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SUMMARY

Anti-apoptotic BCL-2 family members bind to BH3-
only proteins and multidomain BAX/BAK to pre-
serve mitochondrial integrity and maintain survival.
Whereas inhibition of these interactions is the biolog-
ical basis of BH3-mimetic anti-cancer therapy, the
actual response of membrane-bound protein com-
plexes to these compounds is currently ill-defined.
Here, we find that treatment with BH3 mimetics tar-
geting BCL-xL spares subsets of cells with the high-
est levels of this protein. In intact cells, sequestration
of some pro-apoptotic activators (including PUMA
and BIM) by full-length BCL-xL is much more resis-
tant to derepression than previously described in
cell-free systems. Alterations in the BCL-xL C-termi-
nal anchor that impacts subcellular membrane-tar-
geting and localization dynamics restore sensitivity.
Thus, the membrane localization of BCL-xL enforces
its control over cell survival and, importantly, limits
the pro-apoptotic effects of BH3 mimetics by selec-
tively influencing BCL-xL binding to key pro-
apoptotic effectors.

INTRODUCTION

The BCL-2 family proteins are major regulators of mitochondrial

outer membrane permeabilization (MOMP) and subsequent

apoptosis in response to bacterial infection, immune responses,

intrinsic tumor suppression, and anti-cancer therapy. This family

functions as a network of interacting proteins where anti-

apoptotic proteins oppose multidomain and BH3-only pro-
C
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apoptotic proteins. Anti-apoptotic proteins (including BCL-2,

BCL-xL, and MCL-1) share four BCL-2 homology domains

(BH1–BH4). They localize preferentially at intracellular mem-

branes, predominantly the outer mitochondrial membrane, due

to their hydrophobic C-terminal anchor (Juin et al., 2013). Multi-

domain pro-apoptotic proteins (BAX and BAK) only have

three BH domains (BH1–BH3). They are produced mainly as

inactive proteins that localize either in the cytosol or at the

mitochondria and, upon activation, insert into mitochondrial

membranes, where they trigger MOMP. BH3-only proteins

(including BIM, BID, and PUMA) trigger apoptosis upstream

of BAX/BAK. Some of them (such as BIM or PUMA) interact

with mitochondria by themselves because they harbor specific

targeting domains in their sequence (Wilfling et al., 2012). BH3-

only proteins act as stress sensors and are activated transcrip-

tionally, translationally, and/or post-translationally by numerous

stimuli.

Induction of MOMP by pro-apoptotic BCL-2 members occurs

through an ordered series of molecular events in which BH3

domains play a critical role. BAX/BAK, essential effectors of

MOMP in mammalian cells, permeabilize mitochondrial mem-

branes as active oligomers. Oligomerization is initiated by a

nucleating dimer formed by the binding of the BH3 domain of

one molecule into a hydrophobic groove formed by the

BH1, -2, and -3 domains of a second molecule (Dewson et al.,

2009, 2012). The BH3 domain is buried in inactive BAX/BAK,

and its exposure is required for this dimerization (Czabotar

et al., 2013; Moldoveanu et al., 2014). Such exposure is favored

by the direct interaction of the BH3 domain of a subset of acti-

vator BH3-only proteins (namely, these of BID, BIM, or PUMA)

with BAX (possibly at two sites; Gavathiotis et al., 2008; Czabotar

et al., 2013) and BAK. Activation of BAX/BAK is thus initiated by a

ligand-induced process that mitochondrial membranes also

contribute to (Leber et al., 2010).
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Anti-apoptotic BCL-2 proteins inhibit MOMP by competing

with BAX/BAK to bind to activator BH3-only proteins and them-

selves (Billen et al., 2008; Chen et al., 2015). They do so in great

part by engaging BH3 domains of the former and the latter at the

level of a hydrophobic groove that is structurally similar to that

mentioned above in BAX/BAK, but they form a more stable

complex upon binding. This is negatively regulated by sensitizer

BH3-only proteins that only interact with the BH3 binding sites of

BCL-2 homologs, not with BAX/BAK. There are notable differ-

ences in the BH3 binding sites of BCL-2, BCL-xL, and MCL-1

that explain why they engage in preferential interactions with

sensitizer BH3-only proteins and BAX/BAK. Therefore, they

exert complementary differentially-regulated survival activities.

These proteins are frequently overexpressed in cancer cells,

so intrinsic tumor-suppressor pathways and conventional ther-

apy fail to trigger BAX/BAK activation. Thus, compounds that

would overcome these effects are of major interest. BH3

mimetics inhibitors (ABT-737 or ABT-263, which target BCL-2,

BCL-xL, and BCL-w or WEHI-539, which selectively target

BCL-xL) have been designed based on their ability to selectively

occupy the BH3 binding sites of specific subsets of BCL-2 ho-

mologs, and some have entered clinical trials. These compounds

are also powerful cell-permeant probes that help us understand

how the BH3 binding activities of distinct BCL-2 homologs regu-

late survival in a whole-cell context.

