Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? Evidence from 19 semantic dementia patients
Catherine Merck, Isabelle Corouge, Pierre-Yves Jonin, Béatrice Desgranges, Jean-Yves Gauvrit, Serge Belliard

To cite this version:
Catherine Merck, Isabelle Corouge, Pierre-Yves Jonin, Béatrice Desgranges, Jean-Yves Gauvrit, et al.. Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? Evidence from 19 semantic dementia patients. International Neuropsychological Society Mid-Year Meeting, Jul 2016, London, United Kingdom. 10.13140/RG.2.2.24681.70242 . inserm-01417028
Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? ⚡Evidence from 19...
Introduction

In our previous study [1], we reported a relative preservation of fruit and vegetables knowledge in a large cohort of 35 semantic dementia (SD) patients. This category effect was observed on a semantic sorting task, compared with three other categories: animals, tools and kitchenware.

Why fruit and vegetables seem to better resist to the massive semantic disruption that occurs in SD?

1. This relative preservation of fruit and vegetables might be considered with regard to the importance of color knowledge in their discrimination [2] [3].
2. Color knowledge retrieval is known to depend on the left posterior fusiform gyrus [4] [5], that is relatively spared in SD [6] [7].

Methods

Population

- 19 SD patients:
 - performing the semantic sorting task
 - undergoing an MRI scan (anatomical 3D-T1w 1x1x1 mm3) within a period of 3 months
- 12 controls:
 - performing the semantic sorting task

Semantic sorting task: stimuli and procedure

- 64 stimuli
 - Selected from the “Imagier du Père Castor” playing cards
 - Divided into 4 categories
 - Presented first as words, then as pictures
 - Sorted at both superordinate and subordinate levels (see labels in Table)

Anatomical data (MRI): processing

1/ Pre-processing using Matlab/SPM8
2/ Segmentation into grey matter (c1), white matter (c2) and cerebro-spinal fluid (c3)
3/ Spatial normalisation into the MNI space, with modulation
4/ Correction of the ROIs volumes by the intra cerebral volume (c1+c2+c3)

Among stimuli:

- Ladybug
- Cheese
- Pins
- Frying pan

- Subordinate level / Functional features:
 - Basic level (c1)
 - Sensory-Perceptual features (c2)
- Fruits or Vegetables
- Off or Gardening
- Used to prepare lunch or Used during meal
- Four legs or more or fewer than four legs
- Round or not round
- With or without points
- With or without handles

3/ ROIs analysis: computation of c1 volumes in the two sides of temporal lobes, for:
- FG1 and FG2
- 5 others areas from the AAL template [10]: Superior, middle and inferior temporal gyri, temporal pole, fusiform gyri minus (FG1 + FG2)

Discussion

1. We reported a specific relationship between the volume of a subregion within the left posterior fusiform gyrus and sorting performance for fruit & vegetables in SD.

 This area was proved to be a core region underlying the ability to identify fruit and vegetables.

2. Recent studies [7] [11] pointed out the major contribution of fusiform gyrus to semantic performances in SD. Our results revealed that the left FG1 is more involved in semantic processing when concepts depend upon color knowledge. We further bring evidence for a functional specialization along the longitudinal axis of the fusiform gyrus that depends on the nature of concepts.

References