A. F2052-15, Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment

K. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, vol.14, issue.5, pp.302-309, 1996.

T. Ibrahim, Modeling the EM wave interaction with the Body and SAR. ISMRM Weekend Educational Course Syllabus, 2006.

P. Büchler, A. Simon, J. Burger, A. Ginggen, R. Crivelli et al., Safety of Active Implantable Devices During MRI Examinations: A Finite Element Analysis of an Implantable Pump, IEEE Transactions on Biomedical Engineering, vol.54, issue.4, 2007.
DOI : 10.1109/TBME.2006.890145

X. Xu and K. Eckerman, Handbook of Anatomical Models for Radiation Dosimetry. Series in Medical Physics and Biomedical Engineering, 2009.

X. Xu, T. Chao, and A. Bozkurt, VIP-MAN: AN IMAGE-BASED WHOLE-BODY ADULT MALE MODEL CONSTRUCTED FROM COLOR PHOTOGRAPHS OF THE VISIBLE HUMAN PROJECT FOR MULTI-PARTICLE MONTE CARLO CALCULATIONS, Health Physics, vol.78, issue.5, pp.476-86, 2000.
DOI : 10.1097/00004032-200005000-00003

M. Caon, Voxel-based computational models of real human anatomy: a review, Radiation and Environmental Biophysics, vol.42, issue.4, pp.229-264, 2004.
DOI : 10.1007/s00411-003-0221-8

C. Kim, J. Jeong, and Y. Yeom, Recent Advances in Computational Human Phantom for Monte Carlo Dose Calculation, Progress in Nuclear Science and Technology, vol.3, issue.3, pp.7-10
DOI : 10.15669/pnst.3.7

J. Mispelter, M. Lupu, and A. Briguet, NMR Probeheads for Biophysical and Biomedical experiments, 2006.
DOI : 10.1142/p438

A. F2182-11a, Standard Test Method for Measurement of Radio Frequency Induced Heating On or Near Passive Implants During Magnetic Resonance Imaging

A. Chaudhury, S. Khasnavis, M. Russell, and V. Sarathy, Magnetic Resonance Induced Heating in a Vascular Stent, 2007.

D. Rafiroiu, R. Ciupa, A. Iancu, A. Lazar, and I. Tiseanu, Numerical analysis of the electric field and temperature changes around carotid stents, 7th International Symposium on Advanced Topics in Electrical Engineering, 2011.

M. Pawlenka and G. Schaefers, MR Safety of Implants: Numerical assessment of SAR distribution at design-simplified stents of different lengths placed inside a virtual phantom model investigated at an MR frequency of 63.9 MHz, Proc Intl Soc Mag Reson Med, issue.17, 2009.

M. Busch, W. Vollmann, T. Bertsch, R. Wetzler, A. Bornstedt et al., On the heating of inductively coupled resonators (stents) during MRI examinations, Magnetic Resonance in Medicine, vol.16, issue.4, 2005.
DOI : 10.1002/mrm.20618

M. Busch, W. Vollmann, J. Schnorr, and D. Grönemeyer, Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices, BioMedical Engineering OnLine, vol.4, issue.1, p.25, 2005.
DOI : 10.1186/1475-925X-4-25

B. Camps-raga, W. Goertz, G. Schaefers, Y. Mezape, and A. Shalev, A comparative study of numerical and experimental evaluation of RF-induced heating for an endovascular stent-graft at 1.5 T and 3T, Biomed Tech, vol.57, 2012.

B. Camps-raga, W. Gortz, G. Schaefers, Y. Mezape, and A. Shalev, Numerical and experimental evaluation of SAR hotspots for an endovascular stent graft at 1.5T and 3T, International Symposium on Electromagnetic Compatibility, EMC EUROPE
DOI : 10.1109/EMCEurope.2012.6396905

. Fig, 6 Worst case when the body is in axial arrangement: body position (left) and map of temperature elevation (right) Zilberti et al, IEEE Transaction on Magnetics, vol.50, issue.11, 2014.

