A. Rosenwald, G. Wright, K. Leroy, X. Yu, P. Gaulard et al., Molecular Diagnosis of Primary Mediastinal B Cell Lymphoma Identifies a Clinically Favorable Subgroup of Diffuse Large B Cell Lymphoma Related to Hodgkin Lymphoma, The Journal of Experimental Medicine, vol.81, issue.6, pp.851-862, 2003.
DOI : 10.1084/jem.20022089

C. Steidl and R. Gascoyne, The molecular pathogenesis of primary mediastinal large B-cell lymphoma, Blood, vol.118, issue.10, pp.2659-2669, 2011.
DOI : 10.1182/blood-2011-05-326538

C. Oncotarget, J. Hessler, S. Steinberg, C. Grant, G. Wright et al., Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma, N Engl J Med, vol.368, pp.1408-1416, 2013.

V. Bhatt, R. Mourya, R. Shrestha, and J. Armitage, Primary mediastinal large B-cell lymphoma, Cancer Treatment Reviews, vol.41, issue.6, pp.476-485, 2015.
DOI : 10.1016/j.ctrv.2015.04.006

J. Gunawardana, F. Chan, A. Telenius, B. Woolcock, R. Kridel et al., Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma, Nature Genetics, vol.362, issue.4, pp.329-335, 2014.
DOI : 10.1038/ng.2900

A. Alizadeh, M. Eisen, R. Davis, C. Ma, I. Lossos et al., Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, vol.303, issue.6769, pp.503-511, 2000.
DOI : 10.1038/35000501

S. Dubois, P. Viailly, S. Mareschal, E. Bohers, P. Bertrand et al., Next-Generation Sequencing in Diffuse Large B-Cell Lymphoma Highlights Molecular Divergence and Therapeutic Opportunities: a LYSA Study, Clinical cancer research : an official journal of the American Association for Cancer Research, pp.2919-2928, 2016.
DOI : 10.1158/1078-0432.CCR-15-2305

URL : https://hal.archives-ouvertes.fr/hal-01442496

K. Savage, S. Monti, J. Kutok, G. Cattoretti, D. Neuberg et al., The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma, Blood, vol.102, issue.12, pp.3871-3879, 2003.
DOI : 10.1182/blood-2003-06-1841

X. Sagaert, P. De-paepe, L. Libbrecht, V. Vanhentenrijk, G. Verhoef et al., Forkhead Box Protein P1 Expression in Mucosa-Associated Lymphoid Tissue Lymphomas Predicts Poor Prognosis and Transformation to Diffuse Large B-Cell Lymphoma, Journal of Clinical Oncology, vol.24, issue.16, pp.2490-2497, 2006.
DOI : 10.1200/JCO.2006.05.6150

H. Hu, B. Wang, M. Borde, J. Nardone, S. Maika et al., Foxp1 is an essential transcriptional regulator of B cell development, Nature Immunology, vol.11, issue.8, pp.819-826, 2006.
DOI : 10.1016/S0092-8674(00)00188-4

A. Sagardoy, J. Martinez-ferrandis, S. Roa, K. Bunting, M. Aznar et al., Downregulation of FOXP1 is required during germinal center B-cell function, Blood, vol.121, issue.21, pp.4311-4320, 2013.
DOI : 10.1182/blood-2012-10-462846

S. Nagel, C. Meyer, M. Kaufmann, H. Drexler, and R. Macleod, Deregulated FOX genes in Hodgkin lymphoma, Genes, Chromosomes and Cancer, vol.118, issue.11, pp.917-933, 2014.
DOI : 10.1002/gcc.22204

G. Lenz, G. Wright, N. Emre, H. Kohlhammer, S. Dave et al., Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways, Proceedings of the National Academy of Sciences, vol.105, issue.36, pp.13520-13525, 2008.
DOI : 10.1073/pnas.0804295105

J. Fenton, E. Schuuring, S. Barrans, A. Banham, S. Rollinson et al., t(3;14)(p14;q32) Results in aberrant expression ofFOXP1 in a case of diffuse large B-cell lymphoma, Genes, Chromosomes and Cancer, vol.19, issue.2, pp.164-168, 2006.
DOI : 10.1002/gcc.20278

B. Streubel, U. Vinatzer, A. Lamprecht, M. Raderer, and A. Chott, T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma, Leukemia, vol.14, pp.652-658, 2005.
DOI : 10.1073/PNAS.050007597

M. Van-keimpema, L. Gruneberg, M. Mokry, R. Van-boxtel, M. Van-zelm et al., The forkhead transcription factor FOXP1 represses human plasma cell differentiation, Blood, vol.126, issue.18, pp.2098-2109, 2015.
DOI : 10.1182/blood-2015-02-626176

V. Craig, S. Cogliatti, J. Imig, C. Renner, S. Neuenschwander et al., Myc-mediated repression of microRNA-34a promotes high-grade transformation of B-cell lymphoma by dysregulation of FoxP1, Blood, vol.117, issue.23, pp.6227-6236, 2011.
DOI : 10.1182/blood-2010-10-312231

