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A DNA target-enrichment approach to detect mutations, copy
number changes and immunoglobulin translocations in
multiple myeloma
N Bolli1,2, Y Li1, V Sathiaseelan1, K Raine1, D Jones1, P Ganly3, F Cocito4, G Bignell1, MA Chapman5, AS Sperling6, KC Anderson6,
H Avet-Loiseau7,8, S Minvielle9, PJ Campbell1 and NC Munshi6

Genomic lesions are not investigated during routine diagnostic workup for multiple myeloma (MM). Cytogenetic studies are
performed to assess prognosis but with limited impact on therapeutic decisions. Recently, several recurrently mutated genes have
been described, but their clinical value remains to be de� ned. Therefore, clinical-grade strategies to investigate the genomic
landscape of myeloma samples are needed to integrate new and old prognostic markers. We developed a target-enrichment
strategy followed by next-generation sequencing (NGS) to streamline simultaneous analysis of gene mutations, copy number
changes and immunoglobulin heavy chain (IGH) translocations in MM in a high-throughput manner, and validated it in a panel of
cell lines. We identi� ed 548 likely oncogenic mutations in 182 genes. By integrating published data sets of NGS in MM, we retrieved
a list of genes with signi� cant relevance to myeloma and found that the mutational spectrum of primary samples and MM cell lines
is partially overlapping. Gains and losses of chromosomes, chromosomal segments and gene loci were identi� ed with accuracy
comparable to conventional arrays, allowing identi� cation of lesions with known prognostic signi� cance. Furthermore, we
identi� ed IGH translocations with high positive and negative predictive value. Our approach could allow the identi� cation of novel
biomarkers with clinical relevance in myeloma.

Blood Cancer Journal(2016)6, e467; doi:10.1038/bcj.2016.72; published online 2 September 2016

INTRODUCTION
Multiple myeloma (MM) is a hematological neoplasm that arises
from transformation and clonal proliferation of plasma cells.1

Virtually every case of MM is characterized by gross chromosomal
rearrangements in the form of either hyperdiploidy or transloca-
tions predominantly involving the immunoglobulin locus2 that
can be tracked along the typical multi-step disease progression
from the preclinical stages of monoclonal gammopathy of
unknown signi� cance to the � nal setting of relapsed-refractory
MM.3 Identi� cation of cytogenetic abnormalities using conven-
tional karyotyping and � uorescence in situ hybridization is a
standard part of the initial workup and risk strati� cation4 and may
guide clinical practice in some circumstances. Patients with
del17p, t(4;14) and t(14;16) are considered to have high risk
disease5,6 and the ability of bortezomib-based treatments to
overcome the adverse prognosis associated with t(4;14)7 helps in
making treatment decisions. Similarly, clinical and genetic features
associated with good response to lenalidomide have recently
been described.8 The ever-increasing availability of new drugs
targeting recurrent genetic lesions9 and better understanding of
the biological features of myeloma has prompted a need for
updated risk strati� cation and a rational approach to the use of

new agents alone or in combination. In fact, attempts at delivering
risk-adapted therapy have already been performed in the context
of clinical trials.10,11

Molecular studies are not routinely performed in myeloma
outside of investigational trials. However, recent next-generation
sequencing (NGS) studies have added considerable resolution to
the landscape of genomic abnormalities of myeloma, highlighting
how it behaves as a heterogeneous admixture of subclones
evolving dynamically over time based on differential chemosensi-
tivity and intrinsic genomic instability.12–15 Nevertheless, myeloma
is a disease driven by an intricate and heterogeneous interplay of
genetic events and these data have failed so far to provide a
unifying view of its pathogenesis and clinical behavior. If advances
in genomics are to be used in the future to de� ne prognosis and
to inform therapy, integration of even larger studies and clinical
data sets will be required. Initial efforts to incorporate these new
� ndings into standard risk models are currently underway.16

Targeted NGS has signi� cant advantages over whole-genome
or whole-exome sequencing as it allows high-throughput, robust
and easy analysis of chromosomal and gene lesions of large
cohorts of patients by reducing the footprint of the genome to
be sequenced in each case. Such studies have already been
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performed in acute myeloid leukemia,17,18 myelodysplastic
syndrome19,20 and myeloma to detect recurrent gene lesions21,22

or characterize immunoglobulin heavy chain (IGH) transloca-
tions,23 but their full potential to comprehensively annotate the
extended spectrum of genomic lesions with prognostic signi� -
cance in myeloma has not been exploited so far.