Targeting BCL-xL is critical for cancer treatment because this

protein is widely overexpressed in cancers, it binds to a wider

range of pro-apoptotic proteins than any other known BCL-2 ho-

mologs, and its expression is a marker of chemoresistance

(Amundson et al., 2000; Wei et al., 2012). The on-target dose-

limiting effects of BH3 mimetics on platelet survival indicate

that pharmacological inhibition of BCL-xL can be achieved by

these compounds in vivo (Wilson et al., 2010). However, some

studies hinted that BH3 mimetics might not fully inhibit intracel-

lular BCL-xL in cancer cells (Mérino et al., 2012; Rooswinkel

et al., 2012). The reason for this lack of efficiency, which implies

that survival regulation by BCL-xL is tighter than expected, is

currently unclear. In this study, using whole-cell systems, we

show that the cell survival activity of BCL-xL is only partly antag-

onized by BH3 mimetics. Intracellular interactions between

BCL-xL and a subset of pro-apoptotic proteins (including the

activators PUMA and BIM) resist BH3 binding inhibition more

than anticipated from preceding studies using soluble forms of

BCL-xL generally assumed to be fully BH3-binding competent.
Figure 1. BCL-xL Levels Critically Determine Induction of PUMA-Depe

(A) The indicated HCT116 cell lines were treated with WEHI-539 (48 hr), and cell

(B) Flow cytometry analysis of the indicated HCT116 cell lines were treated with

antibodies.

(C) The relationship between BCL-xL expression and active Caspase-3 was de

BCL-xL and active Caspase-3 of HCT116 p21�/� pLVX cells (treated withWEHI-5

[mean of fluorescence per gate]). The percent of active Caspase-3 was defined for

with each of the vertical gates. Data presented are representative of three indep

(D) Flow cytometry analysis of the indicated HCT116 cell lines treated with WEH

(E) The relationship between BCL-xL expression and a subset of active BAX was

(F) The indicated HCT116 cell lines were treated with ABT-737 (1 mM, 16 hr) prior to

and western blot analysis.

(G) HCT116 p21�/� PUMA�/� pLVX and HCT116 p21�/� PUMA�/� pLVX(BCL-x

control, an anti-BAX, or an anti-BAX6A7 antibody and western blot analysis.

CELREP
The robustness of PUMA/BCL-xL interactions, in particular, pre-

vents BH3 mimetics from exploiting PUMA’s ability to trigger

BAX-dependent cell death, and this is likely to limit their effect

in a chemotherapeutic setting because PUMA and BAX play a

role in chemotherapy-induced apoptosis (Jeffers et al., 2003).

We show that sequestration of pro-apoptotic proteins by

BCL-xL is favored by its membrane binding and low-level mito-

chondrial translocation dynamics. This explains whymembrane-

localized BCL-xL has enhanced anti-apoptotic properties

(including in response to BH3 mimetics) and establishes that

intracellular localization of BCL-xL, per se, is critical for survival

regulation.

RESULTS

BCL-xL-Mediated Inhibition of PUMA-Induced
BAX-Mediated Cell Death Is Only Partly Derepressed by
BH3 Mimetics
To investigate how efficiently the anti-apoptotic function of intra-

cellular BCL-xL is antagonized by inhibition of its BH3 binding,

we first evaluated how variations in BCL-xL expression impact

cell-death induction by cell-permeant BH3 mimetics. We essen-

tially employed HCT116 p21�/� cells; these cells die upon deple-

tion of BCL-xL by RNA interference and thus represent a model

of BCL-xL-dependent cells (Cartron et al., 2004; Gallenne et al.,

2009). We used a HCT116 p21�/� cell line expressing endoge-

nous BCL-xL (‘‘control cells’’: HCT116 p21�/� pLVX) and a cell

line stably expressing an average 4-fold increase in BCL-xL

expression (‘‘BCL-xL high expresser cells’’: HCT116 p21�/�

pLVX(BCL-xL)) (Figure S1). BH3 profiling assays support earlier

findings that these cells are dependent on BCL-xL survival func-

tion (Figure S1).

As shown in Figure 1A, treatment withWEHI-539 triggered cell

death in a fraction of control HCT116 p21�/� cells. BCL-xL high-

expresser cells resisted significantly more, even when concen-

trations of WEHI-539 as high as 10 mM were used (Figure 1A).

Although the survival activity of BCL-xL can be derepressed by

BH3mimetics treatment of whole cells, derepression is therefore

only partial and is counteracted by a relatively modest enhance-

ment of BCL-xL expression.

We explored further whether cell-to-cell variations in BCL-xL

expression might account for fractional killing by BH3 mimetic

treatment. To investigate this, we performed intracellular immu-

nostaining of HCT116 p21�/� pLVX cells to concomitantly
ndent Cell Death by BH3 Mimetics

death was assessed using trypan blue exclusion assays.

