C. M. Van-ravenswaaij, R. Admiraal, J. A. Hurst, B. B. De-vries et al., Mutations in a new member of the chromodomain gene family cause CHARGE syndrome, Nature Genetics, vol.63, issue.9, pp.955-957, 2004.
DOI : 10.1086/302122

A. Vitobello, E. Ferretti, X. Lampe, N. Vilain, S. Ducret et al., Hox and Pbx Factors Control Retinoic Acid Synthesis during Hindbrain Segmentation, Developmental Cell, vol.20, issue.4, pp.469-482, 2011.
DOI : 10.1016/j.devcel.2011.03.011

A. Von-gise, B. Zhou, L. B. Honor, Q. Ma, A. Petryk et al., WT1 regulates epicardial epithelial to mesenchymal transition through ??-catenin and retinoic acid signaling pathways, Developmental Biology, vol.356, issue.2, pp.421-431, 2011.
DOI : 10.1016/j.ydbio.2011.05.668

A. J. Waardenberg, B. Homan, S. Mohamed, R. P. Harvey, and R. Bouveret, Prediction and validation of protein???protein interactors from genome-wide DNA-binding data using a knowledge-based machine-learning approach, Open Biology, vol.2, issue.9, 2016.
DOI : 10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B

J. A. Wamstad, J. M. Alexander, R. M. Truty, A. Shrikumar, F. Li et al., Dynamic and Coordinated Epigenetic Regulation of Developmental Transitions in the Cardiac Lineage, Cell, vol.151, issue.1, pp.206-220, 2012.
DOI : 10.1016/j.cell.2012.07.035

G. F. Wang, N. Jr, W. Bao, Z. Z. Stockdale, and F. E. , Expression, Journal of Biological Chemistry, vol.268, issue.31, pp.28835-28841, 2001.
DOI : 10.1126/science.3945800

URL : https://hal.archives-ouvertes.fr/hal-00562769

G. F. Wang, N. Jr, W. Schleinitz, M. Stockdale, and F. E. , A Positive GATA Element and a Negative Vitamin D Receptor-Like Element Control Atrial Chamber-Specific Expression of a Slow Myosin Heavy-Chain Gene during Cardiac Morphogenesis, Molecular and Cellular Biology, vol.18, issue.10, pp.6023-6034, 1998.
DOI : 10.1128/MCB.18.10.6023

A. D. Weston, B. Blumberg, and T. M. Underhill, Active repression by unliganded retinoid receptors in development, The Journal of Cell Biology, vol.131, issue.2, pp.223-228, 2003.
DOI : 10.1093/jn/131.3.705

R. J. White and T. F. Schilling, How degrading: Cyp26s in hindbrain development, Developmental Dynamics, vol.132, issue.pt 1, pp.2775-2790, 2008.
DOI : 10.1042/bj3340155

D. J. Wiens, T. K. Mann, D. E. Fedderson, W. K. Rathmell, and B. H. Franck, Early heart development in the chick embryo: effects of isotretinoin on cell proliferation, ??-actin synthesis, and development of contractions, Differentiation, vol.51, issue.2, pp.105-112, 1992.
DOI : 10.1111/j.1432-0436.1992.tb00686.x

J. G. Wilson, C. B. Roth, and J. Warkany, An analysis of the syndrome of malformations induced by maternal vitamin a deficiency. Effects of restoration of vitamin a at various times during gestation, American Journal of Anatomy, vol.85, issue.2, pp.189-217, 1953.
DOI : 10.3181/00379727-72-17543

J. G. Wilson and J. Warkany, CONGENITAL ANOMALIES OF HEART AND GREAT VESSELS IN OFFSPRING OF VITAMIN A-DEFICIENT RATS, Obstetrical & Gynecological Survey, vol.6, issue.1, p.963, 1950.
DOI : 10.1097/00006254-195102000-00005