In this study, we developed and validated a novel target-
enrichment strategy based on DNA pull-down followed by NGS to
streamline simultaneous high-throughput analysis of gene muta-
tions, copy number alterations, immunoglobulin translocations
and tumor-speci� c V(D)J rearrangements in MM that could be
applied to patient samples even by laboratories with limited NGS
and analytic expertise.

MATERIALS AND METHODS
Samples, DNA target enrichment, sequencing and alignment
Native DNA at 500 ng was extracted from 24 hematopoietic cells lines: 14 MM
lines and 10 control myeloid and lymphoid lines (Supplementary Table S1). For
5 primary patient samples banked for� 4 years, 10 ng of DNA was
whole-genome ampli� ed using the REPLI-g mini kit (Qiagen, Manchester, UK)
and 500 ng of whole-genome ampli� ed DNA was used for library construction
and sequencing. Samples and data were obtained and managed in
accordance with the Declaration of Helsinki under protocol 08/H0308/303:
somatic molecular genetics of human cancers, Melanoma and Myeloma
(Dana Farber Cancer Institute, Boston, MA, USA). The same protocol was
approved by RES Committee East of England–Cambridge Central.

We designed a target-enrichment design based on DNA pull-down by
cRNA baits (SureSelect, Agilent Technologies, Santa Clara, CA, USA). We
selected 246 genes implicated in myeloma and/or cancer in general based
on previous literature to establish the prevalence of the recurrent
mutations and identify novel cancer gene mutations not described before
in myeloma. We also selected 2538 single-nucleotide polymorphisms
(SNPs), evenly spaced across the genome and highly polymorphic based
on the 1000 Genomes project24 to detect copy number and allelic
frequency changes at the single-gene and whole-genome level. In known
regions of copy number abnormality we tiled SNPs more densely to
improve resolution. Finally, we targeted the whole IGH locus to detect
translocations and V(D)J rearrangements. The� nal design was created
using the online SureDesign tool (Agilent Technologies), using no repeat
masking for exonic regions, moderate masking for intronic regions and
minimum masking for the IGH locus. The total size of our design reached a
total footprint of 2.992 Mbp (Supplementary Table S2). DNA and library
preparation was carried out as described previously.14 A total of 16 and 8
samples were pooled and target DNA was subsequently enriched using
one reaction tube each from the SureSelect kit. All 24 samples were
sequenced in one lane of HiSeq2000 with a 75-bp paired-end protocol.
FastQ� les were aligned to the human genome (NCBI build 37) using
BWAmem that improves detection of insertions, deletions and
rearrangements by clipping and mapping of chimeric reads spanning
breakpoints that would otherwise get discarded by BWAaln.25 Unmapped,
duplicate or off-target reads were excluded from analysis. Aligned BAM� les
are available at the URL https://www.ebi.ac.uk/ega/studies/EGAS00001000743.

On-target copy number and B-allele frequency analysis
Probes could be designed for4 99% of the input design after excluding
highly repetitive regions. We used Bedtools (v2.1523)26 to retrieve depth of
coverage of the target region. We then normalized coverage in each
sample by dividing the read count at each position by the total number of
on-target uniquely mapped bases for that sample. Copy number data were
then generated as a LogR ratio between the normalized depth of each
sample and the mean depth of three cell lines with normal karyotype—as
shown by the Genome-Wide Human SNP Array 6.0 (Af� metryx, Inc.,
Santa Clara, CA, USA)—used as‘normal controls’. We then derived the
average LogR copy number of the subchromosomal regions and genes
that are affected by recurrent abnormalities to detect gains and losses.
To generate B-allele frequency plots, calls from our list of 2538 SNPs were
analyzed to remove SNPs that gave inconsistent results, and for the
remaining ones the percentage of reads supporting the minor allele was
plotted. These analyses were performed with bespoke R scripts (R v3.0.3)27

available on request. Results were validated with copy number data
generated by Genome-Wide Human SNP Array 6.0 (Affymetrix, Inc.).