WEHI-539 (1 mM, 24 hr) and stained using anti-active Caspase-3-Alexa-647

termined by dividing dot plots resulting from intracellular immunostaining for

39 as in B) into vertical gates to grade BCL-xL expression (the red line indicates

each vertical gate by enumerating the number of cells in the gate G intersected

endent experiments.

I-539 (1 mM, 24 hr) and stained with anti-BAX-Alexa-647 antibodies.

determined by double intracellular staining, as described in Figure 1C.

immunoprecipitation with a control, an anti-BAX, or an anti-BAX 6A7 antibody

L) were treated with ABT-737 (1 mM, 16 hr) before immunoprecipitation with a
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measure BCL-xL expression and cleavage of Caspase-3 (as a

marker of apoptosis induction) on a single-cell basis after their

treatment with WEHI-539. As shown in Figure 1B, no detectable

cleaved Caspase-3 was measured in untreated HCT116 p21�/�

pLVX cells, with an immunostaining that was equivalent to that

obtainedwith a negative isotopic control (data not shown). Treat-

ment with WEHI-539 of HCT116 p21�/� pLVX cells lead to the

emergence of a subpopulation that stained positive for cleaved

caspase 3, which was not observed when HCT116 p21�/�

pLVX(BCL-xL) were treated (Figure 1B). Treatment of the sensi-

tive HCT116 p21�/� pLVX cell population with WEHI-539 did not

change the global log-normal distribution of BCL-xL expression

levels (data not shown). Yet, thorough single-cell examination of

the percentage of cleaved Caspase-3-positive cells as a function

of the range of BCL-xL expression showed that activation of

Caspase-3 occurred preferentially in cells expressing BCL-xL

levels below the mean level (Figure 1C). Thus, cell-to-cell differ-

ences in the expression of BCL-xL levels, even in an apparently

homogenous cell population, determine the response to a given

BH3 mimetic treatment over a defined period of time.

To investigate the level at which the apoptotic cascade BCL-

xL exerts a BH3 mimetic-resistant control, we investigated the

effects of varying levels of BCL-xL on BAX activation. The latter

pro-apoptotic multidomain effector indeed plays a major role in

cell-death induction of our model HCT116 p21�/� cell line

upon BCL-xL depletion and ABT-737 or WEHI-539 treatment

(Gallenne et al., 2009; data not shown). When we performed

BAX intracellular staining assays, we found that treatment of

control HCT116 p21�/� pLVX cells lead to the generation of a

new population of cells that was strongly stained with the anti-

BAX antibody (Figure 1D). This was not inhibited by treatment

with the caspase inhibitor QVD-Oph (data not shown). We

assume that this qualitative change in BAX immunostaining illus-

trates a change in the nature of its interaction with subcellular

membranes and, thus, in its activation status, as previously

described for BAK (Griffiths et al., 1999). We found that overex-

pression of BCL-xL prevented a change of the BAX immuno-

staining profile upon treatment (Figure 1D). Moreover, we

performed intracellular immunostaining to concomitantly mea-

sure BAX activation and BCL-xL expression on a single-cell

basis in WEHI-539-treated control HCT116 p21�/� cells. Sin-

gle-cell examination, in WEHI-539 treated HCT116 p21�/�

pLVX populations, of the percentage of cells highly positive for

BAX as a function of the range of BCL-xL expression showed

that qualitative changes in BAX immunostaining occurred prefer-

entially in cells of the population that expressed the lowest levels

of BCL-xL (Figure 1E). The influence of BCL-xL on conforma-

tional changes in BAX upon BH3 mimetic treatment was further

documented by monitoring changes in the amino-terminus

domain of BAX (that accompany its activation; Hsu and Youle,

1997) by immunoprecipitation assays with the 6A7 antibody (Fig-

ure 1F). As shown in Figure 1G, BH3 mimetic treatment

enhanced the amount of 6A7-positive BAX molecules in control,

but not in BCL-xL high-expresser, cells (Figure 1G). Thus, inhibi-

tion of the BH3 binding of BCL-xL does not efficiently relieve its

control over BAX activation.

To understand the exact mechanism BCL-xL counteracts to

prevent BH3 mimetic-induced BAX activation in our model cell
4 Cell Reports 17, 1–12, December 20, 2016
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line, it should be recalled that we showed that endogenous

PUMA, but neither BID nor BIM, plays a key role upstream of

BAX during cell death induced by BCL-xL depletion in HCT116

p21�/� cells (Gallenne et al., 2009). PUMA can directly promote

BAX activation (Cartron et al., 2004; Ren et al., 2010; Du et al.,

2011; Edwards et al., 2013; Hockings et al., 2015). Using biolumi-

nescence resonance energy transfer (BRET) assays (as

described below) to monitor BAX oligomerization in whole cells,

we found that PUMA favors, whereas BCL-xL prevents, such

assembly in a whole-cell context (data not shown). Moreover,

BH3 profiling of HCT116 p21�/� PUMA�/� pLVX and HCT116

p21�/� PUMA�/� pLVX(BCL-xL) cells compared to that of

PUMA-proficient cells showed differential and additive effects

of enhanced BCL-xL expression and PUMA depletion on the

apoptotic priming of HCT-116 p21�/� cells, arguing that PUMA

provides an activating death signal that BCL-xL has to coun-

teract as a BH3-binding protein to maintain survival (Figure S1).

