M. Bernfield, M. Gotte, P. Park, O. Reizes, M. Fitzgerald et al., Functions of Cell Surface Heparan Sulfate Proteoglycans, Annual Review of Biochemistry, vol.68, issue.1, pp.729-777, 1999.
DOI : 10.1146/annurev.biochem.68.1.729

M. Palaiologou, I. Delladetsima, and D. Tiniakos, CD138 (syndecan-1) expression in health and disease, Histology and Histopathology, vol.29, pp.177-189, 2014.

M. Solursh, R. Reiter, K. Jensen, M. Kato, and M. Bernfield, Transient expression of a cell surface heparan sulfate proteoglycan (syndecan) during limb development, Developmental Biology, vol.140, issue.1, pp.83-92, 1990.
DOI : 10.1016/0012-1606(90)90055-N

M. Stepp, S. Pal-ghosh, G. Tadvalkar, and A. Pajoohesh-ganji, Syndecan-1 and Its Expanding List of Contacts, Advances in Wound Care, vol.4, issue.4, pp.235-249, 2015.
DOI : 10.1089/wound.2014.0555

D. Beauvais and A. Rapraeger, Syndecans in tumor cell adhesion and signaling, Reproductive Biology and Endocrinology, vol.2, issue.1, p.3, 2004.
DOI : 10.1186/1477-7827-2-3

L. Jakobsson, J. Kreuger, K. Holmborn, L. Lundin, I. Eriksson et al., Heparan Sulfate in trans Potentiates VEGFR-Mediated Angiogenesis, Developmental Cell, vol.10, issue.5, pp.625-634, 2006.
DOI : 10.1016/j.devcel.2006.03.009

URL : http://doi.org/10.1016/j.devcel.2006.03.009

T. Maeda, C. Alexander, and A. Friedl, Induction of Syndecan-1 Expression in Stromal Fibroblasts Promotes Proliferation of Human Breast Cancer Cells, Cancer Research, vol.64, issue.2, pp.612-621, 2004.
DOI : 10.1158/0008-5472.CAN-03-2439

M. Stanley, M. Stanley, R. Sanderson, and R. Zera, Syndecan-1 Expression Is Induced in the Stroma of Infiltrating Breast Carcinoma, American Journal of Clinical Pathology, vol.112, issue.3, pp.377-383, 1999.
DOI : 10.1093/ajcp/112.3.377

M. Leivonen, J. Lundin, S. Nordling, V. Boguslawski, K. Haglund et al., Prognostic value of syndecan-1

H. Wei, E. Guo, B. Dong, and L. Chen, Prognostic and clinical significance of syndecan-1 in colorectal cancer: a meta-analysis, BMC Gastroenterology, vol.75, issue.3, p.152, 2015.
DOI : 10.1186/s12876-015-0383-2

A. Juuti, S. Nordling, J. Lundin, J. Louhimo, and C. Haglund, Syndecan-1 Expression ??? A Novel Prognostic Marker in Pancreatic Cancer, Oncology, vol.68, issue.2-3, pp.97-106, 2005.
DOI : 10.1159/000085702

T. Zellweger, C. Ninck, M. Mirlacher, M. Annefeld, A. Glass et al., Tissue microarray analysis reveals prognostic significance of syndecan-1 expression in prostate cancer, The Prostate, vol.56, issue.1, pp.20-29, 2003.
DOI : 10.1002/pros.10209

. Hasengaowa, J. Kodama, T. Kusumoto, Y. Shinyo, N. Seki et al., Prognostic significance of syndecan-1 expression in human endometrial cancer, Annals of Oncology, vol.16, issue.7, pp.1109-1115, 2005.
DOI : 10.1093/annonc/mdi224

H. Joensuu, A. Anttonen, M. Eriksson, R. Makitaro, H. Alfthan et al., Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer, Cancer Research, vol.62, pp.5210-5217, 2002.

A. Anttonen, P. Heikkila, M. Kajanti, M. Jalkanen, and H. Joensuu, High syndecan-1 expression is associated with favourable outcome in squamous cell lung carcinoma treated with radical surgery, Lung Cancer, vol.32, issue.3, pp.297-305, 2001.
DOI : 10.1016/S0169-5002(00)00230-0

T. Kusumoto, J. Kodama, N. Seki, K. Nakamura, A. Hongo et al., Clinical significance of syndecan-1 and versican expression in human epithelial ovarian cancer, Oncology Reports, vol.23, pp.917-925, 2010.