Mutation calling algorithms
Substitutions and insertions/deletions were detected using CaVEMan
and Pindel as previously described.14 To evaluate the accuracy of
mutation calling, we used results from the‘catalogue of somatic
mutation in cancer (COSMIC) cell line whole exome sequencing (WES)
project’,28 limiting analysis to calls within the target region of our study.
Variants were cross-referenced with the following databases: exome
sequencing project v0.0.18, 1000 Genomes, NCBI dbSNP build 137 and
COSMIC v68.

IGH translocations and rearrangements
For IGH translocations, we manually ran Brass29 to � nd clusters of read
pairs where one read maps to the IGH locus and the other in proximity to a
known partner of translocation (Supplementary Table S3).

To detect V(D)J rearrangements, we� rst segmented the sequencing
depth of the IGH region using the R package‘changepoint’ in order to � nd
positions of copy number change indicative of loss of copy number
secondary to deletions in the locus. We then retrieved clusters of read pairs
where at least one end mapped to a segmentation breakpoint (max
distance: 2 kb) such that the read pair orientations and sequencing depth
changes were consistent with a deletion event. To� lter out mismapping
artifacts and only focus on high-con� dence events, we also analyzed a
panel of 48 normal samples targeted with the same design (as well as the
nonlymphoid lines within our cohort). We only retained events that (1)
were supported by� 10 reads in the test sample and none in the controls;
(2) were supported by reads mapped with a quality of� 27 on one end
and 4 0 on the other; (3) were around a deletion of at least 8 kb of length;
and (4) whose start and end coordinates were not duplicated in the control
cohort, suggestive of potential artifacts.

RESULTS
Sequencing metrics of the study
We sequenced a total of 30.36 Gb for this study, with an average
of 1.26 Gb per sample (range, 0.63–2.5). The mean coverage of the
target region was 155.48 × , resulting from a rather low average
on-target ef� ciency of 36.3% (Figure 1a). We believe that this low
on-target ef� ciency depended in part on the intronic probes
designed to capture SNPs, whose performance was signi� cantly
lower than that of exonic probes for most samples (Figure 1b). We
also investigated whether capture of the IGH region, which
harbors repetitive regions and was rearranged in B-lymphoid cell
lines, contributed to this low ef� ciency. We found that the mean
coverage of the IGH region was 130 × across the whole cohort,
not different from that of the intronic regions (133 × ). Never-
theless, this was closer to exonic probes in samples without IGH
rearrangements, suggesting that the IGH locus can be targeted
with good ef� ciency. In samples with IGH rearrangements instead,
coverage of the locus dropped as expected because of the
multiple deletions in the region, thus indicating that our on-target
performance was in part artifactually low owing to the actual IGH
region being smaller than annotated in the reference genome
(Figure 1b). Overall, 90% and 63% of the target region was
covered on average at more than 10 × or 30 × , respectively. In
particular, exons in the study were covered at an average depth of
181 × , with 99 and 71% of bases covered at more than 30 × and
100 × . We therefore conclude that our design, despite its large
size and the presence of challenging regions, performed well in
target enrichment returning enough coverage—for the amount of
sequencing performed—for reliable interpretation and quantita-
tion of the data.

Validation of variants in the study
We used CaVEMan and Pindel to identify 831 coding nonsynon-
ymous variants in our 24 samples, composed of 712 substitutions
and 119 indels (Figure 2a). 722/831 positions were adequately
covered (4 20 × ) in both our study and the WES used as control,
and were therefore used for analysis. 665/722 variants in our study
were con� rmed in the WES data28 (Figure 2b), resulting in an
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apparent speci� city of 92% for our custom pull-down approach.
Notably, the average allelic frequency was 37.91% for the
validated variants but only 10.63% for the 57 that were not
con� rmed (Figure 2c), suggesting they probably represent a
mixture of artifacts (false positives) and subclonal variants (true
positives) that the WES study did not identify because of lower
coverage. Conversely, despite a higher coverage our targeted
study did not identify 41 variants reported by WES (Figure 2b).
This underscores the dif� culty of establishing the sensitivity of a
given sequencing platform, as the full catalog of true mutations
for any given sample is for the most part unknown. We therefore
sought a measure of sensitivity of our study by creating a shortlist
of 41 ‘likely oncogenic’ variants from the WES study. These
variants were selected because they were present in genes classed
as likely to drive oncogenesis in a large study of primary tumors.30