Consistently, PUMA-deficient cells showed decreased cell

death rates (Figure 1A) and less BAX activation (Figures 1D

and 1F) upon treatment with BH3 mimetics. As a whole, these

data indicate that BCL-xL counteracts PUMA-induced BAX-

mediated cell death by a process that BH3 mimetics only partly

derepress. This was further substantiated by experiments using

a PUMA-inducible cell line or cells where PUMA expression was

induced by a genotoxic treatment (Figure S1).

Interactions of BCL-xL with PUMA or BAX in Intact Cells
Show Differing Sensitivity to BH3 Binding Inhibition
The resistance of cells expressing the highest levels of BCL-xL to

BH3 mimetic induction of cell death may simply reflect the fact

that these compounds act as competitive inhibitors. Alterna-

tively, it may result from the fact that BCL-xL exerts BH3

mimetic-resistant functions to prevent cell death and, in partic-

ular, antagonize PUMA-induced BAX activity. To explore this,

we investigated whether some molecular interactions engaged

by intracellular BCL-xL would be particularly resistant to dere-

pression using a bioluminescence resonance energy transfer

(BRET) approach (Le Pen et al., 2016). BRET assays allowed

us to evaluate, within whole live cells, the close proximity

between two proteins by measuring energy transfer (upon addi-

tion of a luciferase substrate) between RLuciferase (RLuc; as a

donor, fused to one protein) and yellow fluorescent protein

(YFP; as an acceptor, fused to the other). To confirm that

BRET signals testify specific interactions and do not result

from random collisions, we systematically evaluated, following

previously published rules (Pfleger and Eidne, 2006), the satu-

rable nature of signals observed between a given level of donor

and increasing levels of acceptor. To establish the necessity for

BCL-xL to have a fully intact BH3 binding site to engage in live-

cell interactions, we used a BCL-xL variant (BCL-xL G138E

R139L I140N) carrying threemutations in the BH1 domain, which

is critical for BH3 binding (Kim et al., 2006).

We first focused on interactions engaged with PUMA. As

shown in Figure 2A, saturable and strong BRET signals were

observed in HCT116 p21�/� pLVX cells between RLuc fused to

the N-terminal end of PUMA and YFP fused to the N-terminal

end of BCL-xL. Interactions between corresponding proteins

were confirmed in co-immunoprecipitation assays (Figure 2B).
8



Figure 2. BH3 Mimetics Do Not Inhibit Interactions of Full-Length BCL-xL with PUMA

(A) BRET saturation assay analysis was performed in HCT116 p21�/� pLVX cells using an increasing amount of vectors encoding for YFP-BCL-xL, or YFP-BCL-xL

G138E, R139L, I140N in the presence of a fixed amount of the vector-encoding RLuc-PUMA. BRET ratios were measured for every YFP-BCL-xL plasmid

(legend continued on next page)
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BRET signals were much weaker between PUMA and BCL-xL

G138E R139L I140N (Figure 2A). Strikingly, we observed no

inhibitory effect of up to 10 mM of WEHI-539 on PUMA/BCL-xL

interactions in whole cells (Figure 2C). Likewise, ABT-737

treatment had no detectable effect (data not shown). Similar

observations were made using MCF-7 cells (Figures S2A and

3B). To further confirm the resistance of PUMA/BCL-xL interac-

tions in a cellular context that lacks any other member of the

BCL-2 family, we used yeast ectopically expressing these pro-

teins fused to RLuc and YFP. PUMA/BCL-xL BRET signals

measured in yeast were also refractory to BH3 mimetic treat-

ment (Figure S2B).

We reasoned that, since BH3 mimetic can trigger PUMA-

mediated BAX-dependent cell death in some instances, some

vulnerable complexes had to exist in the PUMA/BAX/BCL-xL

network. We thus measured the effects of BH3 mimetics on

BAX/BCL-xL interactions. As shown in Figure 2D, and consistent

with preceding results (Bah et al., 2014), saturable BRET signals

were observed in HCT116 p21�/� pLVX cells between RLuc

fused to the N-terminal end of BAX and increasing levels of

YFP-BCL-xL. Interactions were confirmed in co-immunoprecip-

itation assays (Figure 2E). Saturable BRET signals were not

observed between RLuc-BAX and YFP-fused BCL-xL G138E

R139L I140N (Figure 2D). In contrast to what we observed with

PUMA, BRET signals were inhibited by WEHI-539 in a dose-

dependent manner, with concentrations as low as 10 nM having

an effect, and an apparent median effective concentration in the

25 nM order (Figure 2F). Experiments using ABT-737 and equiv-

alent amounts of YFP-BCL-xL gave qualitatively comparable

results. They were consistent with the notion that this compound

is less efficient at targeting BCL-xL than WEHI-539 (Figure S2C)

(Lessene et al., 2013). ABT-199 had no detectable effect on BAX/

BCL-xL BRET signals (data not shown). Similar results were ob-

tained using MCF-7 cells instead of HCT116 cells (see below).