P. Inki, H. Joensuu, R. Grenman, P. Klemi, and M. Jalkanen, Association between syndecan-1 expression and clinical outcome in squamous cell carcinoma of the head and neck, British Journal of Cancer, vol.70, issue.2, pp.319-323, 1994.
DOI : 10.1038/bjc.1994.300

R. Lovell, J. Dunn, G. Begum, N. Barth, T. Plant et al., Soluble syndecan-1 level at diagnosis is an independent prognostic factor in multiple myeloma and the extent of fall from diagnosis to plateau predicts for overall survival, British Journal of Haematology, vol.101, issue.1, pp.542-548, 2005.
DOI : 10.1182/blood.V100.2.610

T. Nguyen, W. Grizzle, K. Zhang, O. Hameed, G. Siegal et al., Syndecan-1 Overexpression Is Associated With Nonluminal Subtypes and Poor Prognosis in Advanced Breast Cancer, American Journal of Clinical Pathology, vol.140, issue.4, pp.468-474, 2013.
DOI : 10.1309/AJCPZ1D8CALHDXCJ

F. Baba, K. Swartz, R. Van-buren, J. Eickhoff, Y. Zhang et al., Syndecan-1 and syndecan-4 are overexpressed in an estrogen receptor-negative, highly proliferative breast carcinoma subtype, Breast Cancer Research and Treatment, vol.1, issue.Pt 6, pp.91-98, 2006.
DOI : 10.1007/s10549-005-9135-2

E. Rakha, M. Sayed, A. Green, A. Lee, J. Robertson et al., Prognostic markers in triple-negative breast cancer, Cancer, vol.91, issue.1, pp.25-32, 2007.
DOI : 10.1002/cncr.22381

B. Haffty, Q. Yang, M. Reiss, T. Kearney, S. Higgins et al., Locoregional Relapse and Distant Metastasis in Conservatively Managed Triple Negative Early-Stage Breast Cancer, Journal of Clinical Oncology, vol.24, issue.36, pp.5652-5657, 2006.
DOI : 10.1200/JCO.2006.06.5664

C. Rousseau, A. Ruellan, K. Bernardeau, F. Kraeber-bodere, S. Gouard et al., Syndecan-1 antigen, a promising new target for triple-negative breast cancer immuno-PET and radioimmunotherapy. A preclinical study on MDA-MB-468 xenograft tumors, EJNMMI Research, vol.1, issue.1, p.20, 2011.
DOI : 10.1016/j.ejca.2004.01.038

URL : https://hal.archives-ouvertes.fr/inserm-00626326

F. Al-ejeh, W. Shi, M. Miranda, P. Simpson, A. Vargas et al., Treatment of Triple-Negative Breast Cancer Using Anti-EGFR-Directed Radioimmunotherapy Combined with Radiosensitizing Chemotherapy and PARP Inhibitor, Journal of Nuclear Medicine, vol.54, issue.6, pp.913-921, 2013.
DOI : 10.2967/jnumed.112.111534

S. Kim, E. Choi, J. Yun, E. Jung, S. Oh et al., Syndecan-1 Expression Is Associated with Tumor Size and EGFR Expression in Colorectal Carcinoma: A Clinicopathological Study of 230 Cases, International Journal of Medical Sciences, vol.12, issue.2, pp.92-99, 2015.
DOI : 10.7150/ijms.10497

N. Kim, H. Lim, K. Im, J. Kim, and J. Sur, Identification of Triple-negative and Basal-like Canine Mammary Carcinomas using Four Basal Markers, Journal of Comparative Pathology, vol.148, issue.4, pp.298-306, 2013.
DOI : 10.1016/j.jcpa.2012.08.009

K. Hahn, L. Bravo, and J. Avenell, Feline breast carcinoma as a pathologic and therapeutic model for human breast cancer, In Vivo, vol.8, pp.825-828, 1994.

A. Gama, A. Alves, and F. Schmitt, Identification of molecular phenotypes in canine mammary carcinomas with clinical implications: application of the human classification, Virchows Archiv, vol.177, issue.Suppl 1, pp.123-132, 2008.
DOI : 10.1007/s00428-008-0644-3

P. Uva, L. Aurisicchio, J. Watters, A. Loboda, A. Kulkarni et al., Comparative expression pathway analysis of human and canine mammary tumors, BMC Genomics, vol.10, issue.1, p.135, 2009.
DOI : 10.1186/1471-2164-10-135

G. Ranieri, C. Gadaleta, R. Patruno, N. Zizzo, M. Daidone et al., A model of study for human cancer: Spontaneous occurring tumors in dogs. Biological features and translation for new anticancer therapies, Critical Reviews in Oncology/Hematology, vol.88, issue.1, pp.187-197, 2013.
DOI : 10.1016/j.critrevonc.2013.03.005

L. Matrisian, G. Bowden, P. Krieg, G. Furstenberger, J. Briand et al., The mRNA coding for the secreted protease transin is expressed more abundantly in malignant than in benign tumors., Proceedings of the National Academy of Sciences, vol.83, issue.24, pp.9413-9417, 1986.
DOI : 10.1073/pnas.83.24.9413

