A. Theos and B. Korf, American College of Physicians

H. Brems, E. Beert, T. De-ravel, and E. Legius, Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1, The Lancet Oncology, vol.10, issue.5, pp.508-515, 2009.
DOI : 10.1016/S1470-2045(09)70033-6

B. Korf and . Plexiform-neurofibromas, Plexiform neurofibromas, American Journal of Medical Genetics, vol.55, issue.1, pp.31-38, 1999.
DOI : 10.1002/(SICI)1096-8628(19990326)89:1<31::AID-AJMG7>3.0.CO;2-W

L. Lantieri, J. Meningaud, P. Grimbert, F. Bellivier, J. Lefaucheur et al., Repair of the lower and middle parts of the face by composite tissue allotransplantation in a patient with massive plexiform neurofibroma: a 1-year follow-up study, The Lancet, vol.372, issue.9639, pp.639-684, 2008.
DOI : 10.1016/S0140-6736(08)61277-5

T. Tucker, P. Wolkenstein, J. Revuz, J. Zeller, and J. Friedman, Association between benign and malignant peripheral nerve sheath tumors in NF1, Neurology, vol.65, issue.2, pp.205-216, 2005.
DOI : 10.1212/01.wnl.0000168830.79997.13

J. Declue, A. Papageorge, J. Fletcher, S. Diehl, N. Ratner et al., Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis, Cell, vol.69, issue.2, pp.265-73, 1992.
DOI : 10.1016/0092-8674(92)90407-4

G. Bollag, D. Clapp, S. Shih, F. Adler, Y. Zhang et al., Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells, Nature Genetics, vol.82, issue.2, pp.144-152, 1996.
DOI : 10.1038/346719a0

W. Jessen, S. Miller, E. Jousma, J. Wu, T. Rizvi et al., MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors, Journal of Clinical Investigation, vol.123, issue.1, pp.340-347, 2013.
DOI : 10.1172/JCI60578DS1

C. Johannessen, B. Johnson, S. Williams, A. Chan, E. Reczek et al., TORC1 Is Essential for NF1-Associated Malignancies, Current Biology, vol.18, issue.1, pp.56-62, 2008.
DOI : 10.1016/j.cub.2007.11.066

URL : http://doi.org/10.1016/j.cub.2007.11.066

S. Ardern-holmes and K. North, Treatment for plexiform neurofibromas in patients with NF1, The Lancet Oncology, vol.13, issue.12, pp.1175-1181, 2012.
DOI : 10.1016/S1470-2045(12)70435-7

K. Robertson, G. Nalepa, F. Yang, D. Bowers, C. Ho et al., Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial, The Lancet Oncology, vol.13, issue.12, pp.1218-1242, 2012.
DOI : 10.1016/S1470-2045(12)70414-X

T. De-raedt, E. Beert, E. Pasmant, A. Luscan, H. Brems et al., PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies, Nature, vol.514, pp.247-51, 2014.
DOI : 10.1038/sj.emboj.7600402

A. Baude, A. Lindroth, and C. Plass, PRC2 loss amplifies Ras signaling in cancer, Nature Genetics, vol.46, issue.11, pp.1154-1159, 2014.
DOI : 10.1016/j.molcel.2010.08.013

P. Filippakopoulos and S. Knapp, Targeting bromodomains: epigenetic readers of lysine acetylation, Nature Reviews Drug Discovery, vol.4, issue.5, pp.337-56, 2014.
DOI : 10.1093/bioinformatics/bts340

V. Chau, S. Lim, W. Mo, C. Liu, A. Patel et al., Preclinical Therapeutic Efficacy of a Novel Pharmacologic Inducer of Apoptosis in Malignant Peripheral Nerve Sheath Tumors, Cancer Research, vol.74, issue.2, pp.586-97, 2014.
DOI : 10.1158/0008-5472.CAN-13-1934

B. Barkan, S. Starinsky, E. Friedman, R. Stein, and Y. Kloog, The Ras Inhibitor Farnesylthiosalicylic Acid as a Potential Therapy for Neurofibromatosis Type 1, Clinical Cancer Research, vol.12, issue.18, pp.5533-5575, 2006.
DOI : 10.1158/1078-0432.CCR-06-0792

E. Pasmant, A. Luscan, J. Varin, I. Laurendeau, B. Parfait et al., Relevance of MPNST cell lines as models for NF1 associated-tumors, Journal of Neuro-Oncology, vol.11, issue.3, pp.353-358, 2013.
DOI : 10.1007/s11060-013-1185-4

S. Miller, F. Rangwala, J. Williams, P. Ackerman, S. Kong et al., Large-Scale Molecular Comparison of Human Schwann Cells to Malignant Peripheral Nerve Sheath Tumor Cell Lines and Tissues, Cancer Research, vol.66, issue.5, pp.2584-91, 2006.
DOI : 10.1158/0008-5472.CAN-05-3330

