C. Brochier-armanet, P. Forterre, and S. Gribaldo, Phylogeny and evolution of the Archaea: one hundred genomes later, Current Opinion in Microbiology, vol.14, issue.3, pp.274-281, 2011.
DOI : 10.1016/j.mib.2011.04.015

URL : https://hal.archives-ouvertes.fr/hal-00598326

E. Peeters, R. P. Driessen, F. Werner, and R. T. Dame, The interplay between nucleoid organization and transcription in archaeal genomes, Nature Reviews Microbiology, vol.215, issue.6, pp.333-341, 2015.
DOI : 10.1038/nrmicro3467

V. Q. Mai, X. Chen, R. Hong, and L. Huang, Small abundant DNA binding proteins from the thermoacidophilic archaeon Sulfolobus shibatae constrain negative DNA supercoils, J Bacteriol, vol.180, pp.2560-2563, 1998.

M. F. White and S. D. Bell, Holding it together: chromatin in the Archaea, Trends in Genetics, vol.18, issue.12, pp.621-626, 2002.
DOI : 10.1016/S0168-9525(02)02808-1

M. Grote, J. Dijk, and R. Reinhardt, Ribosomal and DNA binding proteins of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius, BBA)-Protein Structure and Molecular Enzymology, pp.405-413, 1986.
DOI : 10.1016/0167-4838(86)90090-7

J. G. Mcafee, S. P. Edmondson, P. K. Datta, J. W. Shriver, and R. Gupta, Gene Cloning, Expression, and Characterization of the Sac7 Proteins from the Hyperthermophile Sulfolobus acidocaldarius, Biochemistry, vol.34, issue.31, pp.10063-10077, 1995.
DOI : 10.1021/bi00031a031

S. P. Edmondson and J. W. Shriver, [11] DNA-binding proteins Sac7d and Sso7d from Sulfolobus, Methods Enzymol, vol.334, pp.129-145, 2001.
DOI : 10.1016/S0076-6879(01)34463-4

T. Choli, P. Henning, B. Wittmann-liebold, and R. Reinhardt, Isolation, characterization and microsequence analysis of a small basic methylated DNA-binding protein from the Archaebacterium, Sulfolobus solfataricus, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.950, issue.2, pp.193-203, 1988.
DOI : 10.1016/0167-4781(88)90011-5

X. Chen, R. Guo, L. Huang, and R. Hong, Evolutionary conservation and DNA binding properties of the Ssh7 proteins from Sulfolobus shibatae?, Science in China Series C, vol.45, issue.6, pp.583-592, 2002.
DOI : 10.1360/02yc9065

B. S. Mccrary, S. P. Edmondson, and J. W. Shriver, Hyperthermophile Protein Folding Thermodynamics: Differential Scanning Calorimetry and Chemical Denaturation of Sac7d, Journal of Molecular Biology, vol.264, issue.4, pp.784-805, 1996.
DOI : 10.1006/jmbi.1996.0677

G. Béhar, Tolerance of the archaeal Sac7d scaffold protein to alternative library designs: characterization of anti-immunoglobulin G Affitins, Protein Engineering Design and Selection, vol.26, issue.4, pp.267-275, 2013.
DOI : 10.1093/protein/gzs106

G. Béhar, S. Pacheco, M. Maillasson, B. Mouratou, and F. Pecorari, Switching an anti-IgG binding site between archaeal extremophilic proteins results in Affitins with enhanced pH stability, Journal of Biotechnology, vol.192, pp.123-129, 2014.
DOI : 10.1016/j.jbiotec.2014.10.006

S. P. Edmondson, L. Qiu, and J. W. Shriver, Solution Structure of the DNA-Binding Protein Sac7d from the Hyperthermophile Sulfolobus acidocaldarius, Biochemistry, vol.34, issue.41, pp.13289-13304, 1995.
DOI : 10.1021/bi00041a004