BAX/BCL-xL interactions in yeast cells were also sensitive to

BH3 mimetic treatment (Figure S2B).

Fusion of YFP, whose size is comparable to that of RLuc, to the

N-terminal end of BAX generates a protein that partitions

between the cytosol and the mitochondria (data not shown).

Thus, we assume that this is also the case for RLuc-BAX. To

investigate whether membrane insertion of BAX (a key step

during the course of its activation) affects the nature of its interac-

tions with BCL-xL, we used BAX S184V, a mutant that is consti-

tutively bound to and inserted into mitochondrial membranes

(Nechushtan et al., 1999; Schellenberg et al., 2013). Saturable

BRET signals were still observed between BAX S184V and
concentration and are plotted as a function of the ratio of total acceptor fluoresce

equation assuming a single binding site.

(B) HCT116 p21�/� pLVX were transfected with vectors encoding RLuc-PUMA an

an anti-GFP antibody followed by western blot analysis with RLuc and YFP antib

(C) WEHI-539 response of RLuc-PUMA/YFP-BCL-xL BRET signals was assessed

are presented as mean ± SEM of three independent experiments.

(D) BRET saturation assay analysis was performed as described in Figure 2A, us

(E) Immunoprecipitation assays were performed as in Figure 2B.

(F) The response of RLuc-BAX/YFP-BCL-xL to WEHI-539 treatment was assess

(G) BRET saturation assay analysis was performed in MCF-7 cells as described

(H) The WEHI-539 response of RLuc-BAX/YFP-BCL-xL and Rluc-BAX S184V/Y

cell line.
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BCL-xL (Figure 2G). However, the corresponding BRET signals

remained sensitive toderepression, even if higher concentrations

of compounds were required to inhibit them (Figure 2H). These

data indicate that membrane-inserted BAX interacts with full-

length BCL-xL, but that sequestration can be derepressed.

Membrane-Bound BCL-xL Resists Inhibition
When studied in solution, the interaction between PUMA and

BCL-xL appears to be sensitive to BH3 mimetics (Gautier

et al., 2011 and references therein). Thus, we reasoned that

the resistance of cellular interactions revealed in the above

assays might ensue from the localization of full-length BCL-xL

at intracellular membranes. To test this hypothesis, we reiterated

BRET assays using YFP-fused BCL-xL deleted in its C-terminal

end. The resulting protein, in contrast to full-length BCL-xL, had

a cytosolic localization (BCL-xL DC) (Figure S3A) Saturable

BRET signals were observed only between RLuc-PUMA and

YFP-BCL-xL DC, and not between RLuc-PUMA and YFP-fused

BCL-xL G138E R139L I140N DC (Figure 3A). Most strikingly,

when we evaluated the effect of a range ofWEHI-539 concentra-

tions on PUMA/BCL-xL-DC BRET signals, we found that these

interactions were significantly sensitive to WEHI-539 treatment,

with concentrations as low as 10 nM having an effect, and an

apparent median effective concentration in the 100 nM order

(Figure 3B). Notably, as shown in Figures 3B and S3A, WEHI-

539 also affected interactions between PUMA and a cytosolic

variant of BCL-xL only carrying a point mutation (A221R) in the

C-terminal end (Garenne et al., 2016). This argues that the

enhanced sensitivity of BCL-xL-DC interactions results from a

lack of membrane integration, not from a membrane-indepen-

dent role the C-terminal end would play in the regulation of

BH3 binding. HCT116 p21�/� cells overexpressing cytosolic

BCL-xL DC and A221R did not resist treatment with 1 mM of

WEHI-539, establishing that membrane localization of BCL-xL

significantly contributes to its resistance to derepression (Fig-

ures 3C and S3B).

Steady-state levels of BCL-xL at subcellularmembranes result

from a dynamic equilibrium between membrane targeting and

retro-translocation rates. Retro-translocation is an ill-character-

ized process whereby membrane-bound BCL-xL is shuttled

back to the cytosol (Edlich et al., 2011). BRET signals between

RLuc-PUMA and YFP fused to a variant of BCL-xL (BCL-xL

D2) that exhibited partial mitochondrial localization and

increased retrotranslocation rates (Figure S3A; Todt et al.,

2013) were nearly as sensitive to WEHI-539 treatment than

those observed using cytosolic variants of BCL-xL (Figure 3B).
nce to donor luminescence. The data were fitted using a nonlinear regression

d YFP-BCL-xL before lysis, and immunoprecipitation with a negative control or

odies.

by concentration curve experiments in the HCT116 p21�/� pLVX cell line. Data

ing YFP-BCL-xL and RLuc-BAX.

ed as described in Figure 2C.

in Figure 2A, using RLuc-BAX S184V as a donor.