G. Schaefers, W. Goertz, Y. Noureddine, C. Koch, and M. Pawlenka, Magnetic resonance (MR) safety testing of implants using numerical simulation for worst-case determination, 2011 XXXth URSI General Assembly and Scientific Symposium, 2011.
DOI : 10.1109/URSIGASS.2011.6051328

T. Ibrahim, L. Tang, A. Kangarlu, and R. Abraham, Electromagnetic and modeling analyses of an implanted device at 3 and 7 Tesla, Journal of Magnetic Resonance Imaging, vol.35, issue.5, pp.1362-1369, 2007.
DOI : 10.1002/jmri.21148

J. Hand and D. Mcrobbie, Effects of Hip Prostheses In Situ Exposed to 64 and 128 MHz RF Fields, eMagRes, vol.55, issue.3, 2012.
DOI : 10.1002/9780470034590.emrstm1283

J. Powell, A. Papadaki, J. Hand, A. Hart, and D. Mcrobbie, Numerical simulation of SAR induced around Co-Cr-Mo hip prostheses in situ exposed to RF fields associated with 1.5 and 3 T MRI body coils, Magnetic Resonance in Medicine, vol.19, issue.pt 1, pp.960-968, 2012.
DOI : 10.1002/mrm.23304

Y. Liu, J. Chen, F. Shellock, and W. Kainz, Computational and experimental studies of orthopedic implants heating under MRI RF coils, IEEE MTT-S International Microwave Symposium Digest (MTT), 2012.

Y. Liu, Numerical and experimental study of MRI RF signal interactions with various medical devices. PhD Dissertation, 2012.

Y. Liu, J. Chen, F. Shellock, and W. Kainz, Computational and experimental studies of an orthopedic implant: MRI-related heating at 1.5T/64 MHz and 3T, p.128

L. Angelone, A. Potthast, F. Segonne, S. Iwaki, J. Belliveau et al., Metallic electrodes and leads in simultaneous EEG-MRI: Specific absorption rate (SAR) simulation studies, Bioelectromagnetics, vol.22, issue.4, pp.285-95, 2004.
DOI : 10.1002/bem.10198

J. Shen, W. Kainz, S. Qian, W. Wu, and J. Chen, Computational study of external fixation devices surface heating in MRI RF environment, IEEE International Symposium on Electromagnetic Compatibility (EMC), 2012.

J. Nyenhuis and C. Miller, Calculation of heating of passive implants by the RF electromagnetic field in MRI, 2011 XXXth URSI General Assembly and Scientific Symposium, 2011.
DOI : 10.1109/URSIGASS.2011.6051329

O. Kraff, K. Wrede, T. Schoemberg, P. Dammann, Y. Noureddine et al., MR safety assessment of potential RF heating from cranial fixation plates at 7 T, Medical Physics, vol.66, issue.Suppl 5, p.42302, 2013.
DOI : 10.1002/mrm.22790

S. Jasti, V. Singh, and G. Lazzi, On the modeling of the electromagnetic fields induced by MRI fields in patients with a retinal implant, 2007 IEEE Antennas and Propagation International Symposium, 2007.
DOI : 10.1109/APS.2007.4396220

C. Marincas, M. Mada, H. Rotaru, A. Carpenter, and R. Ciupa, The thermal effect of Radiofrequency waves near dental implants during MRI examination at 3

D. Giordano, L. Zilberti, M. Borsero, M. Chiampi, and O. Bottauscio, Experimental Validation of MRI Dosimetric Simulations in Phantoms Including Metallic Objects, IEEE Transactions on Magnetics, vol.50, issue.11, pp.1-4, 2014.
DOI : 10.1109/TMAG.2014.2323428

O. Bottauscio, A. Cassarà, J. Hand, D. Giordano, L. Zilberti et al., Assessment of computational tools for MRI RF dosimetry by comparison with measurements on a laboratory phantom, Physics in Medicine and Biology, vol.60, issue.14, pp.5655-80, 2015.
DOI : 10.1088/0031-9155/60/14/5655