Of these variants, 21 were in genes identi� ed as drivers in MM,
and the remainder were in genes identi� ed as drivers in other
tissues. Selected variants also had to be recurrent in the COSMIC

database, with substitutions residing in codons that were mutated
in 4 2 primary tumor samples and protein terminating variants
(nonsense or frameshift indels) occurring in genes containing
4 10 such variants in primary tumor samples. Our targeted study
identi� ed all 41 variants, thus showing 100% sensitivity and a
similarly absolute positive predictive value with respect to this
highly relevant subset of variants (Figure 2b). Furthermore, the
signi� cant concordance of allelic fraction of shared variants
(Figure 2d) suggested that our targeted study retained quantita-
tive value similar to WES data.

Cell line DNA may not be representative of real-life settings,
where patient DNA may be of poor quality, limited amount and
contaminated with normal cells. Therefore, to test the robustness
of our target-enrichment strategy, we tested its performance on
whole-genome ampli� ed DNA from � ve patients previously
analyzed by WES.14 Our targeted design showed a sensitivity of
100% and a speci� city of 91.67%, as it identi� ed two lesions not
reported by the WES study because of lower or absent coverage of
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the region (Supplementary Figure S1). Furthermore, the correla-
tion between allelic frequencies of the two sequencing experi-
ments was almost perfect, con� rming that our design and analysis
strategy retain quantitative value even in samples of lower quality
subject to DNA ampli� cation.

Identi� cation of likely somatic mutations
After establishing a measure of accuracy for the identi� cation of
real variants, we focused on the identi� cation of likely somatic
variants, a particularly hard task in cell lines as they lack a matched
normal control and carry numerous private polymorphisms. We
used known human variation databases and a panel of 317 normal
samples internal to the Sanger Institute to exclude variants that
were reported as known constitutional polymorphisms with a
frequency of 4 1% in the general adult population (roughly
estimating the prevalence of monoclonal gammopathies in the
adult population). We thus� ltered our data and obtained a list of
182 mutated genes and 548 ‘likely somatic’ variants
(Supplementary Table S4) in our cell lines. Our list (Figure 3a)
returned a number of known mutated oncogenes and tumor
suppressors like TP53, KRAS and NRAS across cell types.
Furthermore, known myeloma genes such asFAM46C, LTBand
TRAF3were speci� cally mutated in MM cell lines only, suggesting
that cell lines retain a spectrum of mutation that resembles that of
the tissue of origin, and that tissue restriction could be used as a
way to � lter genes with likely functional role in MM from cell
line data.

Nevertheless, looking at MM cell lines, the spectrum of variants
differed quite substantially from that published in primary human
MM samples. The most commonly mutated gene wasPCLO,
encoding a presynaptic cytoskeletal protein involved in neuro-
transmitter release.31 PLCOwas previously reported as frequently
mutated in diffuse large cell lymphoma but with an extremely
high synonymous to nonsynonymous ratio, suggestive of an

unusually high local rate of passenger mutations without
functional consequences in B-cell malignancies.32 A similar
phenomenon likely explains the presence ofNEB, a giant
cytoskeletal protein33 with no known role in B-cell biology, as
the second mutated gene in the rank. This hypothesis is further
reinforced by the observation that these genes are the most
frequently mutated across all cell lines irrespective of their tissue
of origin, likely as a result of ongoing local mutational processes.
This highlights the need for a list of signi� cant candidate driver
genes in myeloma, corrected for more sophisticated variables
than their crude recurrence rate. As the small number of cell lines
in our study would not allow for a robust statistical analysis, we
used the mutation data sets of three large MM sequencing
papers13–15 (n = 292 samples) and applied the MutSigCV2
algorithm34 to establish the spectrum of driver genes mutated
in myeloma at a signi� cant rate. We found 14 signi� cantly
mutated genes in MM (Table 1). Out of 14 genes, 10 were also
mutated in our MM cell lines, showing correlation of their
recurrence rate with that found in primary samples (Figure 3b).
Although the number of cell lines is small when compared with the
number of patients, these� ndings suggest that MM cell lines can
partially recapitulate the genomic features of primary MM samples.

