E. Campo and S. Rule, Mantle cell lymphoma: evolving management strategies, Blood, vol.125, issue.1, pp.48-55, 2015.
DOI : 10.1182/blood-2014-05-521898

P. Jares, D. Colomer, and E. Campo, Molecular pathogenesis of mantle cell lymphoma, Journal of Clinical Investigation, vol.122, issue.10, pp.3416-3423, 2012.
DOI : 10.1172/JCI61272

B. Meissner, R. Kridel, and R. Lim, The E3 ubiquitin ligase UBR5 is recurrently mutated in mantle cell lymphoma, Blood, vol.121, issue.16, pp.3161-3164, 2013.
DOI : 10.1182/blood-2013-01-478834

R. Rahal, M. Frick, and R. Romero, Pharmacological and genomic profiling identifies NF-??B???targeted treatment strategies for mantle cell lymphoma, Nature Medicine, vol.1, issue.1, pp.87-92, 2014.
DOI : 10.1093/bib/bbs017

S. Valdésvald´valdés-mas, R. Navarro, and A. , Landscape of somatic mutations and clonal evolution in mantle cell lymphoma, Proc Natl Acad Sci, vol.110, issue.45, pp.18250-18255, 2013.

J. Burger and J. Gribben, The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: Insight into disease biology and new targeted therapies, Seminars in Cancer Biology, vol.24, pp.71-81, 2014.
DOI : 10.1016/j.semcancer.2013.08.011

P. Améam´amé-thomas and K. Tarte, The yin and the yang of follicular lymphoma cell niches: Role of microenvironment heterogeneity and plasticity, Seminars in Cancer Biology, vol.24, pp.23-32, 2014.
DOI : 10.1016/j.semcancer.2013.08.001

J. Burger and R. Ford, The microenvironment in mantle cell lymphoma: Cellular and molecular pathways and emerging targeted therapies, Seminars in Cancer Biology, vol.21, issue.5, pp.308-312, 2011.
DOI : 10.1016/j.semcancer.2011.09.006

B. Chang, M. Francesco, D. Rooij, and M. , Egress of CD19+CD5+ cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients, Blood, vol.122, issue.14, pp.2412-2424, 2013.
DOI : 10.1182/blood-2013-02-482125

M. Wang, S. Rule, and P. Martin, Targeting BTK with Ibrutinib in Relapsed or Refractory Mantle-Cell Lymphoma, New England Journal of Medicine, vol.369, issue.6, pp.507-516, 2013.
DOI : 10.1056/NEJMoa1306220

D. Chiron, C. Dousset, and C. Brosseau, Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced ABT-199 resistance in mantle cell lymphoma, Oncotarget, vol.6, issue.11, pp.8750-8759, 2015.
DOI : 10.18632/oncotarget.3275

M. Furtado, M. Wang, B. Munneke, J. Mcgreivy, D. Beaupre et al., Ibrutinib-associated lymphocytosis corresponds to bone marrow involvement in mantle cell lymphoma, British Journal of Haematology, vol.369, issue.1, pp.131-134, 2015.
DOI : 10.1111/bjh.13275

L. Pham, M. Vang, and A. Tamayo, during development of a novel mantle cell lymphoma cell line, PF-1, derived from a typical patient with relapsed disease, Leukemia & Lymphoma, vol.96, issue.1, pp.186-193, 2015.
DOI : 10.1016/j.semcancer.2012.02.002

T. Lwin, J. Lin, and Y. Choi, Follicular dendritic cell-dependent drug resistance of non-Hodgkin lymphoma involves cell adhesion-mediated Bim down-regulation through induction of microRNA-181a, Blood, vol.116, issue.24, pp.5228-5236, 2010.
DOI : 10.1182/blood-2010-03-275925

A. Kurtova, A. Tamayo, R. Ford, and J. Burger, Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting, Blood, vol.113, issue.19, pp.4604-4613, 2009.
DOI : 10.1182/blood-2008-10-185827

T. Lwin, L. Hazlehurst, and S. Dessureault, Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas, Blood, vol.110, issue.5, pp.1631-1638, 2007.
DOI : 10.1182/blood-2006-11-060350

Z. Jin, N. Teramoto, and K. Hayashi, CD40 ligand stimulation inhibits the proliferation of mantle cell lymphoma lines, Anticancer Res, vol.24, issue.2B, pp.691-697, 2004.