E. Pasmant, A. Sabbagh, J. Masliah-planchon, N. Ortonne, I. Laurendeau et al., Role of Noncoding RNA ANRIL in Genesis of Plexiform Neurofibromas in Neurofibromatosis Type 1, JNCI Journal of the National Cancer Institute, vol.103, issue.22, pp.1-713, 2011.
DOI : 10.1093/jnci/djr416

E. Beert, H. Brems, B. Daniëls, D. Wever, I. Van-calenbergh et al., Atypical neurofibromas in neurofibromatosis type 1 are premalignant tumors, Genes, Chromosomes and Cancer, vol.249, issue.12, pp.1021-1053, 2011.
DOI : 10.1002/gcc.20921

C. Zou, K. Smith, Q. Zhu, J. Liu, I. Mccutcheon et al., Dual targeting of AKT and mammalian target of rapamycin: A potential therapeutic approach for malignant peripheral nerve sheath tumor, Molecular Cancer Therapeutics, vol.8, issue.5, pp.1157-68, 2009.
DOI : 10.1158/1535-7163.MCT-08-1008

S. Sun, L. Rosenberg, X. Wang, Z. Zhou, P. Yue et al., Activation of Akt and eIF4E Survival Pathways by Rapamycin-Mediated Mammalian Target of Rapamycin Inhibition, Cancer Research, vol.65, issue.16, pp.7052-7060, 2005.
DOI : 10.1158/0008-5472.CAN-05-0917

A. Gingras, B. Raught, S. Gygi, A. Niedzwiecka, M. Miron et al., Hierarchical phosphorylation of the translation inhibitor 4E-BP1, Genes Dev, vol.15, pp.2852-64, 2001.

I. Vivanco and C. Sawyers, The phosphatidylinositol 3-Kinase???AKT pathway in human cancer, Nature Reviews Cancer, vol.2, issue.7, pp.489-501, 2002.
DOI : 10.1038/nrc839

J. Downward, Targeting RAS signalling pathways in cancer therapy, Nature Reviews Cancer, vol.3, issue.1, pp.11-22, 2003.
DOI : 10.1038/nrc969

G. Johansson, Y. Mahller, M. Collins, M. Kim, T. Nobukuni et al., Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors, Molecular Cancer Therapeutics, vol.7, issue.5, pp.1237-1282, 2008.
DOI : 10.1158/1535-7163.MCT-07-2335

M. Endo, H. Yamamoto, N. Setsu, K. Kohashi, Y. Takahashi et al., Prognostic Significance of AKT/mTOR and MAPK Pathways and Antitumor Effect of mTOR Inhibitor in NF1-Related and Sporadic Malignant Peripheral Nerve Sheath Tumors, Clinical Cancer Research, vol.19, issue.2, pp.450-61, 2013.
DOI : 10.1158/1078-0432.CCR-12-1067

A. Carracedo, L. Ma, J. Teruya-feldstein, F. Rojo, L. Salmena et al., Inhibition of mTORC1 leads to MAPK pathway activation througha PI3K-dependent feedback loop in human cancer, J Clin Invest, vol.118, pp.3065-74, 2008.

C. Chresta, B. Davies, I. Hickson, T. Harding, S. Cosulich et al., AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP-Competitive Mammalian Target of Rapamycin Kinase Inhibitor with In vitro and In vivo Antitumor Activity, Cancer Research, vol.70, issue.1, pp.288-98, 2010.
DOI : 10.1158/0008-5472.CAN-09-1751

A. Naing, C. Aghajanian, R. E. Olmos, D. Schwartz, G. Oelmann et al., Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma, British Journal of Cancer, vol.6, issue.7, pp.1093-1102
DOI : 10.1016/S0959-8049(99)00229-4

N. Lau, M. Feldkamp, L. Roncari, A. Loehr, P. Shannon et al., Loss of Neurofibromin Is Associated with Activation of RAS/MAPK and PI3-K/AKT Signaling in a Neurofibromatosis 1 Astrocytoma, Journal of Neuropathology & Experimental Neurology, vol.59, issue.9, pp.759-767, 2000.
DOI : 10.1093/jnen/59.9.759

M. Mendoza, E. Er, and J. Blenis, The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation, Trends in Biochemical Sciences, vol.36, issue.6, pp.320-328, 2011.
DOI : 10.1016/j.tibs.2011.03.006

A. Watson, L. Anderson, A. Greeley, V. Keng, E. Rahrmann et al., Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of schwann cell tumors reduces tumor grade and multiplicity, Oncotarget, vol.5, issue.6, pp.1502-1516, 2014.
DOI : 10.18632/oncotarget.1609

W. Lee, S. Teckie, T. Wiesner, L. Ran, P. Granada et al., PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors, Nature Genetics, vol.454, issue.11, pp.1227-1259, 2014.
DOI : 10.1038/nature09409

F. Andreoli, A. Barbosa, M. Parenti, D. Rio, and A. , Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives, Curr Pharm Des, vol.19, pp.578-613, 2013.