H. Baumann, S. Knapp, T. Lundback, R. Ladenstein, and T. Hard, Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus, Nature Structural Biology, vol.4, issue.11, pp.808-819, 1994.
DOI : 10.1038/359851a0

H. Robinson, The hyperthermophile chromosomal protein Sac7d sharply kinks DNA, Nature, vol.6, issue.6672, pp.202-205, 1998.
DOI : 10.1038/32455

Y. G. Gao, The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA, Nature Structural Biology, vol.47, issue.9, pp.782-786, 1998.
DOI : 10.1107/S0907444995011115

T. Lundbäck and T. Härd, 37274 | DOI: 10.1038/srep37274 19, Scientific RepoRts | The Journal of Physical Chemistry, vol.6, issue.100, pp.17690-17695, 1996.

S. Ishino and Y. Ishino, DNA polymerases as useful reagents for biotechnology ???????? the history of developmental research in the field, Frontiers in Microbiology, vol.6, issue.195, p.465, 2014.
DOI : 10.1016/S0723-2020(85)80042-4

B. Mouratou, Remodeling a DNA-binding protein as a specific in vivo inhibitor of bacterial secretin PulD, Proceedings of the National Academy of Sciences, vol.104, issue.46, pp.17983-17988, 2007.
DOI : 10.1073/pnas.0702963104

URL : https://hal.archives-ouvertes.fr/hal-00412884

F. Pecorari and P. M. Alzari, OB-fold used as scaffold for engineering new specific binders. Patent Publication Nos, p.4388, 2008.

M. Krehenbrink, Artificial Binding Proteins (Affitins) as Probes for Conformational Changes in Secretin PulD, Journal of Molecular Biology, vol.383, issue.5, pp.1058-1068, 2008.
DOI : 10.1016/j.jmb.2008.09.016

URL : https://hal.archives-ouvertes.fr/hal-00414255

N. Gera, M. Hussain, R. C. Wright, and B. M. Rao, Highly Stable Binding Proteins Derived from the Hyperthermophilic Sso7d Scaffold, Journal of Molecular Biology, vol.409, issue.4, pp.601-616, 2011.
DOI : 10.1016/j.jmb.2011.04.020

N. Zhao, M. A. Schmitt, and J. D. Fisk, Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library, FEBS Journal, vol.5, issue.7, pp.1351-1367, 2016.
DOI : 10.1111/febs.13674

L. E. Servin-garciduenas and E. Martinez-romero, Draft Genome Sequence of the Sulfolobales Archaeon AZ1, Obtained through Metagenomic Analysis of a Mexican Hot Spring, Genome Announcements, vol.2, issue.2, 2014.
DOI : 10.1128/genomeA.00164-14

M. S. Urbieta, Draft Genome Sequence of the Novel Thermoacidophilic Archaeon Acidianus copahuensis Strain ALE1, Isolated from the Copahue Volcanic Area in Neuquen, Argentina, Genome Announcements, vol.2, issue.3, 2014.
DOI : 10.1128/genomeA.00259-14

N. J. Greenfield, Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions, Nature Protocols, vol.2, issue.6, pp.2527-2535, 2006.
DOI : 10.1038/nprot.2006.204

P. Agback, H. Baumann, S. Knapp, R. Ladenstein, and T. Hard, Architecture of nonspecific protein???DNA interactions in the Sso7d???DNA complex, Nature Structural Biology, vol.6, issue.7, pp.579-584, 1998.
DOI : 10.1016/S0263-7855(98)80030-1

C. Zahnd, Directed in vitro evolution and crystallographic analysis of a peptide binding scFv antibody with low picomolar affinity

R. Consonni, I. Arosio, T. Recca, P. Fusi, and L. Zetta, Structural determinants responsible for the thermostability of Sso7d and its single point mutants, Proteins: Structure, Function, and Bioinformatics, vol.57, issue.3, pp.766-775, 2007.
DOI : 10.1002/prot.21256

