E. Morand, M. Leech, and J. Bernhagen, MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis, Nature Reviews Drug Discovery, vol.48, issue.5, pp.399-411, 2006.
DOI : 10.1038/nrd2029

K. Meyer-siegler, K. Iczkowski, L. Leng, R. Bucala, and P. Vera, Inhibition of Macrophage Migration Inhibitory Factor or Its Receptor (CD74) Attenuates Growth and Invasion of DU-145 Prostate Cancer Cells, The Journal of Immunology, vol.177, issue.12, pp.8730-8739, 2006.
DOI : 10.4049/jimmunol.177.12.8730

X. Shi, L. Leng, T. Wang, W. Wang, X. Du et al., CD44 Is the Signaling Component of the Macrophage Migration Inhibitory Factor-CD74 Receptor Complex, Immunity, vol.25, issue.4, pp.595-606, 2006.
DOI : 10.1016/j.immuni.2006.08.020

D. Starlets, Y. Gore, I. Binsky, M. Haran, N. Harpaz et al., Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival, Blood, vol.107, issue.12, pp.4807-4823, 2006.
DOI : 10.1182/blood-2005-11-4334

T. Suzuki, A. Ogata, K. Tashiro, K. Nagashima, M. Tamura et al., Augmented expression of macrophage migration inhibitory factor (MIF) in the telencephalon of the developing rat brain, Brain Research, vol.816, issue.2, pp.457-62, 1999.
DOI : 10.1016/S0006-8993(98)01179-2

N. Savaskan, G. Fingerle-rowson, M. Buchfelder, and I. Eyüpoglu, Brain Miffed by Macrophage Migration Inhibitory Factor, International Journal of Cell Biology, vol.177, issue.8, p.139573, 2012.
DOI : 10.1007/s11060-010-0186-9

URL : http://doi.org/10.1155/2012/139573

S. Ohta, A. Misawa, R. Fukaya, S. Inoue, Y. Kanemura et al., Macrophage migration inhibitory factor (MIF) promotes cell survival and proliferation of neural stem/progenitor cells, Journal of Cell Science, vol.125, issue.13, pp.3210-3230, 2012.
DOI : 10.1242/jcs.102210

S. Ohta, A. Misawa, V. Lefebvre, H. Okano, Y. Kawakami et al., Sox6 Up-Regulation by Macrophage Migration Inhibitory Factor Promotes Survival and Maintenance of Mouse Neural Stem/Progenitor Cells, PLoS ONE, vol.105, issue.9, p.74315, 2013.
DOI : 10.1371/journal.pone.0074315.s008

R. Fukaya, S. Ohta, T. Yaguchi, Y. Matsuzaki, E. Sugihara et al., MIF Maintains the Tumorigenic Capacity of Brain Tumor-Initiating Cells by Directly Inhibiting p53, Cancer Research, vol.76, issue.9, pp.2813-2836, 2016.
DOI : 10.1158/0008-5472.CAN-15-1011

M. Basson and C. Van-ravenswaaij-arts, Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome, Trends in Genetics, vol.31, issue.10, pp.600-611, 2015.
DOI : 10.1016/j.tig.2015.05.009

C. Clapier and B. Cairns, The Biology of Chromatin Remodeling Complexes, Annual Review of Biochemistry, vol.78, issue.1, pp.273-304, 2009.
DOI : 10.1146/annurev.biochem.77.062706.153223

L. Ho and G. Crabtree, Chromatin remodelling during development, Nature, vol.10, issue.7280, pp.474-84, 2010.
DOI : 10.1038/nature08911

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060774

R. Bajpai, D. Chen, A. Rada-iglesias, J. Zhang, Y. Xiong et al., CHD7 cooperates with PBAF to control multipotent neural crest formation, Nature, vol.16, issue.7283, pp.958-62, 2010.
DOI : 10.1038/nature08733

M. Schnetz, L. Handoko, B. Akhtar-zaidi, C. Bartels, C. Pereira et al., CHD7 Targets Active Gene Enhancer Elements to Modulate ES Cell-Specific Gene Expression, PLoS Genetics, vol.2, issue.7, p.1001023, 2010.
DOI : 10.1371/journal.pgen.1001023.s009

URL : http://doi.org/10.1371/journal.pgen.1001023

Y. Jiang, R. Yuen, J. X. Wang, M. Chen, N. Wu et al., Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing, The American Journal of Human Genetics, vol.93, issue.2, pp.249-63, 2013.
DOI : 10.1016/j.ajhg.2013.06.012

W. Feng, M. Khan, P. Bellvis, Z. Zhu, O. Bernhardt et al., The Chromatin Remodeler CHD7 Regulates Adult Neurogenesis via Activation of SoxC Transcription Factors, Cell Stem Cell, vol.13, issue.1, pp.62-72, 2013.
DOI : 10.1016/j.stem.2013.05.002

K. Jones, N. Sari?, J. Russell, C. Andoniadou, P. Scambler et al., CHD7 Maintains Neural Stem Cell Quiescence and Prevents Premature Stem Cell Depletion in the Adult Hippocampus, STEM CELLS, vol.36, issue.1, pp.196-210, 2015.
DOI : 10.1002/stem.1822

D. He, C. Marie, C. Zhao, B. Kim, J. Wang et al., Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination, Nature Neuroscience, vol.28, issue.5, pp.678-89, 2016.
DOI : 10.1038/nn.4258

E. Engelen, U. Akinci, J. Bryne, J. Hou, C. Gontan et al., Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes, Nature Genetics, vol.3, issue.6, pp.607-618, 2011.
DOI : 10.1093/nar/gkn488