Identi� cation of copy number changes
MM is a disease characterized by recurrent copy number
abnormalities, many of which have prognostic value.35 We
therefore used normalized coverage data from our exonic probes
and from intronic SNPs to infer the copy number status (relative to
each sample’s total ploidy) and allelic frequencies of chromosome
segments and genes. Figure 4a shows examples of how we could
use this approach to detect deletions in chr1p, chr13 and
chr17p13, as well as ampli� cations in chr1q and chr5q. Combined
analysis of copy number and B-allele frequency of SNPs allowed
identi� cation of copy neutral loss of heterozygosity events such as
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the one affecting the whole chromosome 13 in L-363 (Figure 4a).
Furthermore, we could extend this analysis to the single-gene
level and we correctly identi� ed for example, gains in MYC and
losses in TP53 (Figure 4b). All of these copy number changes were
validated using previously generated data from the genome-wide
human SNP array 6.0 (Affymetrix, Inc.). We applied this analysis
more systematically to known regions and genes affected by
recurrent copy number changes in myeloma. We built a heatmap
showing the average LogR for copy number of each locus, relative
to the average ploidy of normal samples, demonstrating our
ability to detect gains and losses carrying prognostic value in
myeloma. For example, losses in 1p and gains in 1q were quite
common and speci� c for myeloma cell lines, whereas TP53
deletions and MYC ampli� cation were more widespread in the
cohort irrespective of the origin of the cell line (Figure 4c). Overall,
these results con� rm that NGS data have quantitative value similar
to clinical-grade platforms, a feature that can be exploited in
future diagnostic applications.

Identi� cation of translocations involving the IGH locus
A substantial fraction of MM patients harbor translocations
between the IGH locus and oncogenes that have pathogenic,

diagnostic and prognostic value.2 In our design, we tiled the
whole IGH locus to identify such translocations through pull-down
of the genomic DNA surrounding the breakpoints and
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Table 1. Signi� cant genes in myeloma from the MutSigCV2 algorithm

Gene P-value q-Value % Of patients % Of MM cell lines

KRAS 1.00E� 16 6.23E� 13 23.3 14.3
NRAS 1.00E� 16 6.23E� 13 19.9 21.4
TP53 1.00E� 16 6.23E� 13 8.6 21.4
BRAF 1.18E� 10 3.68E� 07 8.6 7.1
DIS3 2.55E� 12 1.19E� 08 8.2 14.3
FAM46C 7.34E� 12 2.75E� 08 7.5 21.4
PRKD2 3.67E� 05 5.26E� 02 3.4 14.3
TRAF3 1.17E� 06 3.11E� 03 3.1 21.4
PRDM1 1.42E� 05 2.65E� 02 2.7 0.0
ATP13A4 1.33E� 06 3.11E� 03 2.4 7.1
IRF4 3.83E� 06 7.96E� 03 1.7 7.1
INTS12 3.06E� 05 4.77E� 02 1.4 0.0
MAX 3.94E� 05 5.26E� 02 1.4 0.0
PDE1B 1.66E� 05 2.82E� 02 1.0 0.0