A. M. Wobus, G. Kaomei, J. Shan, M. C. Wellner, J. Rohwedel et al., Retinoic Acid Accelerates Embryonic Stem Cell-Derived Cardiac Differentiation and Enhances Development of Ventricular Cardiomyocytes, Journal of Molecular and Cellular Cardiology, vol.29, issue.6, pp.1525-1539, 1997.
DOI : 10.1006/jmcc.1997.0433

S. P. Wu, C. M. Cheng, R. B. Lanz, T. Wang, J. L. Respress et al., Atrial Identity Is Determined by a COUP-TFII Regulatory Network, Developmental Cell, vol.25, issue.4, pp.417-426, 2013.
DOI : 10.1016/j.devcel.2013.04.017

J. Xavier-neto, C. M. Neville, M. D. Shapiro, L. Houghton, G. F. Wang et al., A retinoic acid-inducible transgenic marker of sino-atrial development in the mouse heart, Development, vol.126, pp.2677-2687, 1999.

J. Xavier-neto, M. D. Shapiro, L. Houghton, and N. Rosenthal, Sequential Programs of Retinoic Acid Synthesis in the Myocardial and Epicardial Layers of the Developing Avian Heart, Developmental Biology, vol.219, issue.1, pp.129-141, 2000.
DOI : 10.1006/dbio.1999.9588

J. Xavier-neto, A. M. Sousa-costa, A. C. Figueira, C. D. Caiaffa, F. N. Amaral et al., Signaling through retinoic acid receptors in cardiac development: Doing the right things at the right times, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1849, issue.2, pp.94-111, 2015.
DOI : 10.1016/j.bbagrm.2014.08.003

R. Yasmin, K. T. Yeung, R. H. Chung, M. E. Gaczynska, P. A. Osmulski et al., DNA-looping by RXR Tetramers Permits Transcriptional Regulation ???at a Distance???, Journal of Molecular Biology, vol.343, issue.2, pp.327-338, 2004.
DOI : 10.1016/j.jmb.2004.08.070

H. Yasui, M. Nakazawa, M. Morishima, S. Miyagawa-tomita, and K. Momma, Morphological Observations on the Pathogenetic Process of Transposition of the Great Arteries Induced by Retinoic Acid in Mice, Circulation, vol.91, issue.9, pp.2478-2486, 1995.
DOI : 10.1161/01.CIR.91.9.2478

K. E. Yutzey, J. T. Rhee, and D. Bader, Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart, Development, vol.120, pp.871-883, 1994.

S. Zaffran and R. G. Kelly, New developments in the second heart field, Differentiation, vol.84, issue.1, pp.17-24, 2012.
DOI : 10.1016/j.diff.2012.03.003

URL : https://hal.archives-ouvertes.fr/hal-00838805

S. Zaffran, R. G. Kelly, S. M. Meilhac, M. E. Buckingham, and N. A. Brown, Right Ventricular Myocardium Derives From the Anterior Heart Field, Circulation Research, vol.95, issue.3, pp.261-268, 2004.
DOI : 10.1161/01.RES.0000136815.73623.BE

URL : https://hal.archives-ouvertes.fr/hal-00311198

S. Zaidi, M. Choi, H. Wakimoto, L. Ma, J. Jiang et al., De novo mutations in histone-modifying genes in congenital heart disease, Nature, vol.366, issue.7453, pp.220-223, 2013.
DOI : 10.1056/NEJMoa1110186

Q. Zhang, J. Jiang, P. Han, Q. Yuan, J. Zhang et al., Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals, Cell Research, vol.76, issue.4, pp.579-587, 2011.
DOI : 10.1152/ajpcell.00586.2006

M. D. Zhou, H. M. Sucov, R. M. Evans, and K. R. Chien, Retinoid-dependent pathways suppress myocardial cell hypertrophy., Proceedings of the National Academy of Sciences, vol.92, issue.16, pp.7391-7395, 1995.
DOI : 10.1073/pnas.92.16.7391

M. H. Zile, Vitamin A???Not for Your Eyes Only: Requirement for Heart Formation Begins Early in Embryogenesis, Nutrients, vol.274, issue.5, pp.532-550, 2010.
DOI : 10.1074/jbc.274.3.1394