D. Martin, Epigenetic Developmental Disorders: CHARGE Syndrome, a Case Study, Current Genetic Medicine Reports, vol.511, issue.7509, pp.1-7, 2015.
DOI : 10.1007/s40142-014-0059-1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325366

J. Bergman, E. Bosman, C. Van-ravenswaaij-arts, and K. Steel, Study of smell and reproductive organs in a mouse model for CHARGE syndrome, European Journal of Human Genetics, vol.618, issue.2, pp.171-77, 2010.
DOI : 10.1139/O07-063

S. Ohta, C. Gregg, and S. Weiss, Pituitary adenylate cyclase-activating polypeptide regulates forebrain neural stem cells and neurogenesis in vitro and in vivo, Journal of Neuroscience Research, vol.24, issue.6, pp.1177-86, 2006.
DOI : 10.1002/jnr.21026

E. Galan-moya, L. Guelte, A. , L. Fernandes, E. Thirant et al., Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway, EMBO reports, vol.19, issue.5, pp.470-76, 2011.
DOI : 10.1038/sj.onc.1208311

E. Bosman, A. Penn, J. Ambrose, R. Kettleborough, D. Stemple et al., Multiple mutations in mouse Chd7 provide models for CHARGE syndrome, Human Molecular Genetics, vol.14, issue.22, pp.463-76, 2005.
DOI : 10.1093/hmg/ddi375

G. Estivill-torrus, H. Pearson, V. Van-heyningen, D. Price, and P. Rashbass, Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors, Development, vol.129, issue.2, pp.455-66, 2002.

A. Hui, K. Lo, X. Yin, W. Poon, and H. Ng, Detection of Multiple Gene Amplifications in Glioblastoma Multiforme Using Array-Based Comparative Genomic Hybridization, Laboratory Investigation, vol.74, issue.5, pp.717-740, 2001.
DOI : 10.1038/5042

A. Sparmann, Y. Xie, E. Verhoeven, M. Vermeulen, C. Lancini et al., The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation, The EMBO Journal, vol.365, issue.11, pp.1598-612, 2013.
DOI : 10.1101/GAD.13.18.2388

T. Shen, J. F. Yuan, Z. Jiao, and J. , CHD2 is Required for Embryonic Neurogenesis in the Developing Cerebral Cortex, STEM CELLS, vol.485, issue.6, pp.1794-806, 2015.
DOI : 10.1002/stem.2001

C. Egan, U. Nyman, J. Skotte, G. Streubel, S. Turner et al., CHD5 Is Required for Neurogenesis and Has a Dual Role in Facilitating Gene Expression and Polycomb Gene Repression, Developmental Cell, vol.26, issue.3, pp.223-259, 2013.
DOI : 10.1016/j.devcel.2013.07.008

J. Micucci, W. Layman, E. Hurd, E. Sperry, S. Frank et al., CHD7 and retinoic acid signaling cooperate to regulate neural stem cell and inner ear development in mouse models of CHARGE syndrome, Human Molecular Genetics, vol.23, issue.2, pp.434-482, 2014.
DOI : 10.1093/hmg/ddt435

J. Van-nostrand, C. Brady, H. Jung, D. Fuentes, M. Kozak et al., Inappropriate p53 activation during development induces features of CHARGE syndrome, Nature, vol.12, issue.7521, pp.228-260, 2014.
DOI : 10.1101/gad.212282.112

A. Kuwahara, Y. Hirabayashi, P. Knoepfler, M. Taketo, J. Sakai et al., Wnt signaling and its downstream target N-myc regulate basal progenitors in the developing neocortex, Development, vol.137, issue.7, pp.1035-1079, 2010.
DOI : 10.1242/dev.046417

F. Li, X. Liu, J. Sampson, D. Bigner, and C. Li, Rapid Reprogramming of Primary Human Astrocytes into Potent Tumor-Initiating Cells with Defined Genetic Factors, Cancer Research, vol.76, issue.17, pp.5143-50, 2016.
DOI : 10.1158/0008-5472.CAN-16-0171

N. Goffart, J. Kroonen, and B. Rogister, Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment, Cancers, vol.5, issue.3, pp.1049-71, 2013.
DOI : 10.3390/cancers5031049

O. Sampetrean and H. Saya, Characteristics of glioma stem cells, Brain Tumor Pathology, vol.132, issue.4, pp.209-223, 2013.
DOI : 10.1007/s10014-013-0141-5

D. Friedmann-morvinski, E. Bushong, E. Ke, Y. Soda, T. Marumoto et al., Dedifferentiation of Neurons and Astrocytes by Oncogenes Can Induce Gliomas in Mice, Science, vol.338, issue.6110, pp.1080-1084, 2012.
DOI : 10.1126/science.1226929

W. Li and A. Mills, Architects of the genome: CHD dysfunction in cancer, developmental disorders and neurological syndromes, Epigenomics, vol.6, issue.4, pp.381-95, 2014.
DOI : 10.2217/epi.14.31

R. Zhao, Q. Yan, J. Lv, H. Huang, W. Zheng et al., CHD5, a tumor suppressor that is epigenetically silenced in lung cancer, Lung Cancer, vol.76, issue.3, pp.324-355, 2012.
DOI : 10.1016/j.lungcan.2011.11.019

L. Colbert, A. Petrova, S. Fisher, B. Pantazides, M. Madden et al., CHD7 Expression Predicts Survival Outcomes in Patients with Resected Pancreatic Cancer, Cancer Research, vol.74, issue.10, pp.2677-87, 2014.
DOI : 10.1158/0008-5472.CAN-13-1996