D. Andreuccetti, R. Fossi, and C. Petrucci, An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz -100

P. Hasgall, D. Gennaro, F. Baumgartner, C. Neufeld, E. Gosselin et al., IT'IS Database for thermal and electromagnetic parameters of biological tissues. Version 3

M. Murbach, EMF Risk Assessment: Exposure Assessment and Safety Considerations in MRI and other Environments, 2013.

D. Shrivastava, L. Utecht, J. Tian, J. Hughes, and J. Vaughan, In vivo radiofrequency heating in swine in a 3T (123.2-MHz) birdcage whole body coil, Magnetic Resonance in Medicine, vol.192, issue.4, pp.1141-50, 2014.
DOI : 10.1002/mrm.24999

M. Gosselin, E. Neufeld, D. Payne, and N. Kuster, Numerical simulations in virtual anatomical models: The devil is in the details, 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), p.2015
DOI : 10.1109/APEMC.2015.7175297

M. Abbasi, G. Schaefers, J. Sánchez, and D. Erni, Worst- Case Analysis of RF-Induced Heating During MRI Scanning in a Generic Multi-Component Orthopedic Medical Implant Applying the Design of Experiment Method (DoE), Proc Intl Soc Mag Reson Med, vol.22, 2014.

E. Neufeld, I. Oikonomidis, M. Iacono, E. Akinnagbe, L. Angelone et al., Simulation platform for coupled modeling of EM-induced neuronal dynamics and functionalized anatomical models, 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015.
DOI : 10.1109/NER.2015.7146673

T. Niendorf, K. Paul, C. Oezerdem, A. Graessl, S. Klix et al., W(h)ither human cardiac and body magnetic resonance at ultrahigh fields? technical advances, practical considerations, applications, and clinical opportunities, NMR in Biomedicine, vol.31, issue.1, 2015.
DOI : 10.1097/RLI.0000000000000129

URL : http://edoc.mdc-berlin.de/14661/1/14661oa.pdf

D. Langman, I. Goldberg, J. Finn, and D. Ennis, Pacemaker lead tip heating in abandoned and pacemaker-attached leads at 1.5 tesla MRI, Journal of Magnetic Resonance Imaging, vol.43, issue.2, pp.426-457, 2011.
DOI : 10.1002/jmri.22463

P. Bottomley, A. Kumar, W. Edelstein, J. Allen, and P. Karmarkar, Designing passive MRI-safe implantable conducting leads with electrodes, Medical Physics, vol.49, issue.5, pp.3828-3871, 2010.
DOI : 10.1118/1.3439590

C. Yeung, R. Susil, and E. Atalar, RF safety of wires in interventional MRI: Using a safety index, Magnetic Resonance in Medicine, vol.43, issue.1, pp.187-93, 2002.
DOI : 10.1002/mrm.10037

C. Yeung, R. Susil, and E. Atalar, RF heating due to conductive wires during MRI depends on the phase distribution of the transmit field, Magnetic Resonance in Medicine, vol.62, issue.6, pp.1096-1104, 2002.
DOI : 10.1002/mrm.10310

S. Park, R. Kamondetdacha, and J. Nyenhuis, Calculation of MRI-induced heating of an implanted medical lead wire with an electric field transfer function, Journal of Magnetic Resonance Imaging, vol.34, issue.5, 2007.
DOI : 10.1002/jmri.21159

S. Feng, R. Qiang, W. Kainz, and C. J. , A Technique to Evaluate MRI-Induced Electric Fields at the Ends of Practical Implanted Lead, IEEE Transactions on Microwave Theory and Techniques, vol.63, issue.1, 2015.
DOI : 10.1109/TMTT.2014.2376523

E. Cabot, E. Zastrow, N. Kuster, J. Kabil, J. Felblinger et al., Safety assessment of AIMDs under MRI Exposure: Tier3 vs Determination of a transmission line model of an insulated cable for RF interaction hazard evaluation, Tier4 Evaluation of Local RF-induced Heating. International Symposium on Electromagnetic Compatibility ESMRMB Scientific Session communications, 2015.