A. Kasinski and F. Slack, MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy, Nature Reviews Cancer, vol.39, issue.12, pp.849-864, 2011.
DOI : 10.1038/nrc3166

K. Musilova and M. Mraz, MicroRNAs in B-cell lymphomas: how a complex biology gets more complex, Leukemia, vol.9, issue.5, pp.1004-1017, 2015.
DOI : 10.1182/blood-2008-11-189407

D. Lisio, L. Martinez, N. Montes-moreno, S. Piris-villaespesa, M. Sanchez-beato et al., The role of miRNAs in the pathogenesis and diagnosis of B-cell lymphomas, Blood, vol.120, issue.9, 2012.
DOI : 10.1182/blood-2012-05-402784

A. Ventura, A. Young, M. Winslow, L. Lintault, A. Meissner et al., Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17???92 Family of miRNA Clusters, Cell, vol.132, issue.5, pp.875-886, 2008.
DOI : 10.1016/j.cell.2008.02.019

J. Mendell, miRiad Roles for the miR-17-92 Cluster in Development and Disease, Cell, vol.133, issue.2, pp.217-222, 2008.
DOI : 10.1016/j.cell.2008.04.001

Y. Hayashita, H. Osada, Y. Tatematsu, H. Yamada, K. Yanagisawa et al., A Polycistronic MicroRNA Cluster, miR-17-92, Is Overexpressed in Human Lung Cancers and Enhances Cell Proliferation, Cancer Research, vol.65, issue.21, pp.9628-9632, 2005.
DOI : 10.1158/0008-5472.CAN-05-2352

E. Mogilyansky and I. Rigoutsos, The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease, Cell Death and Differentiation, vol.48, issue.12, pp.1603-1614, 2013.
DOI : 10.1038/cdd.2013.125

C. Xiao, L. Srinivasan, D. Calado, H. Patterson, B. Zhang et al., Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes, Nature Immunology, vol.24, issue.4, pp.405-414, 2008.
DOI : 10.1038/ni1575

J. Iqbal, Y. Shen, Y. Liu, K. Fu, E. Jaffe et al., Genome-wide miRNA profiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis, Blood, vol.119, issue.21, pp.4939-4948, 2012.
DOI : 10.1182/blood-2011-07-370122

M. Inomata, H. Tagawa, Y. Guo, Y. Kameoka, N. Takahashi et al., MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes, Blood, vol.113, issue.2, pp.396-402, 2009.
DOI : 10.1182/blood-2008-07-163907

D. Thapa, X. Li, B. Jamieson, and O. Martinez-maza, Overexpression of MicroRNAs from the miR-17-92 Paralog Clusters in AIDS-Related Non-Hodgkin's Lymphomas, PLoS ONE, vol.339, issue.6, p.20781, 2011.
DOI : 10.1371/journal.pone.0020781.s002

E. Rao, C. Jiang, J. M. Huang, X. Iqbal, J. Lenz et al., The miRNA-17???92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation, Leukemia, vol.3, issue.5, pp.1064-1072, 2012.
DOI : 10.1038/leu.2011.305

M. Attar, E. Arefian, M. Nabiuni, F. Adegani, S. Bakhtiari et al., MicroRNA 17???92 expressed by a transposone-based vector changes expression level of cell-cycle-related genes, Cell Biology International, vol.8, issue.11, pp.1005-1012, 2012.
DOI : 10.1042/CBI20100515

L. He, J. Thomson, M. Hemann, E. Hernando-monge, D. Mu et al., A microRNA polycistron as a potential human oncogene, Nature, vol.1, issue.7043, pp.828-833, 2005.
DOI : 10.1093/BIOINFORMATICS/16.11.1046

K. Kim, G. Chadalapaka, S. Lee, D. Yamada, X. Sastre-garau et al., Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer, Oncogene, vol.107, issue.8, pp.1034-1044, 2012.
DOI : 10.1038/onc.2011.296

G. Lanza, M. Ferracin, R. Gafa, A. Veronese, R. Spizzo et al., mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer, Molecular Cancer, vol.6, issue.1, p.54, 2007.
DOI : 10.1186/1476-4598-6-54

P. Mestdagh, A. Bostrom, F. Impens, E. Fredlund, G. Van-peer et al., The miR-17-92 MicroRNA Cluster Regulates Multiple Components of the TGF-?? Pathway in Neuroblastoma, Molecular Cell, vol.40, issue.5, pp.762-773, 2010.
DOI : 10.1016/j.molcel.2010.11.038

M. Battistella, M. Romero, L. Castro-vega, G. Gapihan, F. Bouhidel et al., The High Expression of the microRNA 17-92 Cluster and its Paralogs, and the Downregulation of the Target Gene PTEN, Is Associated with Primary Cutaneous B-Cell Lymphoma Progression. The Journal of investigative dermatology, pp.1659-1667, 2015.