FP-BCL-xL was assessed by concentration curve experiments in the MCF-7
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Figure 3. Membrane-Bound BCL-xL Resists Derepression

(A) BRET saturation curve assays using RLuc-PUMA/YFP-BCL-xLDC or YFP-

BCL-xLG138E, R139L, I140N were performed in MCF-7 cells. The data were

fitted using a nonlinear regression equation assuming a single binding site.

Data presented are representative of three independent experiments.

(B) Sensitivity of interactions between RLuc-PUMA and YFP-BCL-xL or YFP

fused to BCL-xL variants (A221R, D2, and DC) to WEHI treatments were as-

sessed using concentration curve experiments in MCF-7 cells. Data are pre-

sented as mean ± SEM of three independent experiments.

(C) Cell-death assays were performed as indicated in Figure 1A, using

the indicated HCT116 p21�/� cell lines treated with WEHI-539 or ABT-199

(1 mM, 16 hr).
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Moreover, HCT116 p21�/� cells overexpressing cytosolic BCL-

xL D2 did not resist treatment with 1 mM of WEHI-539. Thus,

membrane localization dynamics influence the tightness of

BCL-xL BH3 binding.

Of note, the fact that PUMA/BCL-xL interactions may only be

sensitive to derepression when interactions with membranes are

weakened implies that cell solubilization used in classical

co-immunoprecipitation assays can artificially impair these inter-

actions, leading to an overestimation of the effects of derepres-

sion. In agreement with this, and consistent with preceding data

(Gautier et al., 2011), an effect of BH3 mimetic treatment on

PUMA/BCL-xL interactions was detected upon co-immunopre-

cipitation from HCT116 p21�/� cell lysates, but not when more

abundant complexes were investigated using HCT116 p21�/�

pLVX(BCL-xL) cell lysates (Figure S3C).

We eventually investigated whether membrane localization

impacts the intracellular interactions of BCL-xL with other

pro-apoptotic proteins of the BCL-2 family (namely BAX,

BAK, BIML, BAD, and tBID). We compared sensitivities of cor-

responding validated BRET signals obtained with full-length

or C-terminal-deleted BCL-xL to BH3 mimetics (Figures 4A

and S4). We made two findings. First, we observed that

BIML/BCL-xL interactions are, akin to PUMA/BCl-xL, almost

completely resistant to derepression by BH3 mimetics. In

contrast, interactions with BAD, BAK, and tBID showed

differing sensitivities, with the latter interaction being the most

sensitive one. To confirm that the prevalence of sensitive pro-

tein complexes impacts sensitivity to death induced by BCL-

xL inhibition, we used recently described mito-primed cells

engineered to coexpress ectopic BCL-xL and either tBID or

PUMA (Lopez et al., 2016), and we challenged them with

WEHI-539. As shown in Figure 4B, BCL-xL-addicted tBID-ex-

pressing cells were significantly more sensitive than PUMA-ex-

pressing ones, despite enhanced expression of the latter

pro-apoptotic protein compared to the former (see Lopez

et al., 2016). Second, we observed that constraining BCL-xL

cytosolic localization favored derepression of interactions with

BAK, BAD, and BIML. This argues that membrane localization

of BCL-xL has a general impact on its BH3 binding properties.

Two notable exceptions were interactions with tBID and BAX,

which were almost equally sensitive to BH3 mimetic treatment

regardless of BCL-xL localization. The inherent cytosolic local-

ization of BAX may play a role in the latter case, because inter-

actions of membrane-inserted BAX S184V with BCL-xLDC

were more sensitive to derepression than those with full-length

BCL-xL (Figure 4A).
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Figure 4. Sensitivity to Derepression of BCL-xL Complexes Depends on Membrane Localization and the Identity of the Pro-apoptotic

Binding Partner

(A) WEHI-539 sensitivities of interactions between YFP-BCL-xL or YFP-xLDC and RLuc fused to BIML, BAK, BAD, tBID, BAX, and BAX S184V were assessed by

concentration curve experiments in the MCF-7 cell line as described in Figure 2C.

(B) The indicated BCL-xL-dependent cell lines were treatedwith the indicated concentration ofWEHI-539 and analyzed over time for cell viability by SYTOX green

dye exclusion and live-cell imaging using an IncuCyte imager. Data are mean ± SEM of three independent experiments.
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DISCUSSION

In order to understand what determines MOMP onset, we need

to understand how BCL-2 homologs respond to perturbations

of their BH3 binding activity downstream of multiple stress sig-

nals. Our study points out that some anti-apoptotic effects of

BCL-xL resist direct perturbations by BH3 mimetics. BH3 bind-

ing-site-independent survival properties of BCL-xL have been

described and might contribute to this resistance (Follis et al.,

2013 and references therein). BCL-xL may also impact the

apoptotic balance by influencing the expression levels of its

pro-apoptotic binding partners (Bertin-Ciftci et al., 2013).