S. Knapp, Thermal Unfolding of the DNA-binding Protein Sso7d from the HyperthermophileSulfolobus solfataricus, Journal of Molecular Biology, vol.264, issue.5, pp.1132-1144, 1996.
DOI : 10.1006/jmbi.1996.0701

T. Lundback, H. Hansson, S. Knapp, R. Ladenstein, and T. Hard, Thermodynamic characterization of non-sequence-specific DNA-binding by the Sso7d protein from Sulfolobus solfataricus, Journal of Molecular Biology, vol.276, issue.4, pp.775-786, 1998.
DOI : 10.1006/jmbi.1997.1558

B. S. Mccrary, J. Bedell, S. P. Edmondson, and J. W. Shriver, Linkage of protonation and anion binding to the folding of Sac7d, Journal of Molecular Biology, vol.276, issue.1, pp.203-224, 1998.
DOI : 10.1006/jmbi.1998.1500

W. B. Peters, S. P. Edmondson, and J. W. Shriver, Thermodynamics of DNA Binding and Distortion by the Hyperthermophile Chromatin Protein Sac7d, Journal of Molecular Biology, vol.343, issue.2, pp.339-360, 2004.
DOI : 10.1016/j.jmb.2004.08.042

Y. Wang, A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro, Nucleic Acids Research, vol.32, issue.3, pp.1197-1207, 2004.
DOI : 10.1093/nar/gkh271

H. Ppyun, Improved PCR performance using mutant Tpa-S DNA polymerases from the hyperthermophilic archaeon Thermococcus pacificus, Journal of Biotechnology, vol.164, issue.2, pp.363-370, 2012.
DOI : 10.1016/j.jbiotec.2013.01.022

F. Wang, Expression and Characterization of the RKOD DNA Polymerase in Pichia pastoris, PLOS ONE, vol.14, issue.6, p.131757, 2015.
DOI : 10.1371/journal.pone.0131757.s001

M. H. Norholm, A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering, BMC Biotechnology, vol.10, issue.1, 2010.
DOI : 10.1186/1472-6750-10-21

J. D. Bloom, S. T. Labthavikul, C. R. Otey, and F. Arnold, Protein stability promotes evolvability, Proceedings of the National Academy of Sciences, vol.103, issue.15, pp.5869-5874, 2006.
DOI : 10.1073/pnas.0510098103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458665

C. Zahnd, Efficient Tumor Targeting with High-Affinity Designed Ankyrin Repeat Proteins: Effects of Affinity and Molecular Size, Cancer Research, vol.70, issue.4, pp.1595-1605, 2010.
DOI : 10.1158/0008-5472.CAN-09-2724

B. Mouratou, G. Béhar, L. Paillard-laurance, S. Colinet, and F. Pecorari, Ribosome Display for the Selection of Sac7d Scaffolds, Methods Mol Biol, vol.805, pp.315-331, 2012.
DOI : 10.1007/978-1-61779-379-0_18

J. D. Mcghee and P. Von-hippel, Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice, Journal of Molecular Biology, vol.86, issue.2, pp.469-489, 1974.
DOI : 10.1016/0022-2836(74)90031-X

B. Mouratou, S. Rouyre, S. Pauillac, and J. L. Guesdon, Development of nonradioactive microtiter plate assays for nuclease activity, Analytical Biochemistry, vol.309, issue.1, pp.40-47, 2002.
DOI : 10.1016/S0003-2697(02)00272-5

A. Correa, Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins), PLoS ONE, vol.108, issue.5, p.97438, 2014.
DOI : 10.1371/journal.pone.0097438.t003

C. Notredame, D. G. Higgins, and J. Heringa, T-coffee: a novel method for fast and accurate multiple sequence alignment, Journal of Molecular Biology, vol.302, issue.1, pp.205-217, 2000.
DOI : 10.1006/jmbi.2000.4042

P. Stothard, The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences, Biotechniques, vol.28, issue.1102, p.1104, 2000.