Abbreviation: MM, multiple myeloma.
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identi� cation of the translocation partner by paired-end sequen-
cing. As ours was not a discovery effort, we focused on known
translocations to evaluate the performance of our approach. We
analyzed 14 MM and 2 acute lymphoblastic leukemia cell lines.
With a simple � lter on mapping quality and depth of the
supporting reads we shortlisted 13 translocations (Figure 5a,
Table 2 and Supplementary Table S5). Interestingly, only in some
cases did we� nd evidence of balanced, reciprocal translocations,
supported by two groups of paired reads in opposite directions.
Rather, in many cases only one read group supported the
translocation, often with the two read pairs in concordant
orientations (Supplementary Table S5). This suggests that the
latter are part of rearrangements involving other partners and

complex inversion–translocation events, and our approach was
able to capture such translocations as well. Furthermore, in cases
where both derivative chromosome breakpoints were captured,
they often covered two different switch regions (see, for example,
t(4;14) in NCI-H929, Figure 5b), suggesting that the translocation
has developed during or after the class switch recombination
process, with deletion of the intervening region on chromosome
14. More rarely, the breakpoint fell in the variable region,
indicating that the translocation resulted from non-class switch
recombination mechanisms (see, for example, t(14;16) in KMS-11,
Figure 5b).23

In MM cell lines we collectively identi� ed and mapped four
cases each of t(11;14) and t(4;14), three cases of t(8;14) and two
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cases of t(14;16) (Figure 5b). Interestingly, 50% of the MM cell lines
showed two translocations, one often involving the MYC locus.
MYC translocations are described as late events in MM,36

associated with aggressive progression, and often co-exist with
other IGH translocations, and therefore are not surprisingly
enriched in myeloma cell lines.

All these events were manually inspected in IGV, and to further
validate our effort we performed PCR in the 9/11 cell lines for
which DNA was available. This validation effort con� rmed the
presence of the translocation in all but two cases in which the
breakpoint on the IGH locus was located in a highly repetitive
region not amenable to priming (Table 2). In our small cohort, we
could identify IGH translocations with high accuracy and we
therefore believe that our platform can reliably detect IGH
translocations in primary MM samples.

DISCUSSION
The incorporation of the spectrum of genomic lesions in
prognostic and therapeutic models of MM requires the develop-
ment of new methods and technologies to gather all the inputs
required for a uni� ed predictive tool. The ever-growing landscape

of treatment options in MM suggests that molecular analysis will
be a part of routine clinical practice in the near future to aid
prognostic and therapeutic strati� cation. Here we present a novel
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Figure 5. Detection of IGH translocations. (a) Scatter plot of IGH translocation events detected by our pipeline, plotted by number of
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Table 2. Translocations as identi� ed by NGS analysis

Cell line Translocation(s) Validated

ARH-77 No NA
CTV-1 No NA
IM-9 No NA
KMS-11 t(4;14); t(14;16) Yes, yes
KMS-12-BM t(11;14) Failed
L-363 t(11;14) Yes
LP-1 t(4;14), t(8;14) Yes, yes
MC-CAR No NA
MM1S t(8;14); t(14;16) Yes, yes
NCI-H929 t(4;14) No DNA
OPM-2 t(4;14), t(8;14) Yes, yes
SK-MM-2 t(11;14) Failed
U-266 t(11;14) Yes
RPMI-8226 No NA

Abbreviations: NA, not applicable; NGS, next-generation sequencing.
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sequencing approach and analysis pipeline that could be
implemented in diagnostic laboratories. It allows multiplexing of
patient samples without the need for a matched normal sample
for high-throughput analysis. It returns analysis of mutations, copy
number changes and IGH translocations that are currently only
performed in reference centers through integration of� uores-
cencein situhybridization, SNP arrays and PCR data at a total cost
per sample that in aggregate could be higher than with the
method described here. Furthermore, as our design can be re� ned
further to exclude regions of scarce clinical relevance and as
sequencing technologies continue to improve, we anticipate costs
and turnaround times will decrease further in the future, making
NGS a viable option for routine clinical practice.