Consistent with this notion, we found a slight but significant

decrease in BAX expression upon BCL-xL overexpression.

This is, however, reverted by BH3 mimetic treatment, and it
8 Cell Reports 17, 1–12, December 20, 2016
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is therefore unlikely to fully account for resistance (data not

shown). Herein, we establish one more level of resistance by

showing, using whole-cell assays that take into account mem-

brane contribution, that intracellular interactions between BCL-

xL and a subset of pro-apoptotic counterparts are more robust

than preceding assays using soluble forms of BCL-xL lead us

to expect.

Since PUMA and BIML can function as pro-apoptotic activa-

tors upstream of multi-domain proteins, their maintained

sequestration by full-length BCL-xL during BH3 mimetics treat-

ment is expected to contribute to resistance. Our observations

have therapeutic implications due to the role played by PUMA

in the apoptotic response to genotoxic treatments and the

contribution of BCL-xL to chemoresistance. They indicate that

the anti-apoptotic activity exerted by overexpressed BCL-xL in
8



Figure 5. Deletion of the BCL-2 C-terminal End Sensitizes PUMA,

BIML, and BAD Interactions to ABT-199 Treatment

Sensitivities of various BCL-2 interactions to ABT-199 were assessed by

concentration curve experiments in theMCF-7 cell line between YFP-BCL-2 or

BCL-2DC and RLuc fused to PUMA, BIML or BAD as described in Figure 2C.
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chemotherapy-challenged cancer cells is not as pharmacologi-

cally tractable as anticipated from the cell-free performances

of currently available BH3 mimetics. In fact, these efficiently

target BCL-xL only in some contexts (including in platelets,

owing to their dose-limiting thrombopenic effects; Mason

et al., 2007; Lessene et al., 2013) and not in others, especially

when BCL-xL expression is high in cells in receipt of a genotoxic

treatment (van Delft et al., 2006; Rooswinkel et al., 2012; Mérino

et al., 2012; Vogler et al., 2009; Colak et al., 2014; this study). We

propose that this inefficiency ensues, at least in part, from the
CELREP
fact that intracellular BCL-xL sequesters PUMA in a BH3

mimetic-resistant manner.

The binding of BCL-xL to subcellular membranes appears

critical for its sequestration of PUMA and BIML, because corre-

sponding interactions are profoundly affected by alterations

in the C-terminal end of BCL-xL, which render this protein

cytosolic, and concomitantly relieve resistance to cell-death in-

duction by BH3 mimetics. It is sufficient to increase the retro-

translocation rates of BCL-xL to decrease its anti-apoptotic

BH3 binding, underscoring that the BCL-xL network has to

be considered as a dynamically evolving one in which synthesis

and shuttling kinetics need to be taken into account. Our

observations evoke the suggested enhanced sensitivity of

cytosolic (compared to mitochondrial) pools of BIML/BCL-xL

complexes to BH3 mimetics (Aranovich et al., 2012; Liu et al.,

2012). Preceding studies proposed that membrane-bound

BCL-xL would display a loosened groove structure in a hydro-

phobic environment and a lower affinity for BH3 domains (Bhat

et al., 2012). Our data are more in agreement with a recent

study that established that membrane-anchored BCL-xL binds

better to BH3 domains than its isolated water-soluble moiety

(Yao et al., 2015), possibly because the membrane environment

of BCL-xL limits the dissociation rate (koff) of its interactions.

Cooperative interactions of BCL-xL and apoptotic ligands

with the lipid bilayer membrane and cellular events that regu-

late BCL-xL integration in membranes may thus contribute to

enforcement of BH3 binding (and BH3 mimetic resistance).

Membrane localization of full-length BCL-xL in a whole-cell

context may also permit post-translational modifications that

contribute to this enhancement and that cell-free assays and

recombinant proteins overlook. Importantly, membranes also

appear to tighten the control BCL-2 exerts over cell death,

because whole cell interactions with PUMA, BIML, and BAD

were sensitized to ABT-199 by deletion of the BCL-2 C-terminal

end (Figures 5 and S5).

The BCL-xL network of interactions has vulnerabilities

because BH3 mimetics selectively targeting BCL-xL trigger cell

death in some instances. Interactions of intracellular full-length

BCL-xL with tBID (consistent with Aranovich et al., 2012), or

BAX (this study) are indeed particularly sensitive to derepression.

These interactions are not further sensitized to BH3 mimetic

treatment when BCL-xL is cytosolic. This suggests that their

weakness might be due to a lack of membrane contribution

to complex formation. Somehow consistent with this, BCL-xL

interactions with membrane-embedded BAX S184V showed a

resistance to derepression that was relieved by deletion of the

BCL-xL C-terminal end. However, intracellular BAX S184V/

BCL-xL interactions remained more sensitive than most other

interactions. Thus, the control BCL-xL exerts over retrotranslo-

cation-competent BAX (Edlich et al., 2011) and membrane-

embedded BAX (Subburaj et al., 2015) can be derepressed.