J. Kluiver, S. Poppema, D. De-jong, T. Blokzijl, G. Harms et al., BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas, The Journal of Pathology, vol.159, issue.2, pp.243-249, 2005.
DOI : 10.1002/path.1825

J. Iqbal, Y. Shen, X. Huang, Y. Liu, L. Wake et al., Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma, Blood, vol.125, issue.7, pp.1137-1145, 2015.
DOI : 10.1182/blood-2014-04-566778

V. Olive, E. Sabio, M. Bennett, D. Jong, C. Biton et al., A component of the mir-17- 92 polycistronic oncomir promotes oncogene-dependent apoptosis, eLife, vol.2, p.822, 2013.

A. Dabrowska-iwanicka and J. Walewski, Primary Mediastinal Large B-cell Lymphoma, Current Hematologic Malignancy Reports, vol.54, issue.8, pp.273-283, 2014.
DOI : 10.1007/s11899-014-0219-0

G. Wright, B. Tan, A. Rosenwald, E. Hurt, A. Wiestner et al., A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma, Proceedings of the National Academy of Sciences, vol.100, issue.17, pp.9991-9996, 2003.
DOI : 10.1073/pnas.1732008100

P. Brown, T. Marafioti, R. Kusec, and A. Banham, The FOXP1 Transcription Factor is Expressed in the Majority of Follicular Lymphomas but is Rarely Expressed in Classical and Lymphocyte Predominant Hodgkin???s Lymphoma, Journal of Molecular Histology, vol.17, issue.Suppl 1, pp.249-256, 2005.
DOI : 10.1007/s10735-005-6521-3

S. Hu, Z. Xu-monette, A. Balasubramanyam, G. Manyam, C. Visco et al., CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study, Blood, vol.121, issue.14, pp.2715-2724, 2013.
DOI : 10.1182/blood-2012-10-461848

H. Horn, M. Ziepert, M. Wartenberg, A. Staiger, T. Barth et al., Different biological risk factors in young poor-prognosis and elderly patients with diffuse large B-cell lymphoma, Leukemia, vol.6, issue.7, 2015.
DOI : 10.1182/blood-2013-11-536433

P. Meyer, K. Fu, T. Greiner, L. Smith, J. Delabie et al., Immunohistochemical Methods for Predicting Cell of Origin and Survival in Patients With Diffuse Large B-Cell Lymphoma Treated With Rituximab, Journal of Clinical Oncology, vol.29, issue.2, pp.200-207, 2011.
DOI : 10.1200/JCO.2010.30.0368

W. Choi, D. Weisenburger, T. Greiner, M. Piris, A. Banham et al., A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clinical cancer research : an official journal of the American www.impactjournals.com/oncotarget Association for Cancer Research, pp.5494-5502, 2009.

C. Copie-bergman, P. Gaulard, K. Leroy, J. Briere, M. Baia et al., Immuno???Fluorescence In Situ Hybridization Index Predicts Survival in Patients With Diffuse Large B-Cell Lymphoma Treated With R-CHOP: A GELA Study, Journal of Clinical Oncology, vol.27, issue.33, pp.5573-5579, 2009.
DOI : 10.1200/JCO.2009.22.7058

URL : https://hal.archives-ouvertes.fr/inserm-00424929

C. Thieblemont, J. Briere, N. Mounier, H. Voelker, W. Cuccuini et al., The Germinal Center/Activated B-Cell Subclassification Has a Prognostic Impact for Response to Salvage Therapy in Relapsed/Refractory Diffuse Large B-Cell Lymphoma: A Bio-CORAL Study, Journal of Clinical Oncology, vol.29, issue.31, pp.4079-4087, 2011.
DOI : 10.1200/JCO.2011.35.4423

K. Wong, D. Gascoyne, P. Brown, E. Soilleux, C. Snell et al., Reciprocal expression of the endocytic protein HIP1R and its repressor FOXP1 predicts outcome in R-CHOP-treated diffuse large B-cell lymphoma patients, Leukemia, vol.118, issue.2, pp.362-372, 2014.
DOI : 10.1038/leu.2013.224

J. Dekker, D. Park, A. Shaffer, H. Kohlhammer, W. Deng et al., Subtype-specific addiction of the activated B-cell subset of diffuse large B-cell lymphoma to FOXP1, Proceedings of the National Academy of Sciences, vol.113, issue.5, pp.577-586, 2016.
DOI : 10.1073/pnas.1524677113

J. Winter, S. Li, V. Aurora, D. Variakojis, B. Nelson et al., Expression of p21 Protein Predicts Clinical Outcome in DLBCL Patients Older than 60 Years Treated with R-CHOP but not CHOP: A Prospective ECOG and Southwest Oncology Group Correlative Study on E4494, Clinical Cancer Research, vol.16, issue.8, pp.2435-2442, 2010.
DOI : 10.1158/1078-0432.CCR-09-1219

M. Van-keimpema, L. Gruneberg, M. Mokry, R. Van-boxtel, J. Koster et al., FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-??B to promote survival of human B cells, Blood, vol.124, issue.23, pp.3431-3440, 2014.
DOI : 10.1182/blood-2014-01-553412

M. Weniger, S. Gesk, S. Ehrlich, J. Martin-subero, M. Dyer et al., Gains ofREL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein, Genes, Chromosomes and Cancer, vol.82, issue.4, pp.406-415, 2007.
DOI : 10.1002/gcc.20420