Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? Evidence from 19 semantic dementia patients
Catherine Merck, Isabelle Corouge, Pierre-Yves Jonin, Béatrice Desgranges, Jean-Yves Gauvrit, Serge Belliard

To cite this version:
Catherine Merck, Isabelle Corouge, Pierre-Yves Jonin, Béatrice Desgranges, Jean-Yves Gauvrit, et al.. Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? Evidence from 19 semantic dementia patients. International Neuropsychological Society Mid-Year Meeting, Jul 2016, London, United Kingdom. 10.13140/RG.2.2.24681.70242. inserm-01417028

HAL Id: inserm-01417028
https://www.hal.inserm.fr/inserm-01417028
Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? 🌽

Evidence from 19...

Poster · July 2016
DOI: 10.13140/RG.2.2.24681.70242

CITATIONS
0
READS
17

6 authors, including:

Catherine Merck
Centre Hospitalier Universitaire de Rennes
24 PUBLICATIONS 41 CITATIONS

Isabelle Corouge
Université de Rennes 1
48 PUBLICATIONS 1,029 CITATIONS

Pierre-Yves Jonin
Centre Hospitalier Universitaire de Rennes
21 PUBLICATIONS 30 CITATIONS

Béatrice Desgranges
Unité Inserm U1077
445 PUBLICATIONS 10,769 CITATIONS

All content following this page was uploaded by Catherine Merck on 05 September 2016.
The user has requested enhancement of the downloaded file.
Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? Evidence from 19 semantic dementia patients

Catherine Merck a,b, Isabelle Corogue c, Pierre-Yves Jonin c, Béatrice Desgranges b, Jean-Yves Gauvrit c,d, & Serge Belliard a,b

* Service de neuropsychologie, CMRR, Rennes, France, Rennes, France.

** INSERM, Unité U1077, Université de Caen Normandie – Ecole Pratique des Hautes Etudes, CHU, UMR-S1077, Caen, France.

† IUT VISAGES U746 INSERM-IRISA, IRISA UMR CNRS 6704, Université de Rennes 1, Rennes, France & ‡ Département de neuroanatomie, CHU Pontchaillau, Rennes.

Email: catherine.merck@chu-rennes.fr

Introduction

In our previous study [1], we reported a relative preservation of fruit and vegetables knowledge in a large cohort of 35 semantic dementia (SD) patients. This category effect was observed on a semantic sorting task, compared with three other categories: animals, tools and kitchenware.

Why fruit and vegetables seem to better resist to the massive semantic disruption that occurs in SD?

1. This relative preservation of fruit and vegetables might be considered with regard to the importance of color knowledge in their discrimination [2] [3].

2. Color knowledge retrieval is known to depend on the left posterior fusiform gyrus [4] [5], that is relatively spared in SD [6] [7].

Methods

Population

• 19 SD patients:
 - performing the semantic sorting task
 - undergoing an MRI scan (anatomical 3D-T1w 1x1x1 mm3) within a period of 3 months

• 12 controls:
 - performing the semantic sorting task

Semantic sorting task: stimuli and procedure

64 stimuli

- Selected from the "Imagier du Pére Castor" playing cards
- Divided into 4 categories
- Presented first as words, then as pictures
- Sorted at both superordinate and subordinate levels (see labels in Table)

Subordinate level / Functional features

- Ladybug, Onion, Tools, Frying pan

Subordinate level / Sensory-Perceptual features

- Animals, Food, Fruit or Vegetables, Off or Gardening

Equipment

3 ROIs analysis: computation of c1 volumes in the two sides of temporal lobes, for:
- FG1 and FG2
- 5 others areas from the AAL template [10]: Superior, middle and inferior temporal gyr, middle pole, fusiform gyri minus (FG1 + FG2)

Results

Sorting task performances: a category-specific effect

On all categories, SD patients < controls (p < 0.01)

Within the SD group:
 - No significant results
 - Planned comparisons (t-tests):
 - Fruit and vegetables vs. animals: p = 0.012 (NS)
 - Tools: p < 0.001
 - Kitchenware: p = 0.009

Link between the fruit and vegetables score and the left FG1 volume

Correlations between Fruit & Vegetables (FV) scores and the volumes of two areas in the left posterior fusiform gyrus (left FG1 & left FG2)

Linear regression analysis

For each ROI, the c1 volume was predicted using:
(a) sociodemographic features (age, sex, years of education),
(b) total c1 volume,
(c) MRI models, and (d) sorting scores:
- FV, Animals, Tools and Kitchenware categories
- Only FV score predicted the left FG1 volume: R2 = 0.302; t = 2.711, p<0.015
- None of the other categories-scores was a predictor of the left FG1 volume
- FV score was not associated with any other ROIs volumes

Discussion

We reported a specific relationship between the volume of a subregion within the left posterior fusiform gyrus and sorting performance for fruit & vegetables in SD.

This area was proved to be a core region underlying the ability to identify fruit and vegetables.

Recent studies [7][11] pointed out the major contribution of fusiform gyrus to semantic performances in SD. Our results revealed that the left FG1 is more involved in semantic processing when concepts depend upon color knowledge. We further bring evidence for a functional specialization along the longitudinal axis of the fusiform gyrus that depends on the nature of concepts.

Since prior studies emphasized the major role of color knowledge in the identification of fruit and vegetables, the left FG1 and its strategic position - in the far posterior part of the fusiform gyrus, near the lingual gyrus - could be a privileged candidate for the storage of the color knowledge of objects.

References