D. Medina, L. Goodell, J. Glod, G. ´. , C. Rabson et al., Mesenchymal stromal cells protect mantle cell lymphoma cells from spontaneous and drug-induced apoptosis through secretion of B-cell activating factor and activation of the canonical and non-canonical nuclear factor ??B pathways, Haematologica, vol.97, issue.8, pp.1255-1263, 2012.
DOI : 10.3324/haematol.2011.040659

R. Castillo, J. Mascarenhas, W. Telford, A. Chadburn, S. Friedman et al., Proliferative response of mantle cell lymphoma cells stimulated by CD40 ligation and IL-4, Leukemia, vol.14, issue.2, pp.292-298, 2000.
DOI : 10.1038/sj.leu.2401664

N. Andersen, J. Larsen, and J. Christiansen, Soluble CD40 ligand induces selective proliferation of lymphoma cells in primary mantle cell lymphoma cell cultures, Blood, vol.96, issue.6, pp.2219-2225, 2000.

E. Planken, N. Dijkstra, R. Willemze, and J. Kluin-nelemans, Proliferation of B cell malignancies in all stages of differentiation upon stimulation in the 'CD40 system', Leukemia, vol.10, issue.3, pp.488-493, 1996.

C. Arpin, D. ´. , J. Van-kooten, and C. , Generation of memory B cells and plasma cells in vitro, Science, vol.268, issue.5211, pp.720-722, 1995.
DOI : 10.1126/science.7537388

M. Brennan, A. Renaud, and A. Gamblin, 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jetsprayed or electrospun micro-fiber scaffolds

S. Ma¨?gama¨?ga, C. Brosseau, and G. Descamps, A simple flow cytometry-based barcode for routine authentication of multiple myeloma and mantle cell lymphoma cell lines, Cytometry Part A, vol.93, issue.4, pp.285-288, 2015.
DOI : 10.1002/cyto.a.22643

C. Vignon, C. Debeissat, and M. Georget, Flow Cytometric Quantification of All Phases of the Cell Cycle and Apoptosis in a Two-Color Fluorescence Plot, PLoS ONE, vol.3, issue.7, p.68425, 2013.
DOI : 10.1371/journal.pone.0068425.g006

G. Foight, J. Ryan, S. Letai, A. Keating, and A. , Designed BH3 Peptides with High Affinity and Specificity for Targeting Mcl-1 in Cells, ACS Chemical Biology, vol.9, issue.9, pp.1962-1968, 2014.
DOI : 10.1021/cb500340w

S. Dutta, J. Ryan, T. Chen, C. Kougentakis, A. Letai et al., Potent and Specific Peptide Inhibitors of Human Pro-Survival Protein Bcl-xL, Journal of Molecular Biology, vol.427, issue.6
DOI : 10.1016/j.jmb.2014.09.030

F. Baran-marszak, M. Boukhiar, and S. Harel, Constitutive and B-cell receptor-induced activation of STAT3 are important signaling pathways targeted by bortezomib in leukemic mantle cell lymphoma, Haematologica, vol.95, issue.11, pp.1865-1872, 2010.
DOI : 10.3324/haematol.2009.019745

L. Zhang, J. Yang, and J. Qian, Role of the microenvironment in mantle cell lymphoma: IL-6 is an important survival factor for the tumor cells, Blood, vol.120, issue.18, pp.3783-3792, 2012.
DOI : 10.1182/blood-2012-04-424630

D. Vishwamitra, P. Shi, and D. Wilson, Expression and effects of inhibition of type I insulin-like growth factor receptor tyrosine kinase in mantle cell lymphoma, Haematologica, vol.96, issue.6, pp.871-880, 2011.
DOI : 10.3324/haematol.2010.031567

M. Guidoboni, P. Zancai, and R. Cariati, Retinoic acid inhibits the proliferative response induced by CD40 activation and interleukin-4 in mantle cell lymphoma, Cancer Res, vol.65, issue.2, pp.587-595, 2005.

D. Col, J. Zancai, P. Terrin, and L. , Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma, Blood, vol.111, issue.10, pp.5142-5151, 2008.
DOI : 10.1182/blood-2007-07-103481

D. Dorfman and G. Pinkus, Distinction between small lymphocytic and mantle cell lymphoma by immunoreactivity for CD23, Mod Pathol, vol.7, issue.3, pp.326-331, 1994.

C. Annunziata, R. Davis, and Y. Demchenko, Frequent Engagement of the Classical and Alternative NF-??B Pathways by Diverse Genetic Abnormalities in Multiple Myeloma, Cancer Cell, vol.12, issue.2, pp.115-130, 2007.
DOI : 10.1016/j.ccr.2007.07.004

C. Dousset, S. Ma¨?gama¨?ga, and P. Gomez-bougie, BH3 profiling as a tool to identify acquired resistance to venetoclax in multiple myeloma [published online ahead of print 29, Br J Haematol, 2016.

