Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? Evidence from 19 semantic dementia patients

Catherine Merck, Isabelle Corouge, Pierre-Yves Jonin, Béatrice Desgranges, Jean-Yves Gauvrit, Serge Belliard

To cite this version:
Catherine Merck, Isabelle Corouge, Pierre-Yves Jonin, Béatrice Desgranges, Jean-Yves Gauvrit, et al.. Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? Evidence from 19 semantic dementia patients. International Neuropsychological Society Mid-Year Meeting, Jul 2016, London, United Kingdom. 10.13140/RG.2.2.24681.70242. inserm-01417028

HAL Id: inserm-01417028
https://www.hal.inserm.fr/inserm-01417028
Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? Evidence from 19...
In our previous study [1], we reported a relative preservation of fruit and vegetables knowledge in a large cohort of 35 semantic dementia (SD) patients. This category effect was observed on a semantic sorting task, compared with three other categories: animals, tools and kitchenware.

Why fruit and vegetables seem to better resist the massive semantic disruption that occurs in SD?

1. This relative preservation of fruit and vegetables might be considered with regard to the importance of color knowledge in their discrimination [2] [3].

2. Color knowledge retrieval is known to depend on the left posterior fusiform gyrus [4] [5], that is relatively spared in SD [6] [7].

Methods

Population

- 19 SD patients:
 - performing the semantic sorting task
 - undergoing an MRI scan (anatomical 3D-T1w 1x1x1 mm3) within a period of 3 months

- 12 controls:
 - performing the semantic sorting task

Semantic sorting task: stimuli and procedure

- 64 stimuli
 - Selected from the “Imagier du Père Castor” playing cards
 - Divided into 4 categories
 - Presented first as words, then as pictures
 - Sorted at both superordinate and subordinate levels (see labels in Table)

Anatomical data (MRI): processing

1/ Pre-processing using Matlab/SPM8

2/ Spatial normalisation into the MNI space, with modulation

3/ ROIs analysis: computation of c1 volumes in the two sides of temporal lobes, for:
 - FG1 and FG2
 - 5 others areas from the AAL template [10]: Superior, middle and inferior temporal gyr, temporal pole, fusiform gyri minus (FG1 + FG2)

4/ Correction of the ROIs volumes by the intra cerebral volume (c1+c2+c3)

Discussion

1. We reported a specific relationship between the volume of a subregion within the left posterior fusiform gyrus and sorting performance for fruit & vegetables in SD.

2. This area was proved to be a core region underlying the ability to identify fruit and vegetables.

3. Since prior studies emphasized the major role of color knowledge in the identification of fruit and vegetables, the left FG1 and its strategic position - in the far posterior part of the fusiform gyrus, near the lingual gyrus - could be a privileged candidate for the storage of the color knowledge of objects.

References