The use of cell lines to validate our design has the advantage of
providing high-quality and abundant DNA for analysis. We
anticipated that the clonal nature of the sample would limit the
performance of our platform on subclonal variants that are quite
frequent in MM.14,15 Surprisingly though, looking at the allelic
fraction of our variants, we found instead that most cell lines
harbored subclonal variants. All cell lines were tested with short
tandem repeat analysis to exclude mix-ups and contaminations,
and most of our variants were con� rmed by the WES study on the
same cells performed within the COSMIC cell line project.28 These
subclonal variants are therefore likely to be real and indicate
subclonal evolution of the cell line, a� nding that has been
observed before in clonogenic studies.37 Our platform therefore
performed well at the identi� cation of variants at low allelic
frequency, likely aided by the high depth of sequencing, showing
a very low rate of false positives (o 8%). We believe that our
sensitivity was also high, but the evaluation of false negatives is
always more dif� cult than that of false positives because no
method can reliably report a complete list of mutations in a
sample with absolute accuracy. Although the fraction of missed
mutations is therefore hard to evaluate for any given mutation
caller, our effort was limited to the identi� cation of likely
oncogenic variants in known cancer genes, and we showed
absolute sensitivity for those. Furthermore, when applied to actual
patient samples, we showed 100% sensitivity for detection of
variants of any allelic fraction, again stressing the robustness of
our platform across a range of sample quality and purity.

The mutational spectrum of the MM cell lines that we describe
only partially recapitulates that of previous studies of primary MM
samples.12–15,38 This is primarily because of the selection bias
introduced by our targeted design that included all driver events
identi� ed by previous studies but excluded nonrecurrent or
infrequent events that account for a large section of mutations
described by NGS studies. Interestingly, MM cell lines share with
primary samples of lymphoid malignancies a subset of recurrently
mutated genes with questionable functional relevance.32 These
� ndings highlight the need to curate any list of mutated genes
accounting for, among other variables, the local mutation rate and
synonymous-to-nonsynonymous ratio to identify real cancer
driver genes that should be included in future clinical applications.
To this end, here we combined the published data sets of
mutations in primary MM samples to identify 14 potential
recurrent driver genes with a rigorous statistical analysis34 that
could be useful for future studies.

Our platform also identi� ed relative copy number changes in
regions with prognostic signi� cance. A limitation of our analysis
was that a targeted study does not allow automated and solid
determination of the absolute ploidy of each cell line. Therefore,
we were not able to identify the absolute copy number of each
gene or chromosome segment, but only gains or losses relative to
the average ploidy of normal cell lines. Nevertheless, we were able
to identify changes in copy number of regions with prognostic
signi� cance with good accuracy, comparable to that of a
SNP array.

Among our objectives was that of describing events involving
the IGH locus. Translocations and rearrangements involving this
locus are of clinical value as they can inform prognosis and
minimal residual disease. Currently,� uorescencein situhybridiza-
tion and PCR techniques are used for this purpose with variable
sensitivity.39,40 Our strategy based on DNA pull-down and NGS
performed extremely well in the detection of translocations, but
less so for V(D)J rearrangement. In fact, we tried to reconstruct the
pattern of V(D)J recombination in our samples looking for paired
reads mapping on both sides of regions of decreased coverage
(indicative of genomic deletions). We were able to identify, with
high-con� dence, cell-speci� c rearrangements in 12/14 MM cell
lines (Supplementary Figure S2 and Supplementary Table S6),
although visual inspection of the coverage plots suggests that our
sensitivity was rather low and many deletions were missed. The
presence of repetitive regions, the high homology of many
segments and the incomplete annotation of the locus are all
factors that can in� uence the ef� ciency of pull-down and
mapping of sequences belonging to the IGH locus.

Although better mapping could be facilitated by newer
iterations of the reference genome, our strategy already offers a
list of clonal and subclonal markers in the form of either gene
mutations, copy number changes, IGH translocations or rearran-
gements that can be used to track tumor evolution over time in
clinical settings. Furthermore, parallel RNA-sequencing
approaches could add relevant information on expression of
mutated genes and overall transcriptional dysregulation of the
disease.41 Given the high heterogeneity of myeloma samples,
such NGS strategies designed to identify different tumor
subpopulations followed by appropriate treatment selection are
needed if disease eradication is to be the next goal of novel
therapies.

In conclusion, we describe target-enrichment, sequencing
techniques and analysis tools that can be implemented in
diagnostic and research laboratories and can be deployed in the
study of myeloma pathogenesis, diagnosis and prognosis.
Application of this panel to large cohorts of clinically annotated
patient samples will potentially allow discovery of novel
biomarkers with clinical signi� cance.
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