B. Burbach, A. Friedl, C. Mundhenke, and A. Rapraeger, Syndecan-1 accumulates in lysosomes of poorly differentiated breast carcinoma cells, Matrix Biology, vol.22, issue.2, pp.163-177, 2003.
DOI : 10.1016/S0945-053X(03)00009-X

K. Bodoor, I. Matalka, R. Hayajneh, Y. Haddad, and W. Gharaibeh, Evaluation of BCL-6, CD10, CD138 and MUM-1 Expression in Diffuse Large B-Cell Lymphoma patients: CD138 is a Marker of Poor Prognosis, Asian Pacific Journal of Cancer Prevention, vol.13, issue.7, pp.3037-3046, 2012.
DOI : 10.7314/APJCP.2012.13.7.3037

S. Quadri, Y. Shao, J. Blum, P. Leichner, J. Williams et al., Preclinical evaluation of intravenously administered 111in- and 90y-labeled b72.3 immunoconjugate (GYK-DTPA) in beagle dogs, Nuclear Medicine and Biology, vol.20, issue.5, pp.559-570, 1993.
DOI : 10.1016/0969-8051(93)90024-O

C. Rousseau, L. Ferrer, S. Supiot, M. Bardies, F. Davodeau et al., Dosimetry results suggest feasibility of radioimmunotherapy using anti-CD138 (B-B4) antibody in multiple myeloma patients, Tumor Biology, vol.32, issue.5, pp.679-688, 2012.
DOI : 10.1007/s13277-012-0362-y

T. Behr, R. Sharkey, M. Juweid, R. Dunn, R. Vagg et al., Phase I/II clinical radioimmunotherapy with an iodine-131-labeled anti-carcinoembryonic antigen murine monoclonal antibody IgG, Journal of Nuclear Medicine, vol.38, pp.858-870, 1997.

G. Wiseman, E. Kornmehl, B. Leigh, W. Erwin, D. Podoloff et al., Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin's lymphoma: combined data from 4 clinical trials, Journal of Nuclear Medicine, vol.44, pp.465-474, 2003.

H. Sarin, Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability, Journal of Angiogenesis Research, vol.2, issue.1, p.14, 2010.
DOI : 10.1186/2040-2384-2-14

J. Nagy, A. Dvorak, and H. Dvorak, Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harbor Perspectives in, Medicine, vol.2, p.6544, 2012.
DOI : 10.1101/cshperspect.a006544

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281587

E. Choi, J. Yun, E. Jeon, H. Won, Y. Ko et al., Prognostic significance of RSPO1, WNT1, P16, WT1, and SDC1 expressions in invasive ductal carcinoma of the breast, World Journal of Surgical Oncology, vol.11, issue.1, p.314, 2013.
DOI : 10.1186/1471-2407-11-332

Y. Xu, J. Yuan, Z. Zhang, L. Lin, and S. Xu, Syndecan-1 expression in human glioma is correlated with advanced tumor progression and poor prognosis, Molecular Biology Reports, vol.37, issue.9, pp.8979-8985, 2012.
DOI : 10.1016/j.humpath.2006.04.024

C. Hoffmann, M. Tiemann, C. Schrader, D. Janssen, E. Wolf et al., AIDS-related B-cell lymphoma (ARL): correlation of prognosis with differentiation profiles assessed by immunophenotyping, Blood, vol.106, issue.5, pp.1762-1769, 2005.
DOI : 10.1182/blood-2004-12-4631

Y. Oh and C. Park, Prognostic Evaluation of Nodal Diffuse Large B Cell Lymphoma by Immunohistochemical Profiles with Emphasis on CD138 Expression as a Poor Prognostic Factor, Journal of Korean Medical Science, vol.21, issue.3, pp.397-405, 2006.
DOI : 10.3346/jkms.2006.21.3.397

D. Martinez, A. Valera, N. Perez, S. Villegas, L. Gonzalez-farre et al., Plasmablastic Transformation of Low-grade B-cell Lymphomas, The American Journal of Surgical Pathology, vol.37, issue.2, pp.272-281, 2013.
DOI : 10.1097/PAS.0b013e31826cb1d1

V. Gattei, C. Godeas, M. Degan, F. Rossi, D. Aldinucci et al., Characterization of anti-CD138 monoclonal antibodies as tools for investigating the molecular polymorphism of syndecan-1 in human lymphoma cells, British Journal of Haematology, vol.76, issue.1, pp.152-162, 1999.
DOI : 10.1046/j.1365-2141.1996.d01-1811.x

A. Saez, A. Saez, M. Artiga, A. Perez-rosado, F. Camacho et al., Building an Outcome Predictor Model for Diffuse Large B-Cell Lymphoma, The American Journal of Pathology, vol.164, issue.2, pp.613-622, 2004.
DOI : 10.1016/S0002-9440(10)63150-1