Our data are mostly consistent with the dual engagement

model proposed by Llambi et al. (2011), wherein anti-apoptotic

proteins interact with distinct pro-apoptotic proteins by modes

that differ in their anti-apoptotic efficiency and sensitivity to

derepression. Inhibition of BH3 binding leads to cell death only

when the balance between pro-apoptotic members and BCL-

xL favors fragile complexes instead of refractory ones. These
Cell Reports 17, 1–12, December 20, 2016 9

3368



1
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authors suggested that interactions with multidomain proteins

(MODE 2) are less easily derepressed than interactions with

BH3 activators (MODE 1) using tBID as a BH3 activator. Because

interactions with PUMA or BIML are significantly more robust

than those with tBID and with BAX or BAK, the sensitivity of

MODE 1 may, in fact, strongly depend on the main activator

BH3-only protein involved. In the specific case of PUMA-driven

BAX activation, interactions engaged by BCL-xL are not equally

well inhibited, and PUMA is less efficiently released from BCL-xL

than BAX. As a result, enhanced BCL-xL, most likely by

competing with BAX for binding to PUMA in a BH3mimetic resis-

tant manner, prevents these compounds from fully exploiting

PUMA’s ability to induce BAX oligomerization and activation.

This appears to be so critical that cell-to-cell variations in BCL-xL

expression levels critically determine the fate of cells upon

derepression.

Understanding the molecular basis of fractional resistance

to derepression and how sustainable this is may be all the

more relevant because non-lethal perturbation of the BCL-2

network may lead to genomic instability (Ichim et al., 2015).

Our work shows that experimental systems that take into ac-

count membrane contribution in a whole-cell configuration are

required to fully appreciate how stimulation of the dynamic

BCL-2 network of functionally distinct interacting partners leads

to cell death. The BRET approach we describe is particularly

apposite to do so and to define amodel that incorporates the dif-

ferences in binding affinities into the consequences for the cell

response.

EXPERIMENTAL PROCEDURES

Reagents and cell culture materials, including mito-primed immortalized

murine endothelial cells (SVECs) coexpressing BCL-xL and either tBID or

PUMA using a 2A self-cleaving peptide sequence and BH3 profiling assays

are described in the Supplemental Information.

Flow Cytometry Intracellular Staining

Cells were fixed in 1% paraformaldehyde (in PBS) for 10 min at room temper-

ature (RT) and permeabilized in cold methanol for 30 min at 4�C. Next, cells
were incubated with antibodies for 1 hr at 4�C in the dark; rabbit immunoglob-

ulin G (IgG) isotype control Alexa 488 (#4340S), BCL-xL-Alexa 488 (#2767S),

mouse IgG isotype control Alexa 647 (sc-24636), IgG Bax-647 (sc-20067), rab-

bit IgG isotype control Alexa-647 (USBio I1903-93), Caspase-3 Alexa-647 (Cell

Signaling 9602), mouse IgG isotype control Alexa 488 (BioLegend 400129),

IgG Bax Alexa 488 (NBP233092), mouse IgG isotype control Alexa 647

(NBP2-24979), and IgG mouse Bax6A7 Alexa 647 (NBP1-28566) were used.

Cells were washed twice in PBS containing 0.5% BSA. Flow cytometry anal-

ysis was performed just after staining.

BRET Assays

RLuc expression plasmids were constructed by subcloning coding sequences

into the pRLuc-C2 vector (BioSignal Packard). Enhanced YFP (eYFP) expres-

sion plasmids were constructed by subcloning coding sequences into the

pEYFP-C1 vector (BD Biosciences). All constructs were sequenced before

use. BRET saturation curve assays and concentration/response curve assays

are described in the Supplemental Information.

Immunoprecipitation Assays

Cells treated in 10-cm petri dishes were collected and washed with PBS. Cell

lysis was performed using PBS-1% CHAPS buffer (plus a cocktail of protease

and phosphatase inhibitors), and cellular suspensions were sonicated for

15 min thrice. Immunoprecipitations were performed as described in the
10 Cell Reports 17, 1–12, December 20, 2016
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PureProteome Protein G Magnetic Beads protocol (Millipore). Briefly, 10 mL

of anti-BCL-xL, 5 mL of anti-BAX antibody (Dako), 10 mL of anti-BAX 6A7 anti-

body (Abcam), 2 mL of anti-GFP antibody (Abcam), or 5 mL of anti-Flag (Sigma)

antibody were used for 500 mg of cell extract.

Data Analysis

Data were from at least three independent experiments. Statistical analysis of

data was performed using one-way ANOVA, two-way ANOVA, or Mann-

Whitney tests on GraphPad Prism. Error bars represent SEM. The following

symbols *, ** and *** correspond to a p value inferior to 0.05, 0.01, and

0.001, respectively.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2016.11.064.
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