Z. Yang, N. He, and Q. Zhou, Brd4 Recruits P-TEFb to Chromosomes at Late Mitosis To Promote G1 Gene Expression and Cell Cycle Progression, Molecular and Cellular Biology, vol.28, issue.3, pp.967-76, 2008.
DOI : 10.1128/MCB.01020-07

K. Mochizuki, A. Nishiyama, M. Jang, A. Dey, A. Ghosh et al., The Bromodomain Protein Brd4 Stimulates G1 Gene Transcription and Promotes Progression to S Phase, Journal of Biological Chemistry, vol.283, issue.14, pp.9040-9048, 2008.
DOI : 10.1074/jbc.M707603200

A. Patel, C. Liao, Z. Chen, C. Liu, Y. Wang et al., BET Bromodomain Inhibition Triggers Apoptosis of NF1-Associated Malignant Peripheral Nerve Sheath Tumors through Bim Induction, Cell Reports, vol.6, issue.1, pp.81-92, 2014.
DOI : 10.1016/j.celrep.2013.12.001

P. Filippakopoulos, J. Qi, S. Picaud, Y. Shen, W. Smith et al., Selective inhibition of BET bromodomains, Nature, vol.4, issue.7327, pp.1067-73, 2010.
DOI : 10.1038/nature09504

M. Coudé, T. Braun, J. Berrou, M. Dupont, S. Bertrand et al., BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells, Oncotarget, vol.6, issue.19, pp.17698-712, 2015.
DOI : 10.18632/oncotarget.4131

M. Boi, E. Gaudio, P. Bonetti, I. Kwee, E. Bernasconi et al., The BET Bromodomain Inhibitor OTX015 Affects Pathogenetic Pathways in Preclinical B-cell Tumor Models and Synergizes with Targeted Drugs, Clinical Cancer Research, vol.21, issue.7, pp.1628-1666, 2015.
DOI : 10.1158/1078-0432.CCR-14-1561

O. Mirguet, R. Gosmini, J. Toum, C. Clément, M. Barnathan et al., Discovery of Epigenetic Regulator I-BET762: Lead Optimization to Afford a Clinical Candidate Inhibitor of the BET Bromodomains, Journal of Medicinal Chemistry, vol.56, issue.19, pp.7501-7516, 2013.
DOI : 10.1021/jm401088k

J. Castellsagué, B. Gel, J. Fernández-rodríguez, R. Llatjós, I. Blanco et al., Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine, EMBO Molecular Medicine, vol.7, issue.5, pp.608-635, 2015.
DOI : 10.15252/emmm.201404430

W. Dahlberg, J. Little, J. Fletcher, H. Suit, and P. Okunieff, of Human Soft Tissue Sarcoma Cell Lines and Skin Fibroblasts Derived from the Same Patients, International Journal of Radiation Biology, vol.56, issue.2, pp.191-199, 1993.
DOI : 10.1080/09553009314550251

T. Glover, C. Stein, E. Legius, L. Andersen, A. Brereton et al., Molecular and cytogenetic analysis of tumors in von recklinghausen neurofibromatosis, Genes, Chromosomes and Cancer, vol.83, issue.1, pp.62-70, 1991.
DOI : 10.1002/gcc.2870030111

Y. Li, P. Rao, R. Wen, Y. Song, D. Muir et al., Notch and Schwann cell transformation, Oncogene, vol.23, issue.5, pp.1146-52, 2004.
DOI : 10.1038/sj.onc.1207068

E. Serra, T. Rosenbaum, U. Winner, R. Aledo, E. Ars et al., Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell subpopulations, Human Molecular Genetics, vol.9, issue.20, pp.3055-64, 2000.
DOI : 10.1093/hmg/9.20.3055

E. Pasmant, B. Parfait, A. Luscan, P. Goussard, A. Briand-suleau et al., Neurofibromatosis type 1 molecular diagnosis: what can NGS do for you when you have a large gene with loss of function mutations?, European Journal of Human Genetics, vol.3, issue.5, pp.596-601, 2015.
DOI : 10.1038/ejhg.2014.145

J. Tamburini, A. Green, V. Bardet, N. Chapuis, S. Park et al., Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia, Blood, vol.114, issue.8, pp.1618-1645, 2009.
DOI : 10.1182/blood-2008-10-184515