M. Vogler, H. Hamali, and X. Sun, BCL2/BCL-XL inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation, Blood, vol.117, issue.26, pp.7145-7154, 2011.
DOI : 10.1182/blood-2011-03-344812

F. Habens, A. Lapham, and C. Dallman, Distinct promoters mediate constitutive and inducible Bcl-XL expression in malignant lymphocytes, Oncogene, vol.92, issue.13, pp.1910-1919, 2007.
DOI : 10.1038/sj.onc.1209979

L. Pham, A. Tamayo, L. Yoshimura, P. Lo, and R. Ford, Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis

A. Jazirehi, S. Huerta-yepez, G. Cheng, and B. Bonavida, Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factorkappaB signaling pathway in non-Hodgkin's lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis, Cancer Res, vol.65, issue.1, pp.264-276, 2005.

T. Illidge, C. Klein, L. Sehn, A. Davies, G. Salles et al., Obinutuzumab in hematologic malignancies: Lessons learned to date, Cancer Treatment Reviews, vol.41, issue.9, pp.784-792, 2015.
DOI : 10.1016/j.ctrv.2015.07.003

D. Chiron, D. Liberto, M. Martin, and P. , Cell-Cycle Reprogramming for PI3K Inhibition Overrides a Relapse-Specific C481S BTK Mutation Revealed by Longitudinal Functional Genomics in Mantle Cell Lymphoma, Cancer Discovery, vol.4, issue.9, pp.1022-1035, 2014.
DOI : 10.1158/2159-8290.CD-14-0098

N. Saba, D. Liu, and S. Herman, Pathogenic role of B-cell receptor signaling and canonical NF-??B activation in mantle cell lymphoma, Blood, vol.128, issue.1, pp.82-92, 2016.
DOI : 10.1182/blood-2015-11-681460

L. Nygren, A. Wasik, and S. Baumgartner-wennerholm, T-Cell Levels Are Prognostic in Mantle Cell Lymphoma, Clinical Cancer Research, vol.20, issue.23, pp.6096-6104, 2014.
DOI : 10.1158/1078-0432.CCR-14-0889

S. Iyengar, L. Ariza-mcnaughton, and A. Clear, Characteristics of human primary mantle cell lymphoma engraftment in NSG mice, British Journal of Haematology, vol.116, issue.1, pp.165-169, 2016.
DOI : 10.1111/bjh.13581

M. Davids, J. Deng, and A. Wiestner, Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia, Blood, vol.120, issue.17, pp.3501-3509, 2012.
DOI : 10.1182/blood-2012-02-414060

M. Vogler, M. Butterworth, and A. Majid, Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia, Blood, vol.113, issue.18, pp.4403-4413, 2009.
DOI : 10.1182/blood-2008-08-173310

T. Robak, H. Huang, and J. Jin, Bortezomib-Based Therapy for Newly Diagnosed Mantle-Cell Lymphoma, LYM-3002 Investigators, pp.944-953, 2015.
DOI : 10.1056/NEJMoa1412096

R. Thijssen, E. Slinger, and K. Weller, Resistance to ABT-199 induced by microenvironmental signals in chronic lymphocytic leukemia can be counteracted by CD20 antibodies or kinase inhibitors, Haematologica, vol.100, issue.8, pp.302-306, 2015.
DOI : 10.3324/haematol.2015.124560

D. Heinrich, M. Weinkauf, and G. Hutter, Differential regulation patterns of the anti-CD20 antibodies obinutuzumab and rituximab in mantle cell lymphoma Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cellmediated B-cell cytotoxicity, Br J Haematol. Blood, vol.168115, issue.5122, pp.606-610, 2010.

F. Morschhauser, G. Cartron, and C. Thieblemont, Obinutuzumab (GA101) Monotherapy in Relapsed/Refractory Diffuse Large B-Cell Lymphoma or Mantle-Cell Lymphoma: Results From the Phase II GAUGUIN Study, Journal of Clinical Oncology, vol.31, issue.23, pp.31-2912, 2013.
DOI : 10.1200/JCO.2012.46.9585

L. Sehn, N. Chua, and J. Mayer, Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial, The Lancet Oncology, vol.17, issue.8, pp.1081-1093, 2016.
DOI : 10.1016/S1470-2045(16)30097-3

D. Chiron, P. Martin, D. Liberto, and M. , arrest by CDK4/CDK6 inhibition reprograms lymphoma cells for durable PI3K?? inhibition through PIK3IP1, Cell Cycle, vol.18, issue.12, pp.1892-1900, 2013.
DOI : 10.4161/cc.24928

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735703