S. Balac and G. Caloz, Induced magnetic field computations using a boundary integral formulation, Applied Numerical Mathematics, vol.41, issue.3, pp.345-67, 2002.
DOI : 10.1016/S0168-9274(01)00125-8

K. Lüdeke, P. Röschmann, and R. Tischler, Susceptibility artefacts in NMR imaging, Magnetic Resonance Imaging, vol.3, issue.4, pp.329-372, 1985.
DOI : 10.1016/0730-725X(85)90397-2

S. Balac, H. Benoit-cattin, T. Lamotte, and C. Odet, Analytic solution to boundary integral computation of susceptibility induced magnetic field inhomogeneities, Mathematical and Computer Modelling, vol.39, issue.4-5, pp.4-5437, 2004.
DOI : 10.1016/S0895-7177(04)90516-X

URL : https://hal.archives-ouvertes.fr/hal-01227674

M. Olsson, R. Wirestam, and B. Persson, A computer simulation program for mr imaging: application to rf and static magnetic field imperfections, Magnetic Resonance in Medicine, vol.33, issue.4, pp.612-619, 1995.
DOI : 10.1002/mrm.1910340418

S. Balac and G. Caloz, Mathematical Modeling and Numerical Simulation of Magnetic Susceptibility Artifacts in Magnetic Resonance IMAGING*, Computer Methods in Biomechanics and Biomedical Engineering, vol.8, issue.4, pp.335-384, 2000.
DOI : 10.1016/0730-725X(90)90056-8

S. Balac, Simulation numérique des artefacts de susceptibilité magnétique en IRM. Innovation et Technologie en Biologie et Médecine (ITBM) [Numerical simulation of magnetic susceptibility artifacts in MRI, Innovation and Technology in Biology in Medicine (ITBM)], vol.19, issue.5, pp.369-79, 1998.

B. Condon and D. Hadley, Potential MR Hazard to Patients With Metallic Heart Valves: The Lenz Effect, Journal of Magnetic Resonance Imaging, vol.187, issue.1
DOI : 10.1002/1522-2586(200007)12:1<171::AID-JMRI19>3.0.CO;2-W

N. Robertson, M. Diaz-gomez, and B. Condon, Estimation of torque on mechanical heart valves due to magnetic resonance imaging including an estimation of the significance of the Lenz effect using a computational model, Physics in Medicine and Biology, vol.45, issue.12, 2000.
DOI : 10.1088/0031-9155/45/12/320

L. Golestanirad, E. Dlala, G. Wright, J. Mosig, and S. Graham, COMPREHENSIVE ANALYSIS OF LENZ EFFECT ON THE ARTIFICIAL HEART VALVES DURING MAGNETIC RESONANCE IMAGING, Progress In Electromagnetics Research, vol.128, pp.1-17, 2012.
DOI : 10.2528/PIER12031505

P. Büchler, A. Simon, J. Burger, A. Ginggen, R. Crivelli et al., Safety of Active Implantable Devices During MRI Examinations: A Finite Element Analysis of an Implantable Pump, IEEE Transactions on Biomedical Engineering, vol.54, issue.4, 2007.
DOI : 10.1109/TBME.2006.890145

E. Turk, E. Kopanoglu, S. Guney, K. Bugdayci, Y. Ider et al., A Simple Analytical Expression for the Gradient Induced Potential on Active Implants During MRI, IEEE Transactions on Biomedical Engineering, vol.59, issue.10, 2012.
DOI : 10.1109/TBME.2012.2212190

L. Zilberti, O. Bottauscio, M. Chiampi, J. Hand, H. Lopez et al., Collateral Thermal Effect of MRI-LINAC Gradient Coils on Metallic Hip Prostheses, IEEE Transactions on Magnetics, vol.50, issue.11, 2014.
DOI : 10.1109/TMAG.2014.2323119